

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Iodo-3-methoxy-6-methylpyridine

Wenbo Guo,^a Xuegin Liu,^b Long Li^c and Dongsheng Deng^a*

^aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China, ^bLife Science Department, Luoyang Normal University, Luoyang 471022, People's Republic of China, and ^cNorthwest Agriculture and Forest University, Yangling 712100, People's Republic of China Correspondence e-mail: dengdongsheng168@sina.com

Received 15 November 2009; accepted 25 November 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.007 Å; R factor = 0.029; wR factor = 0.062; data-to-parameter ratio = 17.0.

The title compound, C₇H₈INO, which crystallizes with three independent molecules in the asymmetric unit, was prepared by the reaction of 3-methoxy-6-methylpyridine with KI and I_2 in tetrahydrofuran solution. In the crystal structure, the three independent molecules are arranged in a similar orientation with the three polar methoxy groups aligned on one side and the three non-polar methyl groups on the other side. The three molecules, excluding methyl H atoms, are essentially planar, with r.m.s. deviations of 0.0141 (1), 0.0081 (1) and 0.0066 (2)Å. The three pyridine rings make dihedral angles of 58.09 (3) 66.64 (4) and 71.5 (3)°. The crystal structure features rather weak intermolecular $C-H \cdots O$ hydrogen bonds, which link two molecules into dimers, and short I...N contacts [4.046 (3) Å].

Related literature

For C-C bond formation reactions, see: Vlad & Horvath (2002). For related structures, see: Bunker et al. (2009); Tahir et al. (2009).

9886 measured reflections 4737 independent reflections

 $R_{\rm int} = 0.026$

3719 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

C ₇ H ₈ INO	$\gamma = 103.636 \ (1)^{\circ}$
$M_r = 249.04$	V = 1280.2 (2) Å ³
Triclinic, $P\overline{1}$	Z = 6
a = 7.7974 (9) Å	Mo $K\alpha$ radiation
b = 10.8302 (12) Å	$\mu = 3.69 \text{ mm}^{-1}$
c = 16.2898 (18) Å	T = 296 K
$\alpha = 106.093 \ (1)^{\circ}$	$0.20 \times 0.14 \times 0.13 \text{ mm}$
$\beta = 90.633 \ (1)^{\circ}$	

Data collection

Bruker APEXII CCD	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Sheldrick, 1996)	
$T_{\min} = 0.526, T_{\max} = 0.646$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	278 parameters
$vR(F^2) = 0.062$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$
737 reflections	$\Delta \rho_{\rm min} = -0.68 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ $D - \mathbf{H} \cdot \cdot \cdot A$ D - H $H \cdot \cdot \cdot A$ $D \cdots A$ $C14 - H14B \cdot \cdot \cdot O2^{i}$ 0.96 2.56 3.429 (6) 151

Symmetry code: (i) -x + 2, -y + 1, -z.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006): software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

This work was supported by the Doctoral Foundation and Cultivatable Foundation (2008-PYJJ-011) of Luoyang Normal University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2179).

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Bunker, K. D., Sach, N. W., Nukui, S., Rheingold, A. L. & Yanovsky, A. (2009). Acta Cryst. E65, o28.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Tahir, M. N., Arshad, M. N., Khan, I. U. & Shafiq, M. (2009). Acta Cryst. E65, 0535.

Vlad, G. & Horvath, I. T. (2002). J. Org. Chem. 67, 6550-6552.

supporting information

Acta Cryst. (2009). E65, o3269 [doi:10.1107/S1600536809050739]

2-Iodo-3-methoxy-6-methylpyridine

Wenbo Guo, Xueqin Liu, Long Li and Dongsheng Deng

S1. Comment

As is known, the Ullmann coupling reaction is an important C—C bond formation reaction. In this reaction, the halogen derivatives of aromatic compounds have been used as its reaction substrates (Vlad & Horvath. 2002). The reaction of 3-methoxy-6-methylpyridine with KI and I_2 in the presence of NaHCO₃ leads to iodo-substitution at position 2 of the pyridine ring with similar structure to the previous compound (Bunker *et al.* 2009), as shown by the X-ray study of the title compound (Fig. 1).

The asymmetric unit consists of three neutral C_7H_8INO molecules, in which the bond lengths and angles are within normal ranges (Bunker *et al.* 2009; Tahir *et al.* 2009). In the crystal structure, the three molecules are arranged in the similar orientation with the three polar methoxy groups aligning on one side and the three non-polar methyl groups siding on the other side. The pyridine ring 1 (C1-C5/N1) forms dihedral angles of 58.09 (3)° and 66.64 (4)°, respectively, with the pyridine ring 2 (C8-C12/N2) and the pyridine ring 3 (C15-19/N3). Rings 2 and 3 form a dihedral angle of 71.5 (3)°. Furthermore, the organic molecules, excluding methyl H atoms, are essentially planar, with r.m.s. deviations of 0.0141 (1), 0.0081 (1) and 0.0066 (2) Å. There are no strong halogen…halogen interactions in the structure, the shortest intermolecular I—I distances are 4.266 (2)Å. However, intermolecular C—H…O hydrogen bonds link the molecules into dimers, in which C14—H14B is donor and O2 is acceptor (Table 1, Fig. 2). This weak contacts may be effective in the stabilization of the structure.

S2. Experimental

To a solution of 3-methoxy-6-methylpyridine (4.00 g, 30 mmol) in THF 30 ml was added 10 ml water containing 2.69 g NaHCO₃ (32 mmol). The mixture was stirred for 30 minutes. Under ice bath, the resulting solution was added dropwise a solution of I_2 (8.12 g, 32 mmol) and KI (5.31 g, 32 mmol) in water (75 ml). The mixture was then stirred 72 h at room temperature, and treated with 15° solution of sodium thiosulfate, then filtered. The resulting white solid was rinsed with ice water, and dried under vacuum to afford 2-iodo-3-methoxy-6-methylpyridine, 6.48 g, 89.7° yield. The crystalline compound was obtained through the slow volatilization of ethyl acetate containing the title compound.

S3. Refinement

All H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.93 Å (aromatic CH), 0.96 Å (methyl CH₃), and with Uiso~(H) = $1.2U_{eq}$ (C) or $1.5U_{eq}$ (methyl).

Figure 1

View of (I) (three molecule in the asymmetric unit) with atom numbering scheme and 30% probability displacement ellipsoids for non-hydrogen atoms.

Figure 2

View of the dimers (C—H…O hydrogen bonds are indicated as broken lines).

2-Iodo-3-methoxy-6-methylpyridine

Crystal data C₇H₈INO $M_r = 249.04$ Triclinic, *P*I Hall symbol: -P 1 a = 7.7974 (9) Å b = 10.8302 (12) Å c = 16.2898 (18) Å a = 106.093 (1)° $\beta = 90.633$ (1)° $\gamma = 103.636$ (1)° V = 1280.2 (2) Å³

Z = 6 F(000) = 708 $D_x = 1.938 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3296 reflections $\theta = 2.7-23.1^{\circ}$ $\mu = 3.69 \text{ mm}^{-1}$ T = 296 K Block, colorless $0.20 \times 0.14 \times 0.13 \text{ mm}$ Data collection

Bruker APEXII CCD	9886 measured reflections
diffractometer	4737 independent reflections
Radiation source: fine-focus sealed tube	3719 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.026$
phi and ω scans	$\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 2.6^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
(<i>SADABS</i> ; Sheldrick, 1996)	$k = -12 \rightarrow 13$
$T_{\min} = 0.526, T_{\max} = 0.646$	$l = -19 \rightarrow 19$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.029$	H-atom parameters constrained
$wR(F^2) = 0.062$	$w = 1/[\sigma^2(F_o^2) + (0.0183P)^2 + 0.8733P]$
S = 1.01	where $P = (F_o^2 + 2F_c^2)/3$
4737 reflections	$(\Delta/\sigma)_{max} = 0.001$
278 parameters	$\Delta\rho_{max} = 0.56$ e Å ⁻³
0 restraints	$\Delta\rho_{min} = -0.68$ e Å ⁻³
Primary atom site location: structure-invariant	Extinction correction: <i>SHELXS97</i> (Sheldrick,
direct methods	2008), Fc*=kFc[1+0.001xFc ² \lambda ³ /sin(2 θ)] ^{-1/4}
Secondary atom site location: difference Fourier	Extinction coefficient: 0.0067 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.2655 (6)	0.5314 (4)	0.5640 (3)	0.0522 (10)	
C2	0.3438 (6)	0.6096 (5)	0.5130 (3)	0.0581 (11)	
C3	0.3160 (7)	0.5495 (6)	0.4251 (3)	0.0776 (15)	
Н3	0.3633	0.5957	0.3870	0.093*	
C4	0.2179 (7)	0.4212 (6)	0.3958 (3)	0.0801 (15)	
H4	0.2010	0.3797	0.3371	0.096*	
C5	0.1440 (6)	0.3525 (5)	0.4509 (3)	0.0652 (13)	
C6	0.0322 (8)	0.2131 (5)	0.4196 (3)	0.0905 (17)	
H6A	0.0896	0.1550	0.4380	0.136*	
H6B	0.0167	0.1866	0.3581	0.136*	
H6C	-0.0813	0.2084	0.4425	0.136*	
C7	0.5208 (8)	0.8131 (5)	0.4975 (4)	0.0900 (17)	
H7A	0.5924	0.7653	0.4600	0.135*	
H7B	0.5938	0.8961	0.5321	0.135*	
H7C	0.4311	0.8294	0.4639	0.135*	

C8	0.5213 (6)	0.3742 (4)	0.0739 (2)	0.0479 (10)
C9	0.6383 (6)	0.4983 (4)	0.0899 (3)	0.0500 (10)
C10	0.5793 (7)	0.6050 (4)	0.1397 (3)	0.0627 (12)
H10	0.6521	0.6906	0.1541	0.075*
C11	0.4127 (7)	0.5816 (5)	0.1669 (3)	0.0671 (13)
H11	0.3725	0.6521	0.2004	0.081*
C12	0.3034 (6)	0.4552 (5)	0.1456 (3)	0.0596 (11)
C13	0.1181 (7)	0.4251 (5)	0.1713 (3)	0.0791 (15)
H13A	0.0364	0.4120	0.1233	0.119*
H13B	0.1029	0.4979	0.2176	0.119*
H13C	0.0959	0.3460	0.1894	0.119*
C14	0.9152 (7)	0.6345 (4)	0.0738 (3)	0.0765 (15)
H14A	0.8591	0.6908	0.0527	0.115*
H14B	1.0216	0.6276	0.0458	0.115*
H14C	0.9438	0.6715	0.1345	0.115*
C15	0.1107 (5)	0.9067 (4)	0.2665 (2)	0.0450 (9)
C16	0.2909 (5)	0.9519 (4)	0.2630 (3)	0.0483 (10)
C17	0.3429 (6)	1.0324 (4)	0.2107 (3)	0.0624 (12)
H17	0.4627	1.0660	0.2063	0.075*
C18	0.2179 (7)	1.0628 (4)	0.1653 (3)	0.0646 (12)
H18	0.2528	1.1183	0.1308	0.077*
C19	0.0416 (6)	1.0116 (4)	0.1705 (3)	0.0594 (11)
C20	-0.1023 (7)	1.0386 (6)	0.1207 (4)	0.0880 (17)
H20A	-0.1829	0.9561	0.0903	0.132*
H20B	-0.0505	1.0840	0.0807	0.132*
H20C	-0.1652	1.0928	0.1596	0.132*
C21	0.5866 (6)	0.9547 (5)	0.3028 (4)	0.0871 (17)
H21A	0.6098	0.9276	0.2436	0.131*
H21B	0.6499	0.9151	0.3351	0.131*
H21C	0.6248	1.0495	0.3247	0.131*
I1	0.30556 (5)	0.61072 (3)	0.698542 (19)	0.07157 (13)
I2	0.60344 (4)	0.20520 (3)	0.00399 (2)	0.06819 (12)
I3	0.01400 (4)	0.78330 (3)	0.344715 (19)	0.05933 (11)
N1	0.1683 (5)	0.4079 (4)	0.5349 (2)	0.0568 (9)
N2	0.3602 (5)	0.3508 (3)	0.0991 (2)	0.0538 (9)
N3	-0.0123 (4)	0.9329 (3)	0.2220 (2)	0.0526 (9)
01	0.4377 (4)	0.7353 (3)	0.5523 (2)	0.0727 (9)
O2	0.7978 (4)	0.5059 (3)	0.05666 (19)	0.0619 (8)
O3	0.3999 (4)	0.9124 (3)	0.3106 (2)	0.0648 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.059 (3)	0.060 (3)	0.043 (2)	0.024 (2)	0.006 (2)	0.016 (2)
C2	0.058 (3)	0.071 (3)	0.058 (3)	0.027 (2)	0.010 (2)	0.028 (2)
C3	0.080 (4)	0.103 (4)	0.060 (3)	0.028 (3)	0.011 (3)	0.036 (3)
C4	0.096 (4)	0.098 (4)	0.043 (3)	0.029 (4)	0.001 (3)	0.012 (3)
C5	0.065 (3)	0.071 (3)	0.056 (3)	0.024 (3)	-0.006 (2)	0.005 (2)

supporting information

C6	0.106 (4)	0.082 (4)	0.069 (3)	0.022 (3)	-0.012 (3)	0.000 (3)
C7	0.091 (4)	0.091 (4)	0.104 (4)	0.014 (3)	0.018 (3)	0.061 (4)
C8	0.062 (3)	0.040 (2)	0.045 (2)	0.017 (2)	-0.005 (2)	0.0143 (18)
C9	0.061 (3)	0.042 (2)	0.046 (2)	0.013 (2)	-0.008 (2)	0.0104 (19)
C10	0.081 (3)	0.043 (2)	0.060 (3)	0.016 (2)	0.002 (3)	0.008 (2)
C11	0.092 (4)	0.058 (3)	0.058 (3)	0.034 (3)	0.009 (3)	0.014 (2)
C12	0.065 (3)	0.069 (3)	0.056 (3)	0.028 (3)	0.005 (2)	0.026 (2)
C13	0.076 (4)	0.100 (4)	0.074 (3)	0.035 (3)	0.017 (3)	0.035 (3)
C14	0.079 (4)	0.053 (3)	0.079 (3)	-0.005 (3)	0.003 (3)	0.008 (3)
C15	0.046 (2)	0.035 (2)	0.050 (2)	0.0075 (18)	0.0084 (19)	0.0084 (18)
C16	0.045 (2)	0.039 (2)	0.058 (3)	0.0087 (19)	0.004 (2)	0.0093 (19)
C17	0.052 (3)	0.047 (3)	0.083 (3)	0.003 (2)	0.017 (2)	0.017 (2)
C18	0.068 (3)	0.052 (3)	0.077 (3)	0.006 (2)	0.015 (3)	0.032 (2)
C19	0.069 (3)	0.050 (3)	0.058 (3)	0.011 (2)	0.002 (2)	0.017 (2)
C20	0.083 (4)	0.095 (4)	0.098 (4)	0.016 (3)	-0.008 (3)	0.054 (3)
C21	0.047 (3)	0.090 (4)	0.128 (5)	0.012 (3)	0.003 (3)	0.041 (4)
I1	0.0894 (3)	0.0652 (2)	0.04841 (18)	0.00163 (17)	0.00875 (16)	0.01222 (15)
I2	0.0630(2)	0.03952 (17)	0.0968 (3)	0.01431 (14)	0.00303 (17)	0.01007 (16)
I3	0.05512 (19)	0.0623 (2)	0.0677 (2)	0.01301 (14)	0.01072 (14)	0.03120 (15)
N1	0.064 (2)	0.057 (2)	0.050 (2)	0.0183 (19)	0.0019 (18)	0.0131 (18)
N2	0.057 (2)	0.056 (2)	0.057 (2)	0.0195 (18)	0.0023 (18)	0.0244 (18)
N3	0.049 (2)	0.045 (2)	0.061 (2)	0.0090 (16)	0.0021 (17)	0.0147 (17)
01	0.079 (2)	0.066 (2)	0.076 (2)	0.0091 (18)	0.0111 (18)	0.0331 (18)
O2	0.0599 (19)	0.0423 (16)	0.0701 (19)	0.0027 (14)	0.0029 (16)	0.0033 (14)
O3	0.0402 (16)	0.069 (2)	0.087 (2)	0.0107 (15)	0.0047 (15)	0.0270 (17)

Geometric parameters (Å, °)

C1—N1	1.323 (5)	C12—N2	1.348 (5)
C1—C2	1.392 (6)	C12—C13	1.496 (6)
C1—I1	2.110 (4)	C13—H13A	0.9600
C2—O1	1.355 (5)	С13—Н13В	0.9600
C2—C3	1.390 (6)	С13—Н13С	0.9600
C3—C4	1.366 (7)	C14—O2	1.426 (5)
С3—Н3	0.9300	C14—H14A	0.9600
C4—C5	1.368 (7)	C14—H14B	0.9600
C4—H4	0.9300	C14—H14C	0.9600
C5—N1	1.324 (5)	C15—N3	1.324 (5)
C5—C6	1.497 (7)	C15—C16	1.382 (5)
С6—Н6А	0.9600	C15—I3	2.114 (4)
С6—Н6В	0.9600	C16—O3	1.359 (5)
С6—Н6С	0.9600	C16—C17	1.380 (6)
C7—O1	1.449 (5)	C17—C18	1.369 (6)
С7—Н7А	0.9600	С17—Н17	0.9300
С7—Н7В	0.9600	C18—C19	1.369 (6)
С7—Н7С	0.9600	C18—H18	0.9300
C8—N2	1.315 (5)	C19—N3	1.357 (5)
C8—C9	1.389 (5)	C19—C20	1.506 (6)

C8—I2	2.115 (4)	C20—H20A	0.9600
С9—О2	1.356 (5)	C20—H20B	0.9600
C9—C10	1.394 (6)	C20—H20C	0.9600
C10—C11	1.367 (6)	C21—O3	1.438 (5)
C10—H10	0.9300	C21—H21A	0.9600
C11—C12	1.379 (6)	C21—H21B	0.9600
C11—H11	0.9300	C21—H21C	0.9600
N1—C1—C2	125.0 (4)	H13A—C13—H13B	109.5
N1—C1—I1	116.1 (3)	C12—C13—H13C	109.5
C2—C1—I1	118.9 (3)	H13A—C13—H13C	109.5
O1—C2—C3	126.1 (4)	H13B—C13—H13C	109.5
O1—C2—C1	118.2 (4)	O2—C14—H14A	109.5
C3—C2—C1	115.6 (5)	O2—C14—H14B	109.5
C4—C3—C2	118.8 (5)	H14A—C14—H14B	109.5
С4—С3—Н3	120.6	O2—C14—H14C	109.5
С2—С3—Н3	120.6	H14A—C14—H14C	109.5
C3—C4—C5	121.4 (5)	H14B—C14—H14C	109.5
C3—C4—H4	119.3	N3—C15—C16	124.5 (4)
С5—С4—Н4	119.3	N3—C15—I3	115.2 (3)
N1—C5—C4	120.8 (5)	C16—C15—I3	120.3 (3)
N1—C5—C6	117.3 (5)	O3—C16—C17	126.2 (4)
C4—C5—C6	122.0 (5)	O3—C16—C15	117.2 (4)
С5—С6—Н6А	109.5	C17—C16—C15	116.6 (4)
С5—С6—Н6В	109.5	C18—C17—C16	119.8 (4)
H6A—C6—H6B	109.5	C18—C17—H17	120.1
С5—С6—Н6С	109.5	C16—C17—H17	120.1
H6A—C6—H6C	109.5	C19—C18—C17	120.2 (4)
Н6В—С6—Н6С	109.5	C19—C18—H18	119.9
O1—C7—H7A	109.5	C17—C18—H18	119.9
O1—C7—H7B	109.5	N3—C19—C18	120.8 (4)
H7A—C7—H7B	109.5	N3—C19—C20	116.4 (4)
O1—C7—H7C	109.5	C18—C19—C20	122.8 (4)
H7A—C7—H7C	109.5	C19—C20—H20A	109.5
H7B—C7—H7C	109.5	С19—С20—Н20В	109.5
N2—C8—C9	125.6 (4)	H20A—C20—H20B	109.5
N2—C8—I2	115.6 (3)	C19—C20—H20C	109.5
C9—C8—I2	118.8 (3)	H20A—C20—H20C	109.5
O2—C9—C8	118.2 (4)	H20B—C20—H20C	109.5
O2—C9—C10	125.8 (4)	O3—C21—H21A	109.5
C8—C9—C10	116.0 (4)	O3—C21—H21B	109.5
C11—C10—C9	118.9 (4)	H21A—C21—H21B	109.5
C11-C10-H10	120.6	O3—C21—H21C	109.5
С9—С10—Н10	120.6	H21A—C21—H21C	109.5
C10-C11-C12	121.0 (4)	H21B—C21—H21C	109.5
C10-C11-H11	119.5	C1—N1—C5	118.3 (4)
C12—C11—H11	119.5	C8—N2—C12	117.8 (4)
N2-C12-C11	120.6 (4)	C15—N3—C19	118.0 (4)

N2—C12—C13 C11—C12—C13 C12—C13—H13A C12—C13—H13B	116.3 (4) 123.1 (4) 109.5 109.5	C2—O1—C7 C9—O2—C14 C16—O3—C21	116.9 (4) 117.1 (3) 116.5 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$179.0 (4) \\ -2.2 (5) \\ -0.6 (7) \\ 178.2 (3) \\ 179.9 (5) \\ -0.5 (7) \\ 1.5 (8) \\ -1.3 (8) \\ 178.4 (5) \\ -177.6 (4) \\ 2.8 (5) \\ 2.5 (6) \\ -177.2 (3) \\ 178.5 (4) \\ -1.6 (6) \\ -0.4 (7) \\ 1.8 (7) \\ -177.9 (4) \\ -177.8 (3) \\ 0.7 (5) \\ 1.8 (6) \\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.4 \ (6) \\ -1.1 \ (7) \\ 1.5 \ (7) \\ -178.5 \ (5) \\ 0.8 \ (6) \\ -178.0 \ (3) \\ 0.1 \ (7) \\ -179.5 \ (4) \\ -1.1 \ (6) \\ 178.5 \ (3) \\ -1.1 \ (6) \\ 178.6 \ (4) \\ -1.5 \ (6) \\ -180.0 \ (3) \\ -0.3 \ (6) \\ 179.8 \ (4) \\ -1.8 \ (7) \\ 178.7 \ (4) \\ 179.8 \ (4) \\ -0.3 \ (6) \\ -2 \ 6 \ (6) \end{array}$
I3—C15—C16—C17 O3—C16—C17—C18	-179.7 (3) 179.1 (4)	C15-C16-O3-C21	177.0 (4)

Hydrogen-bond geometry (Å, °)

	<i>D</i> —Н	Н…А	D···A	<i>D</i> —H··· <i>A</i>
C14—H14 <i>B</i> ····O2 ⁱ	0.96	2.56	3.429 (6)	151

Symmetry code: (i) -x+2, -y+1, -z.