

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

4,4'-Dimethyl-1,1'-[ethylenedioxybis(nitrilomethylidyne)]dibenzene

Yu-Jie Ding, a Zhu-Lian Xue, b Wen-Kui Dong, b* Yin-Xia Sun^b and Iian-Chao Wu^b

^aDepartment of Biochemical Engineering, Anhui University of Technology and Science, Wuhu 241000, People's Republic of China, and bSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China

Correspondence e-mail: dongwk@mail.lzjtu.cn

Received 26 April 2009; accepted 28 April 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean $\sigma(C-C) = 0.003 \text{ Å}$; R factor = 0.051; wR factor = 0.158; data-to-parameter ratio = 13.7.

The Schiff base, C₁₈H₂₀N₂O₂, which lies about an inversion centre, adopts a linear conformation. The molecules are packed by $C-H\cdots\pi$ interactions, forming a two-dimensional supramolecular network.

Related literature

For background literature on Schiff base oximes, see: Akine et al. (2005); Dong et al. (2008, 2009a,b); Yamada (1999). For a related structure, see: Dong et al. (2008).

Experimental

Crystal data

 $C_{18}H_{20}N_2O_2$ c = 12.1644 (11) Å $M_r = 296.36$ $\beta = 104.936 (1)^{\circ}$ Monoclinic, $P2_1/c$ $V = 775.75 (17) \text{ Å}^3$ a = 13.6946 (12) Åb = 4.8196 (9) ÅMo $K\alpha$ radiation

 $\mu = 0.08 \text{ mm}^{-1}$ T = 298 K

 $0.43 \times 0.20 \times 0.10 \text{ mm}$

Data collection

Siemens SMART 1000 CCD areadetector diffractometer Absorption correction: none 3790 measured reflections

1370 independent reflections 1012 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.043$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.158$ S = 1.031370 reflections

100 parameters H-atom parameters constrained

 $\Delta \rho_{\text{max}} = 0.23 \text{ e Å}^{-3}$ $\Delta \rho_{\rm min} = -0.21~{\rm e}~{\rm \mathring{A}}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
C9−H9 <i>A</i> ··· <i>Cg</i> 1	0.96	2.66	3.578 (2)	160

Cg1 is the centroid of the C3-C8 ring.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors acknowledge finanical support from the 'Jing Lan' Talent Engineering Funds of Lanzhou Jiaotong University and the Natural Science Foundation of the Department of Education, An-Hui Province (No. KJ2009B110).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2575).

References

Akine, S., Taniguchi, T., Dong, W. K., Masubuchi, S. & Nabeshima, T. (2005). J. Org. Chem. 70, 1704-1711.

Dong, W.-K., Ding, Y.-J., Luo, Y.-L., Yan, H.-B. & Wang, L. (2008). Acta Cryst. E64, o1636.

Dong, W. K., Sun, Y. X., Zhang, Y. P., Li, L., He, X. N. & Tang, X. L. (2009a). Inorg. Chim. Acta, 362, 117-124.

Dong, W. K., Zhao, C. Y., Sun, Y. X., Tang, X. L. & He, X. N. (2009b). Inorg. Chem. Commun. 12, 234-236.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Yamada, S. (1999). Coord. Chem. Rev. 190, 537-555.

Acta Cryst. (2009). E65, o1193 [doi:10.1107/S1600536809015840]

4,4'-Dimethyl-1,1'-[ethylenedioxybis(nitrilomethylidyne)]dibenzene

Yu-Jie Ding, Zhu-Lian Xue, Wen-Kui Dong, Yin-Xia Sun and Jian-Chao Wu

S1. Comment

Schiff bases and their bis-oxime analogues are a significant class of compounds which can be used in a variety of studies such as organic synthesis, catalyst, drug design and life science and so on (Yamada, 1999; Akine *et al.*, 2005; Dong *et al.*, 2009a). In order to extend our work (Dong *et al.*, 2008) on structural characterization of bisoxime compounds, we report the synthesis and the X-ray structure of 4,4'-dimethyl-1,1'-[ethylenedioxybis(nitrilomethylidyne)]dibenzene in this paper (Fig. 1).

The molecule of the title compound is disposed about a crystallographic inversion centre (Symmetry codes: -x, -y, -z) and twofold screw axis (symmetry code: -x, 1/2 + y, 1/2 - z). The oxime, methyl groups and benzene rings have anti-conformation. The two benzene rings of the molecule are parallel, and the methyl and oxime ($-CH_2-O-N=C-$) functional groups are coplanar with the benzene ring in each half of the molecule.

The molecule adopts a linear-shaped configuration with respect to the oxime C=N bonds, which is different from our previous reported bisoxime of 3,3'-dibromo-1,1'-[ethylenedioxybis(nitrilomethylidyne)]dibenzene in which the molecule assumes an E configuration (Dong *et al.*, 2008). The packing of the molecule is controlled by C—H··· π (Ph) interactions linking molecules into infinite supramolecular structure along *b* axis (Fig. 2).

S2. Experimental

4,4'-Dimethyl-1,1'-[ethylenedioxybis(nitrilomethylidyne)]dibenzene was synthesized according to an analogous method reported earlier (Dong *et al.*, 2009*b*). To an ethanol solution (4 ml) of 4-methyl-2-hydroxybenzaldehyde (125.8 mg, 1.05 mmol) was added an ethanol solution (3 ml) of 1,2-bis(aminooxy)ethane (47.7 mg, 0.518 mmol). The reaction mixture was stirred at 328–333 K for 8 h. After cool to room temperature, no precipitate was formed, which was concentrated to about 1 ml under reduced pressure. The precipitate formed was separated by filtration, and washed several times with n-hexane. The product was dried under vacuum to yield 90.0 mg of the title compound. Yield, 58.6%. mp. 359–360 K. Anal. Calcd. for $C_{18}H_{20}N_2O_2$: C, 72.95; H, 6.80; N, 9.45. Found: C, 72.66; H, 6.87; N, 9.32.

Colorless needle-like single crystals suitable for X-ray diffraction studies were obtained after about four days by slow evaporation from an diethyl ether solution of the title compound.

S3. Refinement

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.97 (CH₂), 0.93 Å (CH), C—H = 0.96 (CH₃) Å and U_{iso} (H) = 1.2 U_{eq} (C) and 1.5 U_{eq} (O).

Acta Cryst. (2009). E65, o1193 Sup-1

Figure 1

The molecular structure of the title compound with atom numbering scheme [Symmetry codes: -x + 2, -y, -z + 1]. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.

Figure 2

Part of the supramolecular structure of the title compound. C—H··· π (Ph) interactions are shown as dashed lines.

4,4'-Dimethyl-1,1'-[ethylenedioxybis(nitrilomethylidyne)]dibenzene

Crystal data

 $C_{18}H_{20}N_2O_2$ $M_r = 296.36$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 13.6946 (12) Å b = 4.8196 (9) Å c = 12.1644 (11) Å $\beta = 104.936$ (1)° V = 775.75 (17) Å³ Z = 2

Data collection

Siemens SMART 1000 CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans 3790 measured reflections 1370 independent reflections

F(000) = 316 $D_x = 1.269$ Mg m⁻³ Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 1400 reflections $\theta = 3.4-27.7^\circ$ $\mu = 0.08$ mm⁻¹ T = 298 K Column, colorless $0.43 \times 0.20 \times 0.10$ mm

1012 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.043$ $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.5^{\circ}$ $h = -16 \rightarrow 15$ $k = -5 \rightarrow 5$ $l = -14 \rightarrow 13$

Acta Cryst. (2009). E65, o1193

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.158$ S = 1.031370 reflections 100 parameters 0 restraints Primary atom site location: structure-invariant Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1037P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta\rho_{\text{max}} = 0.23 \text{ e Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.21 \text{ e Å}^{-3}$

Special details

direct methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$
0.87170 (11)	0.4357 (3)	0.55939 (12)	0.0389 (4)
0.95570 (9)	0.2523 (3)	0.58336 (10)	0.0424 (4)
0.95420 (13)	0.0920(4)	0.48465 (15)	0.0381 (5)
0.9568	0.2120	0.4214	0.046*
0.8931	-0.0187	0.4631	0.046*
0.86877 (13)	0.5688 (4)	0.64775 (16)	0.0386 (5)
0.9180	0.5342	0.7148	0.046*
0.79062 (13)	0.7762 (4)	0.64868 (15)	0.0366 (5)
0.71621 (13)	0.8512 (4)	0.55207 (15)	0.0417 (5)
0.7148	0.7693	0.4825	0.050*
0.64425 (14)	1.0474 (4)	0.55907 (16)	0.0439 (5)
0.5956	1.0971	0.4934	0.053*
0.64272 (13)	1.1717 (4)	0.66137 (17)	0.0434 (5)
0.71769 (15)	1.0973 (4)	0.75725 (16)	0.0457 (5)
0.7189	1.1784	0.8270	0.055*
0.79055 (14)	0.9047 (4)	0.75058 (15)	0.0424 (5)
0.8406	0.8602	0.8158	0.051*
0.56330 (16)	1.3823 (4)	0.6689 (2)	0.0577 (6)
0.5911	1.5656	0.6709	0.086*
0.5417	1.3507	0.7369	0.086*
0.5065	1.3647	0.6038	0.086*
	0.95570 (9) 0.95420 (13) 0.9568 0.8931 0.86877 (13) 0.9180 0.79062 (13) 0.71621 (13) 0.7148 0.64425 (14) 0.5956 0.64272 (13) 0.71769 (15) 0.7189 0.79055 (14) 0.8406 0.56330 (16) 0.5911 0.5417	0.95570 (9) 0.2523 (3) 0.95420 (13) 0.0920 (4) 0.9568 0.2120 0.8931 -0.0187 0.86877 (13) 0.5688 (4) 0.9180 0.5342 0.79062 (13) 0.7762 (4) 0.7148 0.7693 0.64425 (14) 1.0474 (4) 0.5956 1.0971 0.64272 (13) 1.1717 (4) 0.71769 (15) 1.0973 (4) 0.7189 1.1784 0.79055 (14) 0.9047 (4) 0.8406 0.8602 0.56330 (16) 1.3823 (4) 0.5911 1.5656 0.5417 1.3507	0.95570 (9) 0.2523 (3) 0.58336 (10) 0.95420 (13) 0.0920 (4) 0.48465 (15) 0.9568 0.2120 0.4214 0.8931 -0.0187 0.4631 0.86877 (13) 0.5688 (4) 0.64775 (16) 0.9180 0.5342 0.7148 0.79062 (13) 0.7762 (4) 0.64868 (15) 0.71621 (13) 0.8512 (4) 0.55207 (15) 0.7148 0.7693 0.4825 0.64425 (14) 1.0474 (4) 0.55907 (16) 0.5956 1.0971 0.4934 0.64272 (13) 1.1717 (4) 0.66137 (17) 0.71769 (15) 1.0973 (4) 0.75725 (16) 0.79055 (14) 0.9047 (4) 0.75058 (15) 0.8406 0.8602 0.8158 0.56330 (16) 1.3823 (4) 0.6689 (2) 0.5911 1.5656 0.6709 0.5417 1.3507 0.7369

Acta Cryst. (2009). E65, o1193 Sup-3

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0315 (8)	0.0384 (9)	0.0465 (9)	0.0052 (7)	0.0093 (6)	0.0011 (7)
O1	0.0343 (8)	0.0455 (8)	0.0446 (8)	0.0100(6)	0.0052 (6)	-0.0053 (6)
C1	0.0335 (10)	0.0397 (10)	0.0405 (10)	0.0010(8)	0.0084(8)	-0.0035 (8)
C2	0.0349 (10)	0.0398 (11)	0.0396 (10)	0.0016 (8)	0.0072 (8)	0.0006 (8)
C3	0.0324 (10)	0.0365 (10)	0.0414 (10)	-0.0013 (7)	0.0104(8)	0.0016 (8)
C4	0.0393 (10)	0.0446 (11)	0.0415 (10)	-0.0007(9)	0.0108 (8)	-0.0032 (8)
C5	0.0366 (10)	0.0462 (11)	0.0473 (11)	0.0040(8)	0.0080(8)	0.0058 (9)
C6	0.0398 (11)	0.0342 (10)	0.0604 (12)	0.0000 (9)	0.0204 (9)	0.0036 (9)
C7	0.0537 (12)	0.0417 (11)	0.0452 (11)	0.0029 (9)	0.0189 (9)	-0.0056(9)
C8	0.0452 (11)	0.0419 (11)	0.0388 (10)	0.0018 (9)	0.0085 (8)	0.0006 (8)
C9	0.0510 (12)	0.0461 (12)	0.0816 (17)	0.0075 (10)	0.0276 (11)	0.0031 (12)

Geometric parameters (Å, °)

N1—C2	1.261 (2)	C4—H4	0.9300
N1—01	1.4203 (18)	C5—C6	1.386 (3)
O1—C1	1.424 (2)	C5—H5	0.9300
C1—C1 ⁱ	1.503 (3)	C6—C7	1.388 (3)
C1—H1A	0.9700	C6—C9	1.508 (3)
C1—H1B	0.9700	C7—C8	1.380(3)
C2—C3	1.466 (2)	C7—H7	0.9300
C2—H2	0.9300	C8—H8	0.9300
C3—C8	1.386 (2)	C9—H9A	0.9600
C3—C4	1.390(3)	С9—Н9В	0.9600
C4—C5	1.384 (2)	C9—H9C	0.9600
C2—N1—O1	110.10 (14)	C4—C5—H5	119.1
N1—01—C1	109.26 (12)	C6—C5—H5	119.1
O1—C1—C1 ⁱ	106.32 (17)	C5—C6—C7	117.62 (17)
O1—C1—H1A	110.5	C5—C6—C9	121.59 (19)
C1 ⁱ —C1—H1A	110.5	C7—C6—C9	120.78 (19)
O1—C1—H1B	110.5	C8—C7—C6	120.92 (18)
C1 ⁱ —C1—H1B	110.5	C8—C7—H7	119.5
H1A—C1—H1B	108.7	C6—C7—H7	119.5
N1—C2—C3	122.47 (17)	C7—C8—C3	121.35 (17)
N1—C2—H2	118.8	C7—C8—H8	119.3
C3—C2—H2	118.8	C3—C8—H8	119.3
C8—C3—C4	118.06 (17)	C6—C9—H9A	109.5
C8—C3—C2	118.70 (17)	C6—C9—H9B	109.5
C4—C3—C2	123.24 (17)	H9A—C9—H9B	109.5
C5—C4—C3	120.27 (17)	C6—C9—H9C	109.5
C5—C4—H4	119.9	H9A—C9—H9C	109.5
C3—C4—H4	119.9	H9B—C9—H9C	109.5
C4—C5—C6	121.76 (17)		

Acta Cryst. (2009). E65, o1193

C2—N1—O1—C1	176.47 (14)	C4—C5—C6—C7	1.4 (3)
N1—O1—C1—C1 ⁱ	178.87 (16)	C4—C5—C6—C9	-179.11 (16)
O1—N1—C2—C3	179.41 (14)	C5—C6—C7—C8	-0.5(3)
N1—C2—C3—C8	177.36 (16)	C9—C6—C7—C8	-179.96 (17)
N1—C2—C3—C4	-2.7(3)	C6—C7—C8—C3	-0.9(3)
C8—C3—C4—C5	-0.5(3)	C4—C3—C8—C7	1.4 (3)
C2—C3—C4—C5	179.58 (16)	C2—C3—C8—C7	-178.65 (16)
C3—C4—C5—C6	-0.9(3)		

Symmetry code: (i) -x+2, -y, -z+1.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —H	$H\cdots A$	D··· A	<i>D</i> —H··· <i>A</i>
C9—H9 <i>A…Cg</i> 1	0.96	2.66	3.578 (2)	160

Acta Cryst. (2009). E65, o1193