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disorder in main residue; R factor = 0.045; wR factor = 0.109; data-to-parameter

ratio = 16.5.

In comparison with a previous crystallographic study [Goh et

al. (2002). J. Solid State Chem. 168, 119–125] of the title

compound, silver diniobium tris(disulfide) tetrathio-

phosphate(V), that reports a full occupation of the silver

position and isotropic displacement parameters for the atoms,

the current redetermination reveals a silver deficiency with a

site-occupation factor of 0.88 (1) and reports all atoms with

anisotropic displacement parameters. The structure of

Ag0.88Nb2PS10 is composed of 1
1[Nb2PS10] chains, which are

built up from pairs of distorted bicapped trigonal-prismatic

[NbS8] polyhedra forming [Nb2S12] dimers and of tetrahedral

[PS4] groups. These chains are connected via the statistically

disordered Ag+ ions, forming double layers. Adjacent layers

are stacked solely through van der Waals forces into a three-

dimensional structure. Short and long Nb—Nb distances

[2.880 (1) and 3.770 (2) Å, respectively] alternate along the

chain and S2
2� and S2� anionic species are observed.

Related literature

The synthesis and structural characterization of stoichiometric

AgNb2PS10 and NaNb2PS10 have been published (Goh et al.,

2002). For Nb2PS10-related quaternary thiophosphates with

general formula MNb2PS10, see: Do & Yun (1996) for

KNb2PS10, Kim & Yun (2002) for RbNb2PS10, Kwak et al.

(2007) for CsNb2PS10, and Bang et al. (2008) for TlNb2PS10;

for related pentanary thiophosphates M,M0Nb2PS10, see:

Kwak & Yun (2008) for K0.34Cu0.5Nb2PS10, Dong et al. (2005a)

for K0.5Ag0.5Nb2PS10, and Dong et al. (2005b) for

Rb0.38Ag0.5Nb2PS10. For data standardization, see: Gelato &

Parthé (1987). For ionic radii, see: Shannon (1976). For

structure validation, see: Spek (2009). For typical P—S bond

distances, see: Brec et al. (1983). For typical Nb4+—Nb4+ bond

distances, see: Angenault et al. (2000).

Experimental

Crystal data

Ag0.88Nb2PS10

Mr = 631.78
Monoclinic, C2=c
a = 24.001 (5) Å
b = 7.7711 (17) Å
c = 12.960 (3) Å
� = 94.833 (19)�

V = 2408.6 (9) Å3

Z = 8
Mo K� radiation
� = 5.1 mm�1

T = 290 K
0.60 � 0.06 � 0.04 mm

Data collection

MAC Science MXC3 diffractometer
Absorption correction: analytical

(de Meulenaer & Tompa, 1965)
Tmin = 0.727, Tmax = 0.821

2221 measured reflections
2114 independent reflections

1835 reflections with I > 2�(I)
Rint = 0.017
2 standard reflections

every 100 reflections
intensity decay: none

Refinement

R[F 2 > 2�(F 2)] = 0.045
wR(F 2) = 0.109
S = 1.16
2114 reflections

128 parameters
��max = 1.82 e Å�3

��min = �1.20 e Å�3

Table 1
Selected geometric parameters (Å, �).

Ag—S1i 2.536 (3)
Ag—S9ii 2.620 (3)
Ag—S2iii 2.875 (3)
Ag—S8iv 2.916 (3)
Ag—S1iii 2.965 (4)
Ag—S3 3.091 (3)
Nb1—S5 2.462 (2)
Nb1—S2v 2.466 (2)
Nb1—S7vi 2.518 (3)
Nb1—S6iv 2.551 (2)
Nb1—S3 2.554 (3)
Nb1—S4v 2.562 (2)
Nb1—S8iv 2.573 (3)

Nb1—S10iv 2.659 (2)
Nb2—S3ii 2.476 (3)
Nb2—S7 2.479 (3)
Nb2—S5ii 2.508 (2)
Nb2—S2vii 2.551 (3)
Nb2—S4ii 2.558 (2)
Nb2—S6 2.569 (3)
Nb2—S9 2.630 (3)
Nb2—S10 2.656 (2)
P—S1vi 2.009 (4)
P—S8 2.048 (4)
P—S9 2.059 (4)
P—S10 2.065 (3)

S1vi—P—S8 108.46 (17)
S1vi—P—S9 112.81 (17)
S8—P—S9 111.87 (16)

S1vi—P—S10 117.65 (16)
S8—P—S10 104.24 (14)
S9—P—S10 101.46 (14)

Symmetry codes: (i) �x; y;�zþ 1
2; (ii) �xþ 1

2; yþ 1
2;�zþ 1

2; (iii) x;�yþ 1; z� 1
2; (iv)

�x þ 1
2;�yþ 1

2;�z; (v) x;�y; z� 1
2; (vi) �x þ 1

2; y� 1
2;�zþ 1

2; (vii)
�x þ 1

2;�yþ 1
2;�zþ 1.

Data collection: MAC Science MXC3 (MAC Science, 1994); cell

refinement: MAC Science MXC3; data reduction: MAC Science

MXC3; program(s) used to solve structure: SHELXS97 (Sheldrick,

2008); program(s) used to refine structure: SHELXL97 (Sheldrick,

2008); molecular graphics: locally modified version of ORTEP

(Johnson, 1965); software used to prepare material for publication:

WinGX (Farrugia, 1999).
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Redetermination of AgNb2PS10 revealing a silver deficiency

Junghwan Do and Hoseop Yun

S1. Comment 

In comparison with the previous study of AgNb2PS10 (Goh et al., 2002), both lattice parameters and atomic coordinates of 

the current redetermination are the same within their standard deviations. However, our investigation indicated that there 

is a deficiency of Ag atoms in the title compound with a site occupation factor (s.o.f.) of 0.88 (1). This observation is 

consistent with crystal structure refinements from crystals obtained from other reaction batches. Therefore we assume 

that the crystal originally investigated by Goh et al. (2002) shows the same behaviour. In general, non-stoichiometry in 

multinary niobium thiophosphates is not uncommon and has been observed in one of our previous studies (Kwak & Yun, 

2008).

The structure of Ag0.88Nb2PS10 consists of one-dimensional ∞1[Nb2PS10] chains along the [001] direction that are 

connected via the statistically disordered Ag+ ions to form a double layer parallel to the bc plane. These layers then stack 

on top of each other to form the three-dimensional structure with a van der Waals gap as shown in Fig. 1. There is no 

bonding interaction, only van der Waals forces, between the double layers.

As shown in other phases in the M,M′Nb2PS10 family, viz KNb2PS10 (Do & Yun, 1996), RbNb2PS10 (Kim & Yun, 2002), 

CsNb2PS10 (Kwak et al., 2007), TlNb2PS10 (Bang et al., 2008), K0.34Cu0.5Nb2PS10 (Kwak & Yun, 2008), K0.5Ag0.5Nb2PS10 

(Dong et al., 2005a), and Rb0.38Ag0.5Nb2PS10 (Dong et al., 2005b), each of the chains is made up of pairs of [NbS8] 

polyhedra forming characteristic [Nb2S12] units and tetrahedral [PS4] groups. In the title compound, the Nb1 and Nb2 

atoms are surrounded by 8 S atoms in a bicapped trigonal-prismatic fashion. Two prisms are sharing a rectangular face to 

form the [Nb2S12] unit. This unit shows an approximate 2-fold rotational symmetry and the rotation axis bisects the short 

Nb1—Nb2 distance and the (S—S)2- sides of the rectangular face shared by each trigonal prism. The [Nb2S12] unit is 

bound to each other to form the infinite [Nb2S9] chains by sharing the S—S prism edge. One of the S atoms at the prism 

edge and two other capping S atoms are bound to the P atom and an additional S atom (S1) is attached to the P atom to 

complete the [PS4] tetrahedral coordination. The P—S distances (2.048 (4)–2.065 (3) Å) are in good agreement with P—

S distances found in related phases (Brec et al., 1983). The S1 atom is the only sulfur atom that is not coordinated to any 

of the Nb atoms causing the short P—S1 distance (2.009 (4) Å) as well as the large ADP of the S1 atom (Do & Yun, 

1996). Along the chains, the Nb atoms associate in pairs with Nb—Nb interactions alternating in the sequence of one 

short and one long distances. Although the short distance (2.880 (1) Å) is typical of Nb4+—Nb4+ bonding interactions 

(Angenault et al., 2000), the long distance (3.770 (2) Å) implies that there is no significant Nb—Nb interaction and such 

an arrangement is consistent with the highly resistive and diamagnetic nature of the compound.

The silver atom is surrounded by six S atoms. The coordination around the Ag atom can be described as [2 + 4] (Fig. 2). 

Two S atoms are coordinated to the Ag atom (Ag—S1, 2.536 (3) Å; Ag—S9, 2.620 (3) Å), whereas four S atoms are 

weakly bound to the Ag atoms (Ag—S, 2.875 (3)–3.091 (3) Å). These distances are comparable to the sum of the ionic 

radii of each element, 2.51 Å for CN=2 and 2.99 Å for CN=6 (Shannon, 1976).
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S2. Experimental 

Ag0.88Nb2PS10 was prepared by the reaction of the elements Nb, P, and S with an elemental ratio of 2:1:10 in the eutectic 

mixture of AgCl/LiCl (Kojima, 99.5%). The starting materials, Nb powder (CERAC 99.8%), P powder (CERAC 99.5%), 

and S powder (Aldrich 99.999%) were placed in a silica glass tube. The mass ratio of reactants and halide flux was 1:2. 

The tube was evacuated to 0.133 Pa, sealed, and heated to 973 K where it was kept for 7d. Afterwards, the tube was 

cooled at a rate of 4 K/h to room temperature. Black needle-shaped crystals were isolated from the flux by leaching out 

with water. The crystals are stable in water and air. Electron microprobe analysis of the crystals established their 

homogeneity and the presence of Ag, Nb, P and S. No other element was detected.

S3. Refinement 

Large anisotropic displacement parameters (ADPs) of the silver atom were found when the structure was refined with the 

stoichiometric model AgNb2PS10, (Goh et al., 2002). The deficient nature of the Ag site was checked by refining the 

occupancy of Ag while that of the other atoms were fixed. With the non-stoichiometric model (AgxNb2PS10), the 

occupation factor of the Ag site was reduced significantly from 1 to 0.88 (1) and the reliability factor (wR2 = 0.1089) was 

improved in comparison with full occupation of the silver position (wR2 = 0.1341). In addition, the anisotropic 

displacement parameters in the disordered model became plausible. As no evidence was found for ordering of the Ag site, 

a statistically disordered structure was assumed. With the composition established, the data for the compound were 

corrected for absorption with the use of the analytical method (de Meulenaer & Tompa, 1965). The highest residual 

electron density is 0.96 Å from the S1 site and the deepest hole is 0.73 Å from the Ag site. No additional symmetry, as 

tested by PLATON (Spek, 2009), was detected in this structure. Structure data were finally standardized by means of the 

program STRUCTURE TIDY (Gelato & Parthé, 1987).

Figure 1

A view of the structure of Ag0.88Nb2PS10 down the b axis showing the double layers and the two-dimensional nature of the 

compound. Large and small filled circles are Nb and P atoms respectively; large open circles are S atoms; grey circles 

represent Ag atoms. 
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Figure 2

A view of the structure of Ag0.88Nb2PS10 showing the coordination around Nb, Ag, and P atoms. Anisotropic displacement 

ellipsoids are drawn at the 70% probability level. Symmetry codes are as given in Table 1. 

silver diniobium tris(disulfide) tetrathiophosphate(V) 

Crystal data 

Ag0.88Nb2PS10

Mr = 631.78
Monoclinic, C2/c
Hall symbol: -C 2yc
a = 24.001 (5) Å
b = 7.7711 (17) Å
c = 12.960 (3) Å
β = 94.833 (19)°
V = 2408.6 (9) Å3

Z = 8

F(000) = 2385
Dx = 3.485 Mg m−3

Mo Kα radiation, λ = 0.71073 Å
Cell parameters from 24 reflections
θ = 10.0–15.0°
µ = 5.1 mm−1

T = 290 K
Needle, black
0.60 × 0.06 × 0.04 mm
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Data collection 

MAC Science MXC3 
diffractometer

Radiation source: normal-focus sealed tube
Graphite monochromator
ω–2θ scans
Absorption correction: analytical 

(de Meulenaer & Tompa, 1965)
Tmin = 0.727, Tmax = 0.821
2221 measured reflections

2114 independent reflections
1835 reflections with I > 2σ(I)
Rint = 0.017
θmax = 25.0°, θmin = 1.7°
h = −28→28
k = 0→9
l = 0→15
2 standard reflections every 100 reflections
intensity decay: none

Refinement 

Refinement on F2

Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.045
wR(F2) = 0.109
S = 1.16
2114 reflections
128 parameters
0 restraints

Primary atom site location: structure-invariant 
direct methods

Secondary atom site location: difference Fourier 
map

w = 1/[σ2(Fo
2) + (0.029P)2 + 98.0899P] 

where P = (Fo
2 + 2Fc

2)/3
(Δ/σ)max < 0.001
Δρmax = 1.82 e Å−3

Δρmin = −1.20 e Å−3

Special details 

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance 
matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; 
correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate 
(isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, 
conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is 
used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based 
on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

x y z Uiso*/Ueq Occ. (<1)

Ag 0.05548 (4) 0.51279 (13) 0.09923 (9) 0.0397 (4) 0.878 (4)
Nb1 0.13913 (3) 0.05530 (10) 0.00408 (6) 0.0156 (2)
Nb2 0.36226 (3) 0.43048 (10) 0.28691 (6) 0.0155 (2)
P 0.40291 (10) 0.1092 (3) 0.1376 (2) 0.0223 (5)
S1 0.04299 (12) 0.4143 (4) 0.3739 (3) 0.0399 (7)
S2 0.06326 (9) 0.1230 (3) 0.56424 (18) 0.0208 (5)
S3 0.06437 (10) 0.1186 (3) 0.12793 (19) 0.0240 (5)
S4 0.15627 (9) 0.1535 (3) 0.35711 (17) 0.0186 (5)
S5 0.21371 (10) 0.1063 (3) 0.14306 (18) 0.0243 (5)
S6 0.28921 (9) 0.4481 (3) 0.13057 (18) 0.0204 (5)
S7 0.28941 (10) 0.3584 (3) 0.40463 (19) 0.0245 (5)
S8 0.34993 (11) 0.1158 (3) 0.00528 (19) 0.0276 (6)
S9 0.36001 (11) 0.0935 (3) 0.2684 (2) 0.0257 (5)
S10 0.43518 (9) 0.3553 (3) 0.15040 (17) 0.0185 (5)
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Atomic displacement parameters (Å2) 

U11 U22 U33 U12 U13 U23

Ag 0.0377 (6) 0.0321 (6) 0.0492 (7) −0.0076 (4) 0.0037 (5) −0.0051 (5)
Nb1 0.0138 (4) 0.0169 (4) 0.0160 (4) −0.0008 (3) 0.0009 (3) 0.0006 (3)
Nb2 0.0131 (4) 0.0155 (4) 0.0178 (4) 0.0003 (3) 0.0014 (3) 0.0006 (3)
P 0.0228 (13) 0.0150 (12) 0.0295 (13) −0.0008 (10) 0.0049 (10) 0.0013 (10)
S1 0.0326 (15) 0.0216 (13) 0.066 (2) −0.0078 (12) 0.0070 (14) 0.0056 (13)
S2 0.0156 (11) 0.0233 (12) 0.0234 (12) 0.0028 (9) 0.0012 (9) −0.0009 (10)
S3 0.0205 (12) 0.0256 (13) 0.0260 (12) 0.0066 (10) 0.0025 (9) 0.0025 (10)
S4 0.0193 (11) 0.0152 (11) 0.0212 (11) −0.0010 (9) 0.0010 (9) −0.0012 (9)
S5 0.0189 (11) 0.0324 (14) 0.0211 (12) −0.0080 (10) −0.0006 (9) 0.0029 (10)
S6 0.0148 (11) 0.0253 (12) 0.0209 (11) −0.0024 (9) 0.0011 (9) 0.0001 (9)
S7 0.0200 (12) 0.0309 (13) 0.0230 (12) −0.0063 (10) 0.0034 (9) −0.0016 (10)
S8 0.0395 (15) 0.0215 (13) 0.0210 (12) −0.0060 (11) −0.0016 (11) −0.0024 (10)
S9 0.0313 (13) 0.0191 (12) 0.0274 (13) −0.0017 (10) 0.0068 (10) 0.0018 (10)
S10 0.0156 (10) 0.0182 (11) 0.0214 (12) −0.0005 (9) 0.0004 (9) 0.0022 (9)

Geometric parameters (Å, º) 

Ag—S1i 2.536 (3) Nb2—S3ii 2.476 (3)
Ag—S9ii 2.620 (3) Nb2—S7 2.479 (3)
Ag—S2iii 2.875 (3) Nb2—S5ii 2.508 (2)
Ag—S8iv 2.916 (3) Nb2—S2viii 2.551 (3)
Ag—S1iii 2.965 (4) Nb2—S4ii 2.558 (2)
Ag—S3 3.091 (3) Nb2—S6 2.569 (3)
Ag—Piv 3.440 (3) Nb2—S9 2.630 (3)
Ag—Agv 3.549 (2) Nb2—S10 2.656 (2)
Ag—Pii 3.552 (3) Nb1—Nb2vii 2.8800 (13)
Ag—Nb1 4.3137 (15) Nb1—Piv 3.298 (3)
Nb1—S5 2.462 (2) Nb1—Nb2iv 3.7702 (15)
Nb1—S2vi 2.466 (2) Nb2—Nb1ii 2.8800 (13)
Nb1—S7vii 2.518 (3) Nb2—Nb1iv 3.7702 (15)
Nb1—S6iv 2.551 (2) P—S1vii 2.009 (4)
Nb1—S3 2.554 (3) P—S8 2.048 (4)
Nb1—S4vi 2.562 (2) P—S9 2.059 (4)
Nb1—S8iv 2.573 (3) P—S10 2.065 (3)
Nb1—S10iv 2.659 (2)

S1i—Ag—S9ii 131.39 (11) S7—Nb2—S5ii 47.83 (9)
S1i—Ag—S2iii 113.11 (9) S3ii—Nb2—S2viii 48.11 (8)
S9ii—Ag—S2iii 79.08 (8) S7—Nb2—S2viii 89.05 (8)
S1i—Ag—S8iv 136.99 (9) S5ii—Nb2—S2viii 107.42 (8)
S9ii—Ag—S8iv 78.25 (8) S3ii—Nb2—S4ii 89.92 (8)
S2iii—Ag—S8iv 101.58 (7) S7—Nb2—S4ii 120.91 (8)
S1i—Ag—S1iii 100.08 (10) S5ii—Nb2—S4ii 78.94 (8)
S9ii—Ag—S1iii 127.42 (9) S2viii—Nb2—S4ii 136.85 (8)
S2iii—Ag—S1iii 70.06 (8) S3ii—Nb2—S6 137.11 (9)



supporting information

sup-6Acta Cryst. (2009). E65, i56–i57    

S8iv—Ag—S1iii 68.05 (8) S7—Nb2—S6 91.58 (8)
S1i—Ag—S3 74.93 (8) S5ii—Nb2—S6 77.74 (8)
S9ii—Ag—S3 96.70 (8) S2viii—Nb2—S6 173.34 (8)
S2iii—Ag—S3 171.84 (8) S4ii—Nb2—S6 47.42 (8)
S8iv—Ag—S3 70.59 (7) S3ii—Nb2—S9 129.58 (9)
S1iii—Ag—S3 107.95 (8) S7—Nb2—S9 79.70 (8)
S1i—Ag—Piv 112.54 (9) S5ii—Nb2—S9 124.43 (9)
S9ii—Ag—Piv 112.55 (8) S2viii—Nb2—S9 85.10 (8)
S2iii—Ag—Piv 95.91 (7) S4ii—Nb2—S9 127.37 (8)
S8iv—Ag—Piv 36.42 (7) S6—Nb2—S9 88.49 (8)
S1iii—Ag—Piv 35.58 (7) S3ii—Nb2—S10 86.73 (8)
S3—Ag—Piv 79.17 (7) S7—Nb2—S10 153.96 (9)
S1i—Ag—Agv 55.36 (8) S5ii—Nb2—S10 154.21 (8)
S9ii—Ag—Agv 168.61 (8) S2viii—Nb2—S10 90.51 (8)
S2iii—Ag—Agv 89.75 (6) S4ii—Nb2—S10 75.33 (7)
S8iv—Ag—Agv 102.14 (7) S6—Nb2—S10 86.02 (8)
S1iii—Ag—Agv 44.72 (6) S9—Nb2—S10 74.33 (8)
S3—Ag—Agv 94.11 (6) S3ii—Nb2—Nb1ii 56.36 (6)
S5—Nb1—S2vi 111.70 (8) S7—Nb2—Nb1ii 55.44 (6)
S5—Nb1—S7vii 47.90 (9) S5ii—Nb2—Nb1ii 53.84 (6)
S2vi—Nb1—S7vii 90.11 (8) S2viii—Nb2—Nb1ii 53.60 (6)
S5—Nb1—S6iv 90.67 (8) S4ii—Nb2—Nb1ii 116.29 (6)
S2vi—Nb1—S6iv 140.23 (9) S6—Nb2—Nb1ii 131.50 (6)
S7vii—Nb1—S6iv 80.99 (8) S9—Nb2—Nb1ii 114.81 (6)
S5—Nb1—S3 90.87 (8) S10—Nb2—Nb1ii 139.55 (6)
S2vi—Nb1—S3 48.16 (8) S3ii—Nb2—Nb1iv 112.00 (6)
S7vii—Nb1—S3 107.97 (8) S7—Nb2—Nb1iv 132.44 (6)
S6iv—Nb1—S3 168.99 (8) S5ii—Nb2—Nb1iv 113.61 (6)
S5—Nb1—S4vi 119.57 (9) S2viii—Nb2—Nb1iv 135.05 (6)
S2vi—Nb1—S4vi 92.77 (8) S4ii—Nb2—Nb1iv 42.61 (5)
S7vii—Nb1—S4vi 79.56 (8) S6—Nb2—Nb1iv 42.40 (5)
S6iv—Nb1—S4vi 47.56 (8) S9—Nb2—Nb1iv 86.53 (6)
S3—Nb1—S4vi 138.99 (8) S10—Nb2—Nb1iv 44.85 (5)
S5—Nb1—S8iv 78.70 (9) Nb1ii—Nb2—Nb1iv 158.61 (3)
S2vi—Nb1—S8iv 130.83 (9) S1vii—P—S8 108.46 (17)
S7vii—Nb1—S8iv 123.89 (9) S1vii—P—S9 112.81 (17)
S6iv—Nb1—S8iv 84.30 (8) S8—P—S9 111.87 (16)
S3—Nb1—S8iv 85.31 (9) S1vii—P—S10 117.65 (16)
S4vi—Nb1—S8iv 124.80 (8) S8—P—S10 104.24 (14)
S5—Nb1—S10iv 155.38 (9) S9—P—S10 101.46 (14)
S2vi—Nb1—S10iv 85.32 (8) Nb1ix—S2—Nb2viii 70.04 (7)
S7vii—Nb1—S10iv 154.11 (8) S3ix—S2—Agx 146.81 (13)
S6iv—Nb1—S10iv 86.32 (8) S2vi—S3—Nb2vii 67.87 (10)
S3—Nb1—S10iv 87.75 (8) S2vi—S3—Nb1 63.68 (9)
S4vi—Nb1—S10iv 75.23 (7) Nb2vii—S3—Nb1 69.84 (7)
S8iv—Nb1—S10iv 76.69 (8) S2vi—S3—Ag 149.39 (13)
S5—Nb1—Nb2vii 55.35 (6) Nb2vii—S3—Ag 132.70 (10)
S2vi—Nb1—Nb2vii 56.36 (6) Nb1—S3—Ag 99.22 (8)
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S7vii—Nb1—Nb2vii 54.18 (6) S6vii—S4—Nb2vii 66.56 (9)
S6iv—Nb1—Nb2vii 134.56 (6) S6vii—S4—Nb1ix 65.96 (9)
S3—Nb1—Nb2vii 53.80 (6) Nb2vii—S4—Nb1ix 94.84 (8)
S4vi—Nb1—Nb2vii 120.09 (6) S7vii—S5—Nb1 67.50 (10)
S8iv—Nb1—Nb2vii 112.84 (6) S7vii—S5—Nb2vii 65.33 (10)
S10iv—Nb1—Nb2vii 137.39 (6) Nb1—S5—Nb2vii 70.81 (7)
S5—Nb1—Nb2iv 132.20 (6) S4ii—S6—Nb1iv 66.48 (9)
S2vi—Nb1—Nb2iv 112.84 (6) S4ii—S6—Nb2 66.02 (9)
S7vii—Nb1—Nb2iv 115.85 (6) Nb1iv—S6—Nb2 94.83 (8)
S6iv—Nb1—Nb2iv 42.76 (6) S5ii—S7—Nb2 66.84 (10)
S3—Nb1—Nb2iv 132.49 (6) S5ii—S7—Nb1ii 64.60 (10)
S4vi—Nb1—Nb2iv 42.55 (5) Nb2—S7—Nb1ii 70.38 (7)
S8iv—Nb1—Nb2iv 85.19 (6) P—S8—Nb1iv 90.34 (11)
S10iv—Nb1—Nb2iv 44.79 (5) P—S9—Nb2 90.49 (11)
Nb2vii—Nb1—Nb2iv 161.96 (3) P—S10—Nb2 89.62 (11)
Piv—Nb1—Nb2iv 56.18 (5) P—S10—Nb1iv 87.61 (11)
S3ii—Nb2—S7 111.78 (8) Nb2—S10—Nb1iv 90.36 (7)
S3ii—Nb2—S5ii 91.64 (9)

Symmetry codes: (i) −x, y, −z+1/2; (ii) −x+1/2, y+1/2, −z+1/2; (iii) x, −y+1, z−1/2; (iv) −x+1/2, −y+1/2, −z; (v) −x, −y+1, −z; (vi) x, −y, z−1/2; (vii) 
−x+1/2, y−1/2, −z+1/2; (viii) −x+1/2, −y+1/2, −z+1; (ix) x, −y, z+1/2; (x) x, −y+1, z+1/2.


