

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-tert-Butylamino-3-nitrobenzoic acid

Shivanagere Nagojappa Narendra Babu,^a Aisyah Saad Abdul Rahim,^a‡ Shafida Abd Hamid,^b Samuel Robinson Jebas^c§ and Hoong-Kun Fun^c*¶

^aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bKulliyyah of Science, International Islamic University Malaysia (IIUM), Jalan Istana, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 Universiti Sains Malaysia, Penang, Malaysia

Correspondence e-mail: hkfun@usm.my

Received 22 April 2009; accepted 25 April 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; R factor = 0.065; wR factor = 0.153; data-to-parameter ratio = 13.3.

In the title compound, $C_{11}H_{14}N_2O_4$, all non-H atoms lie in a mirror plane except for one of the methyl groups which deviates from the mirror plane by 0.919 (3) Å and is twisted by a torsion angle of 62.9 (2)°. An intramolecular N-H···O hydrogen bond generates an S(6) ring motif. In the crystal packing, the molecules are linked together by O-H···O hydrogen bonds, forming dimers with graph-set motif $R_2^2(8)$ which propagate along the *a*-axis direction. C-H···O contacts link adjacent dimers with a graph-set motif $C_2^2(7)$, forming chains along *b*, and further consolidate the structure into a three-dimensional network. The crystal packing is further strengthened by short intermolecular O···O=C [2.655 (4) Å] contacts.

Related literature

Nitro benzoic acid derivatives are important intermediates for the synthesis of various heterocyclic compounds of pharmacological interest, see: Brouillette *et al.* (1999); Williams *et al.* (1995). For the structure of 4-(*tert*-butylamino)-3-nitrobenzoate, see: Mohd Maidin *et al.* (2008). For hydrogen-bond motifs, see: Bernstein *et al.* (1995). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data

 $\begin{array}{l} C_{11}H_{14}N_2O_4\\ M_r = 238.24\\ Monoclinic, C2/m\\ a = 20.8125 \ (15) \ \mathring{A}\\ b = 6.7412 \ (5) \ \mathring{A}\\ c = 8.0793 \ (5) \ \mathring{A}\\ \beta = 90.863 \ (6)^\circ \end{array}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{min} = 0.959, T_{max} = 0.997$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.153$ S = 1.111418 reflections 107 parameters 985 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.057$

6267 measured reflections

1418 independent reflections

 $V = 1133.41 (14) \text{ Å}^3$

 $0.39 \times 0.10 \times 0.03~\text{mm}$

Mo Ka radiation

 $\mu = 0.11 \text{ mm}^{-1}$

T = 100 K

Z = 4

Table 1

Hydrogen-bond geometry (Å, °).

$\begin{array}{ccccccc} O1-H1O1\cdots O2^{i} & 0.82 \ (4) & 1.83 \ (4) & 2.655 \ (4) & 178 \ (4) \\ C1-H1A\cdots O3^{ii} & 0.93 & 2.52 & 3.407 \ (4) & 161 \\ N2-H1N2\cdots O4 & 0.81 \ (4) & 1.97 \ (4) & 2.641 \ (4) & 139 \ (4) \\ C9-H9C\cdots O2^{iii} & 0.96 & 2.53 & 3.437 \ (3) & 158 \end{array}$	$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
	$01 - H101 \cdots 02^{i}$ $C1 - H1A \cdots 03^{ii}$ $N2 - H1N2 \cdots 04$ $C9 - H9C \cdots 02^{iii}$	0.82 (4) 0.93 0.81 (4) 0.96	1.83 (4) 2.52 1.97 (4) 2.53	2.655 (4) 3.407 (4) 2.641 (4) 3.437 (3)	178 (4) 161 139 (4) 158

Symmetry codes: (i) -x + 1, y, -z + 1; (ii) x, y, z - 1; (iii) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, -z + 1.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

SNNB, ASAR and SAH are grateful to Universiti Sains Malaysia (USM) for funding the synthetic chemistry work under the University Research Grant (1001/PFARMASI/ 815026). SNNB thanks USM for a post-doctoral research

[‡] Additional correspondence author, e-mail: aisyah@usm.my.

[§] Thomson Reuters ResearcherID: A-5473-2009. Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Thomson Reuters ResearcherID: A-3561-2009.

organic compounds

fellowship. HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2439).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Brouillette, J. W., Atigadda, V. R., Luo, M., Air, G. M., Babu, Y. S. & Bantia, S. (1999). *Bioorg. Med. Chem. Lett.* 9, 1901–1906.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Mohd Maidin, S. M., Abdul Rahim, A. S., Osman, H., Kia, R. & Fun, H.-K. (2008). Acta Cryst. E64, 01550-01551.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Williams, M., Bischofberger, N., Swaminathan, S. & Kim, C. U. (1995). *Bioorg. Med. Chem. Lett.* 5, 2251–2254.

supporting information

Acta Cryst. (2009). E65, o1233-o1234 [doi:10.1107/S1600536809015487]

4-tert-Butylamino-3-nitrobenzoic acid

Shivanagere Nagojappa Narendra Babu, Aisyah Saad Abdul Rahim, Shafida Abd Hamid, Samuel Robinson Jebas and Hoong-Kun Fun

S1. Comment

Nitro benzoic acid derivatives are important intermediates for the synthesis of various heterocyclic compounds of pharmacological interest (Brouillette *et al.*, 1999; Williams *et al.*, 1995). As a part of our ongoing study on such compounds, in this paper, we present the crystal structure of the title compound (I) which was synthesized as an intermediate.

In the asymmetric unit of (I), all non-hydrogen atoms lie in a mirror plane except the methyl-C9A moiety, which is deviated from the mean plane by 0.919 (3) Å and twisted by a torsion angle C6–N2–C7–C9 of 62.9 (2) Å.

An intramolecular N—H···O hydrogen bond generates a ring of motif S(6) (Bernstein *et al.*, 1995) (Fig. 1). In the crystal packing, the molecules are linked together by O—H···O hydrogen bonds to form dimers with the graph set motif $R_2^2(8)$ which propagate along the a-direction (Table 1). C—H···O contacts link adjacent dimers with a graph set motif $C_2^2(7)$ (Fig. 2) to form chains along the b-direction and further consolidate the structure into a 3D network. The crystal packing is further strengthened by short intermolecular O···Oⁱ⁻ⁱⁱ = 2.655 (4)Å contacts; symmetry code: (i) 1-*x*, *y*, 1-*z*; (ii) 1-*x*, 1-*y*, 1-*z*.

S2. Experimental

Compound (I) was prepared by refluxing ethyl 4-(*tert*-butylamino)-3-nitrobenzoate (0.7 g, 0.0026 mol) (Mohd Maidin *et al.*, 2008) and KOH (0.14 g, 0.0026 mol) in aqueous ethanol (10 ml) for 3 h. Ethanol was then removed *in vacuo* and the reaction mixture was diluted with water (15 ml). The aqueous layer was washed with dichloromethane (10 ml \times 2) and acidified with concentrated hydrochloric acid to bring about the precipitation of the desired benzoic acid. Recrystallization of the precipitate with hot ethyl acetate afforded yellow crystals of the title compound (I).

S3. Refinement

H atoms were positioned geometrically [C-H = 0.93-0.96 Å] and refined using a riding model with $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(methyl C)$. A rotating–group model was used for the methyl groups. The O- and N-bound hydrogen atoms were located from the Fourier map and allowed to refine freely.

Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme. Intramolecular hydrogen bonding is shown as a dashed line. [Symmetry code used to generate methyl moiety C9A: x, -y + 1, z]

Figure 2

The crystal packing of (I), viewed along the *c* axis. Dashed lines indicate the hydrogen bonding and C—H…O contacts.

(I)

Crystal data	
$C_{11}H_{14}N_2O_4$	F(000) = 504
$M_r = 238.24$	$D_{\rm x} = 1.396 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $C2/m$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2y	Cell parameters from 1829 reflections
a = 20.8125 (15) Å	$\theta = 3.2 - 30.6^{\circ}$
b = 6.7412 (5) Å	$\mu = 0.11 \ { m mm^{-1}}$
c = 8.0793 (5) Å	T = 100 K
$\beta = 90.863 \ (6)^{\circ}$	Plate, yellow
$V = 1133.41 (14) Å^3$	$0.39 \times 0.10 \times 0.03 \text{ mm}$
Z = 4	
Data collection	
Bruker SMART APEXII CCD area-detector	6267 measured reflections
diffractometer	1418 independent reflections
Radiation source: fine-focus sealed tube	985 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int}=0.057$
φ and ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -26 \rightarrow 26$
(SADABS; Bruker, 2005)	$k = -8 \rightarrow 8$
$T_{\min} = 0.959, \ T_{\max} = 0.997$	$l = -10 \rightarrow 10$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.065$	Hydrogen site location: inferred from
$wR(F^2) = 0.153$	neighbouring sites
<i>S</i> = 1.11	H atoms treated by a mixture of independent
1418 reflections	and constrained refinement
107 parameters	$w = 1/[\sigma^2(F_o^2) + (0.058P)^2 + 2.3728P]$
0 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.37 \ m e \ m \AA^{-3}$
	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotropic d	or equive	alent isot	tropic	displa	icement	parameters	$(Å^2)$)
				1	1		1	1		1	\ /	e

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.44372 (12)	0.5000	0.3166 (3)	0.0189 (6)	
O2	0.43314 (11)	0.5000	0.5919 (3)	0.0185 (6)	
O3	0.22447 (11)	0.5000	0.8193 (3)	0.0198 (6)	
O4	0.13560 (11)	0.5000	0.6766 (3)	0.0187 (6)	
N1	0.19540 (13)	0.5000	0.6848 (3)	0.0130 (6)	
N2	0.13842 (13)	0.5000	0.3497 (4)	0.0131 (6)	
C1	0.24626 (16)	0.5000	0.2381 (4)	0.0142 (7)	
H1A	0.2298	0.5000	0.1304	0.017*	
C2	0.31116 (16)	0.5000	0.2615 (4)	0.0145 (7)	
H2A	0.3377	0.5000	0.1700	0.017*	
C3	0.33894 (15)	0.5000	0.4217 (4)	0.0122 (7)	
C4	0.29869 (16)	0.5000	0.5563 (4)	0.0126 (7)	
H4A	0.3163	0.5000	0.6628	0.015*	
C5	0.23216 (16)	0.5000	0.5349 (4)	0.0130 (7)	
C6	0.20244 (16)	0.5000	0.3726 (4)	0.0129 (7)	
C7	0.09935 (16)	0.5000	0.1929 (4)	0.0145 (7)	
C8	0.02967 (16)	0.5000	0.2518 (4)	0.0184 (8)	
H8B	0.0008	0.5000	0.1581	0.028*	
H8C	0.0228	0.3861	0.3206	0.028*	
C9	0.11138 (11)	0.3105 (4)	0.0926 (3)	0.0169 (6)	
H9A	0.1558	0.3044	0.0627	0.025*	
H9B	0.0850	0.3120	-0.0060	0.025*	

supporting information

H9C	0.1008	0.1966	0.1581	0.025*
C10	0.40933 (15)	0.5000	0.4522 (4)	0.0132 (7)
H1N2	0.1189 (18)	0.5000	0.435 (5)	0.015 (10)*
H1O1	0.4804 (19)	0.5000	0.341 (5)	0.010 (10)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0086 (13)	0.0327 (15)	0.0154 (14)	0.000	0.0005 (10)	0.000
O2	0.0121 (12)	0.0293 (14)	0.0142 (13)	0.000	0.0012 (10)	0.000
O3	0.0207 (13)	0.0282 (14)	0.0104 (12)	0.000	0.0002 (10)	0.000
O4	0.0130 (13)	0.0279 (14)	0.0153 (13)	0.000	0.0045 (10)	0.000
N1	0.0154 (15)	0.0119 (14)	0.0117 (15)	0.000	0.0033 (11)	0.000
N2	0.0113 (15)	0.0189 (15)	0.0092 (15)	0.000	0.0029 (12)	0.000
C1	0.0197 (18)	0.0147 (17)	0.0082 (17)	0.000	-0.0002 (14)	0.000
C2	0.0176 (18)	0.0131 (16)	0.0129 (18)	0.000	0.0074 (14)	0.000
C3	0.0155 (17)	0.0082 (15)	0.0128 (17)	0.000	0.0004 (13)	0.000
C4	0.0172 (17)	0.0109 (16)	0.0096 (17)	0.000	-0.0014 (13)	0.000
C5	0.0178 (18)	0.0085 (15)	0.0126 (17)	0.000	0.0016 (13)	0.000
C6	0.0166 (17)	0.0088 (15)	0.0134 (17)	0.000	0.0003 (14)	0.000
C7	0.0132 (17)	0.0158 (17)	0.0142 (17)	0.000	-0.0026 (13)	0.000
C8	0.0173 (18)	0.0215 (18)	0.0164 (18)	0.000	-0.0021 (14)	0.000
C9	0.0184 (12)	0.0163 (12)	0.0160 (12)	-0.0014 (10)	-0.0014 (10)	0.0003 (10)
C10	0.0134 (17)	0.0093 (16)	0.0170 (18)	0.000	0.0027 (14)	0.000

Geometric parameters (Å, °)

O1—C10	1.318 (4)	C3—C4	1.383 (5)	
01—H101	0.79 (4)	C3—C10	1.482 (5)	
O2—C10	1.226 (4)	C4—C5	1.393 (5)	
O3—N1	1.236 (4)	C4—H4A	0.9300	
O4—N1	1.245 (4)	C5—C6	1.441 (5)	
N1—C5	1.442 (4)	C7—C8	1.533 (5)	
N2—C6	1.343 (4)	С7—С9	1.536 (3)	
N2—C7	1.495 (4)	C7—C9 ⁱ	1.536 (3)	
N2—H1N2	0.80 (4)	C8—H8B	0.9595	
C1—C2	1.361 (5)	C8—H8C	0.9600	
C1—C6	1.429 (5)	С9—Н9А	0.9600	
C1—H1A	0.9300	C9—H9B	0.9600	
C2—C3	1.409 (5)	С9—Н9С	0.9600	
C2—H2A	0.9300			
C10-01-H101	109 (3)	N2—C6—C1	122.6 (3)	
O3—N1—O4	121.5 (3)	N2—C6—C5	122.5 (3)	
O3—N1—C5	118.6 (3)	C1—C6—C5	114.9 (3)	
O4—N1—C5	119.9 (3)	N2—C7—C8	104.0 (3)	
C6—N2—C7	130.0 (3)	N2—C7—C9	110.88 (17)	
C6—N2—H1N2	113 (3)	C8—C7—C9	109.04 (18)	

C7—N2—H1N2	117 (3)	N2—C7—C9 ⁱ	110.88 (17)
C2—C1—C6	122.5 (3)	C8—C7—C9 ⁱ	109.04 (18)
C2—C1—H1A	118.7	C9—C7—C9 ⁱ	112.6 (3)
C6—C1—H1A	118.7	С7—С8—Н8В	109.9
C1—C2—C3	121.4 (3)	С7—С8—Н8С	109.3
C1—C2—H2A	119.3	H8B—C8—H8C	111.1
C3—C2—H2A	119.3	С7—С9—Н9А	109.5
C4—C3—C2	118.5 (3)	С7—С9—Н9В	109.5
C4—C3—C10	118.5 (3)	H9A—C9—H9B	109.5
C2—C3—C10	122.9 (3)	С7—С9—Н9С	109.5
C3—C4—C5	121.0 (3)	H9A—C9—H9C	109.5
C3—C4—H4A	119.5	H9B—C9—H9C	109.5
С5—С4—Н4А	119.5	O2-C10-O1	123.3 (3)
C4—C5—C6	121.7 (3)	O2—C10—C3	122.6 (3)
C4—C5—N1	115.8 (3)	O1—C10—C3	114.2 (3)
C6—C5—N1	122.5 (3)		
C6—C1—C2—C3	0.0	C2-C1-C6-N2	180.0
C1—C2—C3—C4	0.0	C2-C1-C6-C5	0.0
C1—C2—C3—C10	180.0	C4—C5—C6—N2	180.0
C2—C3—C4—C5	0.0	N1—C5—C6—N2	0.0
C10—C3—C4—C5	180.0	C4—C5—C6—C1	0.0
C3—C4—C5—C6	0.0	N1—C5—C6—C1	180.0
C3—C4—C5—N1	180.0	C6—N2—C7—C8	180.0
O3—N1—C5—C4	0.0	C6—N2—C7—C9	62.9 (2)
O4—N1—C5—C4	180.0	$C6-N2-C7-C9^{i}$	-62.9 (2)
O3—N1—C5—C6	180.0	C4—C3—C10—O2	0.0
O4—N1—C5—C6	0.0	C2-C3-C10-O2	180.0
C7—N2—C6—C1	0.0	C4—C3—C10—O1	180.0
C7—N2—C6—C5	180.0	C2-C3-C10-O1	0.0

Symmetry code: (i) x, -y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
01—H1 <i>0</i> 1····O2 ⁱⁱ	0.82 (4)	1.83 (4)	2.655 (4)	178 (4)
C1—H1A···O3 ⁱⁱⁱ	0.93	2.52	3.407 (4)	161
N2—H1 <i>N</i> 2····O4	0.81 (4)	1.97 (4)	2.641 (4)	139 (4)
C9—H9 <i>C</i> ···O2 ^{iv}	0.96	2.53	3.437 (3)	158

Symmetry codes: (ii) -x+1, y, -z+1; (iii) x, y, z-1; (iv) -x+1/2, y-1/2, -z+1.