

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

9-Isopropenyl-4-methyl-2H-thieno-[2,3-h]chromen-2-one

Shiqing Xu, Ying Chen and Peng Xia*

Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 200032, People's Republic of China Correspondence e-mail: pxia@fudan.edu.cn

Received 11 May 2009; accepted 12 May 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.068; wR factor = 0.177; data-to-parameter ratio = 16.3.

The title compound, $C_{15}H_{12}O_2S$, features three fused rings with a dihedral angle of $79.6 (2)^{\circ}$ between the isopropenyl group and the thiophene ring. In the crystal, molecules are connected into a supramolecular helical chain via C-H···O contacts.

Related literature

The title compound was obtained unexpectedly during an attempt to prepare 4-methyl-7-(2-methylbut-3-yn-2-ylthio)-2H-chromen-2-one, a key intermediate in our study of the synthesis of potential anti-HIV heterocyclic agents (Chen et al., 2004)

5816 measured reflections 2698 independent reflections

 $R_{\rm int} = 0.091$

1870 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

N a

h

-	
$C_{15}H_{12}O_2S$	V = 1265.0 (6) Å ³
$M_r = 256.31$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 8.547 (2) Å	$\mu = 0.25 \text{ mm}^{-1}$
b = 11.425 (3) Å	T = 293 K
c = 13.641 (4) Å	$0.50 \times 0.15 \times 0.12 \text{ mm}$
$\beta = 108.259 \ (19)^{\circ}$	

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.887, T_{\max} = 0.971$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.068$ 166 parameters $wR(F^2) = 0.177$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$ S = 0.99 $\Delta \rho_{\rm min} = -0.44 \text{ e} \text{ Å}^{-3}$ 2698 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C11-H11\cdots O2^{i}$	0.93	2.44	3.293 (3)	153
Symmetry code: (i) –x	$+1. v - \frac{1}{2}7$	$+\frac{1}{2}$		

-z + 5 — <u>÷</u>,

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors acknowledge Professor Linhong Weng for fruitful discussions and the Department of Chemistry, Fudan University, for providing necessary facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2449).

References

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, Y., Zhang, Q., Zhang, B., Xia, P., Xia, Y., Yang, Z., Kilgore, N., Wild, C., Morris-Natschke, S. L. & Lee, K. (2004). Bioorg. Med. Chem. 12, 6383-6387. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o1311 [doi:10.1107/S1600536809017930]

9-Isopropenyl-4-methyl-2H-thieno[2,3-h]chromen-2-one

Shiqing Xu, Ying Chen and Peng Xia

S1. Comment

4-Methyl-7-(2-methylbut-3-yn-2-ylthio)-2*H*-chromen-2-one is a key intermediate in our study on synthesizing potential anti-HIV heterocyclic agents (Chen *et al.*, 2004). We attempted to prepare this by the reaction of 7-mercapto-4-methyl-2*H*-chromen-2-one with 2-methylbut-3-yn-2-ol in the presence of a catalytic amount of *p*-toluenesulphonate in refluxing toluene. To our surprise, an unexpected product (I) was obtained, which was structurally characterized by ¹H NMR, MS, HRMS. The molecular structure was confirmed by X-ray diffraction. The determination of the structure of (I) is important for discovering the mechanism of this unexpected reaction. The full structural details of (I) are reported herein.

The molecular structure of (I), Fig. 1, shows three fused rings. The C10–C11 and C12-C13 bond distances of 1.351 (3) and 1.328 (4) Å, respectively indicate typical C=C double bonds. The isopropenyl group and the thiophene ring make a dihedral angle of 79.6 (2)°, due to the charge repulsion between π -electrons of isopropenyl group and the lactone-oxygen lone pair of electron lactone as well as unfavourable steric interactions. The molecular packing is stabilized by C—H…O contacts that link molecules into a supramolecular helical chain along the b-axis (Table 1).

S2. Experimental

A mixture of 7-mercapto-4-methyl-2*H*-chromen-2-one (961 mg, 5 mmol), 2-methylbut-3-yn-2-ol (6 ml, 60 mmol) and pyridinium *p*-toluenesulphonate (90 mg, 0.36 mmol) in dry toluene (30 ml) was refluxed for 6 h. After the toluene was evaporated in vacuo, the residue was purified by silica gel column chromatography (petroleum ether / acetone = 15 / 1) to afford 260 mg of (I); yield 21.3%. Recrystallization from isopropyl ether gave colourless crystals.

S3. Refinement

All H atoms were placed in the idealized positions with C—H = 0.93— 0.96 Å, and with $U_{iso}(H) = 1.2$ —1.5 $U_{eq}(C)$.

Figure 1

The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.

9-Isopropenyl-4-methyl-2*H*-thieno[2,3-*h*]chromen-2-one

Crystal data	
$C_{15}H_{12}O_2S$	F(000) = 536
$M_r = 256.31$	$D_{\rm x} = 1.346 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 812 reflections
a = 8.547 (2) Å	$\theta = 3.1 - 27.4^{\circ}$
b = 11.425 (3) Å	$\mu=0.25~\mathrm{mm^{-1}}$
c = 13.641 (4) Å	T = 293 K
$\beta = 108.259 \ (19)^{\circ}$	Block, yellow
$V = 1265.0 (6) Å^3$	$0.50 \times 0.15 \times 0.12 \text{ mm}$
Z = 4	
Data collection	
Bruker SMART CCD area-detector	5816 measured reflections
diffractometer	2698 independent reflections
Radiation source: fine-focus sealed tube	1870 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.091$
φ and ω scans	$\theta_{\rm max} = 27.0^\circ, \ \theta_{\rm min} = 2.4^\circ$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(SADABS; Sheldrick, 1996)	$k = -11 \rightarrow 14$
$T_{\min} = 0.887, \ T_{\max} = 0.971$	$l = -14 \rightarrow 17$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.068$	H-atom parameters constrained
$wR(F^2) = 0.177$	$w = 1/[\sigma^2(F_o^2) + (0.1022P)^2P]$
S = 0.99	where $P = (F_o^2 + 2F_c^2)/3$
2698 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
166 parameters	$\Delta ho_{ m max} = 0.37 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.44$ e Å ⁻³
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.021 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S 1	0.97805 (8)	-0.09812 (6)	0.19803 (5)	0.0637 (3)
01	0.65111 (17)	0.10433 (13)	0.38658 (11)	0.0495 (4)
O2	0.4812 (2)	0.18035 (18)	0.46125 (14)	0.0719 (6)
C1	0.6213 (3)	0.1761 (2)	0.45948 (18)	0.0526 (6)
C2	0.7579 (3)	0.2386 (2)	0.52571 (17)	0.0563 (6)
H2	0.7401	0.2892	0.5745	0.068*
C3	0.9108 (3)	0.22726 (19)	0.52044 (17)	0.0486 (6)
C4	0.9398 (3)	0.14773 (18)	0.44540 (15)	0.0411 (5)
C5	1.0960 (3)	0.12728 (19)	0.43491 (17)	0.0464 (5)
Н5	1.1872	0.1650	0.4793	0.056*
C6	1.1173 (3)	0.0535 (2)	0.36125 (17)	0.0498 (6)
H6	1.2213	0.0407	0.3552	0.060*
C7	0.9796 (3)	-0.0016 (2)	0.29585 (16)	0.0457 (5)
C8	0.8207 (2)	0.01396 (19)	0.30220 (15)	0.0431 (5)
C9	0.8056 (3)	0.09080 (17)	0.37904 (16)	0.0415 (5)
C10	0.6986 (3)	-0.0519 (2)	0.22558 (17)	0.0520 (6)
C11	0.7694 (3)	-0.1131 (2)	0.1659 (2)	0.0627 (7)
H11	0.7089	-0.1598	0.1114	0.075*
C12	0.5195 (3)	-0.0597 (2)	0.21115 (19)	0.0587 (7)
C13	0.4143 (4)	-0.0004 (4)	0.1349 (3)	0.1030 (12)
H13A	0.3015	-0.0075	0.1233	0.124*
H13B	0.4534	0.0484	0.0931	0.124*
C14	0.4693 (4)	-0.1369 (3)	0.2794 (3)	0.0912 (10)

supporting information

H14A	0.3512	-0.1377	0.2605	0.137*	
H14B	0.5147	-0.1099	0.3492	0.137*	
H14C	0.5084	-0.2146	0.2738	0.137*	
C15	1.0528 (3)	0.2947 (2)	0.5901 (2)	0.0675 (8)	
H15A	1.0157	0.3400	0.6378	0.101*	
H15B	1.0967	0.3460	0.5496	0.101*	
H15C	1.1369	0.2412	0.6277	0.101*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0501 (5)	0.0779 (5)	0.0685 (5)	-0.0039 (3)	0.0261 (4)	-0.0209 (3)
01	0.0338 (9)	0.0599 (10)	0.0531 (9)	0.0017 (7)	0.0113 (7)	-0.0063 (7)
O2	0.0453 (11)	0.0963 (14)	0.0778 (12)	0.0071 (9)	0.0246 (10)	-0.0110 (10)
C1	0.0417 (14)	0.0603 (14)	0.0555 (13)	0.0080 (11)	0.0149 (11)	0.0032 (11)
C2	0.0582 (16)	0.0567 (14)	0.0545 (13)	0.0085 (12)	0.0184 (12)	-0.0063 (11)
C3	0.0488 (14)	0.0448 (12)	0.0494 (12)	0.0008 (10)	0.0114 (11)	0.0021 (10)
C4	0.0392 (12)	0.0405 (10)	0.0426 (10)	-0.0018 (9)	0.0112 (9)	0.0036 (9)
C5	0.0368 (12)	0.0475 (11)	0.0524 (12)	-0.0077 (10)	0.0102 (10)	0.0029 (10)
C6	0.0350 (12)	0.0567 (13)	0.0595 (13)	-0.0025 (11)	0.0177 (10)	0.0033 (11)
C7	0.0408 (12)	0.0519 (12)	0.0465 (11)	-0.0004 (10)	0.0168 (10)	0.0007 (10)
C8	0.0358 (11)	0.0476 (12)	0.0450 (11)	0.0003 (9)	0.0112 (10)	0.0023 (9)
C9	0.0339 (12)	0.0459 (11)	0.0453 (11)	0.0026 (9)	0.0134 (10)	0.0059 (9)
C10	0.0409 (13)	0.0607 (14)	0.0498 (12)	0.0034 (11)	0.0078 (10)	-0.0060 (11)
C11	0.0472 (15)	0.0769 (17)	0.0603 (14)	0.0012 (12)	0.0114 (12)	-0.0201 (13)
C12	0.0366 (13)	0.0708 (16)	0.0617 (14)	0.0009 (12)	0.0054 (12)	-0.0187 (13)
C13	0.0510 (18)	0.118 (3)	0.121 (3)	0.0160 (19)	-0.0002 (18)	0.019 (2)
C14	0.0461 (17)	0.118 (3)	0.111 (2)	-0.0068 (18)	0.0273 (18)	0.012 (2)
C15	0.0649 (18)	0.0664 (16)	0.0681 (16)	-0.0130 (13)	0.0165 (14)	-0.0224 (13)

Geometric parameters (Å, °)

S1—C11	1.706 (3)	С7—С8	1.399 (3)
S1—C7	1.728 (2)	C8—C9	1.404 (3)
O1—C9	1.365 (2)	C8—C10	1.437 (3)
01—C1	1.373 (3)	C10—C11	1.351 (3)
O2—C1	1.205 (3)	C10—C12	1.484 (3)
C1—C2	1.424 (3)	C11—H11	0.9300
С2—С3	1.338 (3)	C12—C13	1.328 (4)
С2—Н2	0.9300	C12—C14	1.442 (4)
C3—C4	1.447 (3)	C13—H13A	0.9300
C3—C15	1.499 (3)	C13—H13B	0.9300
С4—С9	1.381 (3)	C14—H14A	0.9600
C4—C5	1.406 (3)	C14—H14B	0.9600
С5—С6	1.367 (3)	C14—H14C	0.9600
С5—Н5	0.9300	C15—H15A	0.9600
С6—С7	1.385 (3)	C15—H15B	0.9600
С6—Н6	0.9300	C15—H15C	0.9600

C11 C1 C7	00.04 (11)	01 60 60	11(20 (10)
C11—S1—C/	90.94 (11)	01-09-08	116.39 (18)
C9—O1—C1	121.72 (17)	C4—C9—C8	122.13 (19)
O2—C1—O1	116.7 (2)	C11—C10—C8	110.4 (2)
O2—C1—C2	126.1 (2)	C11—C10—C12	121.8 (2)
O1—C1—C2	117.21 (19)	C8—C10—C12	127.7 (2)
C3—C2—C1	122.6 (2)	C10-C11-S1	115.0 (2)
C3—C2—H2	118.7	C10-C11-H11	122.5
C1—C2—H2	118.7	S1—C11—H11	122.5
C2—C3—C4	119.1 (2)	C13—C12—C14	123.5 (3)
C2—C3—C15	121.8 (2)	C13—C12—C10	119.4 (3)
C4—C3—C15	119.1 (2)	C14—C12—C10	117.0 (2)
C9—C4—C5	118.38 (19)	С12—С13—Н13А	120.0
C9—C4—C3	117.90 (19)	С12—С13—Н13В	120.0
C5—C4—C3	123.7 (2)	H13A—C13—H13B	120.0
C6—C5—C4	121.8 (2)	C12—C14—H14A	109.5
С6—С5—Н5	119.1	C12—C14—H14B	109.5
С4—С5—Н5	119.1	H14A—C14—H14B	109.5
C5—C6—C7	118.1 (2)	C12—C14—H14C	109.5
С5—С6—Н6	120.9	H14A—C14—H14C	109.5
С7—С6—Н6	120.9	H14B—C14—H14C	109.5
C6—C7—C8	123.2 (2)	C3—C15—H15A	109.5
C6—C7—S1	125.92 (17)	C3—C15—H15B	109.5
C8—C7—S1	110.87 (16)	H15A—C15—H15B	109.5
C7—C8—C9	116.35 (19)	C3—C15—H15C	109.5
C7—C8—C10	112.72 (19)	H15A—C15—H15C	109.5
C9—C8—C10	130.9 (2)	H15B—C15—H15C	109.5
O1—C9—C4	121.46 (18)		
	· · ·		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
C11—H11···O2 ⁱ	0.93	2.44	3.293 (3)	153

Symmetry code: (i) -x+1, y-1/2, -z+1/2.