Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Benzene-1,3,5-triyl tris(2,2-dimethylpropanoate)

Alan H. Haines and David L. Hughes*

School of Chemistry, University of East Anglia, Norwich NR4 7TJ, England Correspondence e-mail: d.l.hughes@uea.ac.uk

Received 21 October 2009; accepted 20 November 2009

Key indicators: single-crystal X-ray study; T = 140 K; mean σ (C–C) = 0.002 Å; R factor = 0.047; wR factor = 0.132; data-to-parameter ratio = 25.4.

In the title compound, $C_{21}H_{30}O_6$, the three acetoxy groups are essentially planar with their normals rotated by -57.75 (4), -62.36 (4) and 63.36 (4)° from the normal to the mean plane of the C₆ ring. The arrangement of carbonyl groups around the ring is of two groups 'up' and one 'down', and the propellerstyle arrangement of substituent groups is spoiled with the plane of the 'down' group twisted in the opposite direction; all the C_{ring} $-O-C-CMe_3$ conformations are *trans*. In the crystal, aromatic π - π stacking occurs [centroid-centroid separation = 3.320 (1) Å]; the other main intermolecular interaction is a $C-H\cdots\pi$ -ring contact on the opposing side from the overlapped ring pairing; there are no short C- $H\cdots$ O contacts.

Related literature

For our previous studies in this area, see: Haines & Hughes (2007); Haines *et al.* (2008, 2009). For a related structure, see: Haines & Hughes (2009). For further synthetic details, see: Hegetschweiler *et al.* (1990).

Experimental

Crystal data $C_{21}H_{30}O_6$ $M_r = 378.45$

Triclinic, $P\overline{1}$ a = 9.4812 (3) Å

$\alpha = 91.138 \ (2)^{\circ}$ $\beta = 97.649 \ (3)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$ T = 140 K
$\gamma = 111.624 (3)^{\circ}$ $V = 1068.87 (5) Å^{3}$	$0.65 \times 0.32 \times 0.15 \text{ mm}$
Data collection	
Oxford Diffraction Xcalibur 3/CCD diffractometer Absorption correction: multi-scan (<i>CrysAlisPro RED</i> ; Oxford Diffraction, 2008) $T_{\rm min} = 0.920, T_{\rm max} = 1.059$	26503 measured reflections 6205 independent reflections 4605 reflections with $I > 2\sigma(I)$ $R_{int} = 0.038$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.047$	244 parameters

$R[F^2 > 2\sigma(F^2)] = 0.047$	244 parameters
$wR(F^2) = 0.132$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.65 \ {\rm e} \ {\rm \AA}^{-3}$
6205 reflections	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

Z = 2

Mo- $K\alpha$ radiation

Table 1

b = 10.6885 (3) Å

c = 11.4799 (3) Å

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C13-H13B\cdots Cg1^{i}$	0.96	2.82	3.7608 (16)	168
a				26.1

Symmetry code: (i) -x, -y + 1, -z + 1. Cg1 is the centroid of the C1–C6 ring.

Data collection: *CrysAlisPro CCD* (Oxford Diffraction, 2008); cell refinement: *CrysAlisPro RED* (Oxford Diffraction, 2008); data reduction: *CrysAlisPro RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

We thank the EPSRC National Mass Spectrometry Service Centre at Swansea for determination of the low and high resolution mass spectra.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5166).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Haines, A. H. & Hughes, D. L. (2007). Carbohydr. Res. 342, 2264-2269.
- Haines, A. H. & Hughes, D. L. (2009). Acta Cryst. E65, o3279.
- Haines, A. H., Steytler, D. C. & Rivett, C. (2008). J. Supercrit. Fluids, 44, 21-24.
- Haines, A. H., Steytler, D. C. & Rivett, C. (2009). Unpublished data.
- Hegetschweiler, K., Erni, I. & Schneider, W. (1990). *Helv. Chim. Acta*, **73**, 97–105.
- Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o3280 [doi:10.1107/S1600536809050028]

Benzene-1,3,5-triyl tris(2,2-dimethylpropanoate)

Alan H. Haines and David L. Hughes

S1. Comment

Structural factors which enhance the solubility of organic compounds in liquid carbon dioxide are difficult to identify, but a knowledge of these is important in view of the possibility of using liquid carbon dioxide as an environmentally acceptable, cheap, safe and readily available alternative to replace organic-based solvents in the development of so-called "green chemistry". Previous studies (Haines *et al.*, 2008) have shown that certain types of acyl group promote the solubilities of per-acylated *D*-glucopyranose derivatives in liquid carbon dioxide; in particular trimethylacetyl groups promoted solubility, their effect being comparable to acetyl groups and superior to dimethylacetyl groups. In searching for an explanation for solubility differences in this series based on differing intermolecular forces in the solid state, we conducted crystal structure studies on the compounds (Haines & Hughes, 2007), but the results indicated no substantial difference in such intermolecular forces.

Measurement of solubilities in liquid carbon dioxide of 1,3,5-triacetoxybenzene (2) and substituted derivatives, *viz* 1,3,5-tris-(dimethylacetoxy)benzene (3) and 1,3,5-tris-(trimethylacetoxy)benzene (1), chosen in an attempt to separate the effects on solubility of the number and structure of peripheral substituents in compounds of similar overall molecular dimensions to the carbohydrate derivatives, showed no major differences (Haines, *et al.*, 2009, unpublished results) and prompted an investigation of their crystal structures in order to compare intermolecular interactions in these compounds.

The stucture of the title compound, (1), is shown in Figure 1; compound 2 is described in the preceding paper (Haines and Hughes, 2009). Unfortunately, of the crystals of 3 grown under a variety of conditions, none gave acceptable diffraction patterns, all showing diffuse and blurry diffracted beams and refinement of a disordered structure to rather poor *R*-values. It is noteworthy that the corresponding dimethylacetyl derivative in the *D*-glucopyranose series also showed some disorder in its crystalline form. It is also of interest that in both the *D*-glucopyranose and benzene series, we were unable to crystallize the propionyl derivatives.

Compound **1** was prepared by the acylation of 1,3,5-trihydroxybenzene with trimethylacetyl chloride and formed crystals with molecules arranged in interacting pairs by overlap of the arene rings about a centre of symmetry. C(2) lies over the centre of the opposing ring and is 3.320 (1) Å from the mean-plane of that ring, and C(1) overlaps C(3^{*a*}) at a distance of 3.326 (2) Å. H(13*Bb*) is directed towards the centre of the C₆ ring from the opposite side and is displaced 2.81 Å from the ring plane; the six H···C distances lie in the range 3.06–3.22 Å; supercripts denote symmetry operations. In contrast to 1,3,5-triacetoxybenzene (**2**) (previous paper, Haines and Hughes, 2009), there are no intermolecular C—H···O contacts with H···O distances less than 2.55 Å. There are also differences in intramolecular structure from that in **2** in the arrangement of carbonyl groups around the ring. Thus, the three acetoxy groups are essentially planar (as in **2**) but have normals rotated -57.75 (4), -62.36 (4) and 63.36 (4)° from the normal to the mean-plane of the C₆ ring (in contrast to three 'up' in **2**), and the propeller-style arrangement of substituent groups is spoiled with the plane of the 'down' group twisted in the opposite direction. In both compounds, all the C_{ring}—O—C—*R* (*R*=Me or CMe₃) conformations are *trans*.

Dimensions are available in the archived CIFs.

S2. Experimental

The title compound was prepared by conventional acylation of the parent 1,3,5-trihydroxybenzene and gave analytical data (HRMS) and spectral data (¹H and ¹³C NMR) in full accord with the expected structure.

1,3,5-Tris-(trimethylacetoxy)benzene (1) - 1,3,5-Trihydroxybenzene (0.63 g) was dissolved in pyridine (6 ml), trimethylacetyl chloride (3.7 ml) was added, and the mixture was then stored for 12 h at room temperature. Water (1 ml) was added to destroy excess acyl chloride, and the mixture was then poured on to ice, affording a sticky solid which was separated and dissolved in dichloromethane (30 ml). This solution was washed with saturated aqueous sodium hydrogen carbonate, water, and then dried over anhydrous sodium sulfate. Concentration of the filtered solution gave a crystalline solid which was recrystallized from ethanol to give compound **1** (0.947 g, 50%), m.p. 163–165 °C; $\delta_{\rm H}$ (CDCl₃) 6.77, (s, 3H), 1.33 (s, 27H); $\delta_{\rm C}$ (CDCl₃) 176.43, 151.68, 112.57, 39.02, 26.91. *m/z* (ES): 396.2 [*M*+NH₄]⁺. (Found: [*M*+NH₄]⁺ 396.2381. C₂₁H₃₄NO₆ requires *m/z* 396.2381).

S3. Refinement

Hydrogen atoms were included in idealized positions and their U_{iso} values were set to ride on the U_{eq} values of the parent carbon atoms.

Figure 1

The molecular structure of (I). Part of a related, neighbouring molecule is also shown; $C(2^1)$ is directly under the ring C(1-6). Displacement ellipsoids are drawn at the 50% probability level.

Benzene-1,3,5-triyl tris(2,2-dimethylpropanoate)

Hall symbol: -P 1
a = 9.4812 (3) Å
b = 10.6885 (3) Å

c = 11.4799 (3) Å $a = 91.138 (2)^{\circ}$ $\beta = 97.649 (3)^{\circ}$ $\gamma = 111.624 (3)^{\circ}$ $V = 1068.87 (5) \text{ Å}^{3}$ Z = 2 F(000) = 408Data collection Oxford Diffraction Xcalibur 3/CCD

diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.0050 pixels mm⁻¹ Thin–slice φ and ω scans Absorption correction: multi-scan (*CrysAlis PRO* RED; Oxford Diffraction, 2008) $T_{\min} = 0.920, T_{\max} = 1.059$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.047$ Hydrogen site location: inferred from $wR(F^2) = 0.132$ neighbouring sites S = 1.08H-atom parameters constrained 6205 reflections $w = 1/[\sigma^2(F_0^2) + (0.0693P)^2 + 0.1174P]$ 244 parameters where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ Primary atom site location: structure-invariant $\Delta \rho_{\rm max} = 0.65 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods $\Delta \rho_{\rm min} = -0.34 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Experimental. CrysAlisPro RED, Oxford Diffraction Ltd., Version 1.171.32.24 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

 $D_{\rm x} = 1.176 {\rm ~Mg} {\rm ~m}^{-3}$

 $\mu = 0.09 \text{ mm}^{-1}$

Plate, colourless

 $0.65 \times 0.32 \times 0.15 \text{ mm}$

 $\theta_{\rm max} = 30.0^\circ, \ \theta_{\rm min} = 3.2^\circ$

26503 measured reflections 6205 independent reflections

4605 reflections with $I > 2\sigma(I)$

T = 140 K

 $R_{\rm int} = 0.038$

 $h = -13 \rightarrow 13$

 $k = -15 \rightarrow 15$

 $l = -16 \rightarrow 16$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.27936 (13)	0.48381 (12)	0.50299 (10)	0.0183 (2)	
C2	0.39408 (13)	0.61026 (12)	0.50434 (10)	0.0187 (2)	
H2	0.3990	0.6620	0.4397	0.022*	
C3	0.50064 (13)	0.65635 (11)	0.60527 (10)	0.0185 (2)	
C4	0.49732 (13)	0.58123 (12)	0.70237 (10)	0.0193 (2)	
H4	0.5708	0.6140	0.7693	0.023*	
C5	0.38065 (13)	0.45569 (12)	0.69610 (10)	0.0183 (2)	

C6	0.26969 (13)	0.40486 (12)	0.59784 (10)	0.0191 (2)
H6	0.1914	0.3206	0.5956	0.023*
01	0.17567 (10)	0.42434 (8)	0.40037 (7)	0.02236 (19)
C11	0.08728 (12)	0.49094 (12)	0.34944 (10)	0.0182 (2)
O11	0.08760 (11)	0.59371 (9)	0.39219 (8)	0.0276 (2)
C12	-0.01207(13)	0.41230 (12)	0.23672 (10)	0.0194 (2)
C13	-0.14944(15)	0.29840 (14)	0.27447 (13)	0.0293(3)
H13A	-0.2155	0.2458	0.2058	0.044*
H13B	-0.2056	0.3368	0.3178	0.044*
H13C	-0.1129	0.2416	0.3234	0.044*
C14	0.07752 (16)	0.35349 (16)	0.16576 (12)	0.0313(3)
H14A	0.0122	0 3041	0.0955	0.047*
H14R	0.1123	0.2940	0.2125	0.047*
H14C	0.1644	0.4254	0.1447	0.047*
C15	-0.06716(15)	0.4254 0 50707 (14)	0.1447 0.16204 (11)	0.047 0.0272 (3)
H15A	-0.1303	0.4582	0.10204 (11)	0.0272 (3)
HIJA HIJA	0.1303	0.4382	0.0908	0.041*
	0.0199	0.5802	0.1427	0.041*
	0.1257 0.62184 (10)	0.3423	0.2037	0.041°
C21	0.02184(10) 0.62776(14)	0.78028(9)	0.00180(8)	0.0240(2)
021	0.03770(14)	0.88421(12)	0.07938(11) 0.75101(10)	0.0230(2)
031	0.55555(14)	0.8/515(11)	0.75191(10)	0.0443(3)
C32	0.//04/(16)	1.01112 (13)	0.65958 (12)	0.0296(3)
C33	0.9154 (2)	0.9794 (2)	0.6641 (3)	0.0782 (8)
H33A	0.9998	1.0594	0.6518	0.117*
H33B	0.8997	0.9103	0.6036	0.117*
H33C	0.9379	0.9487	0.7397	0.117*
C34	0.7314 (3)	1.05974 (18)	0.54077 (15)	0.0601 (6)
H34A	0.8148	1.1401	0.5277	0.090*
H34B	0.6400	1.0790	0.5397	0.090*
H34C	0.7147	0.9909	0.4797	0.090*
C35	0.7955 (3)	1.11854 (17)	0.75681 (16)	0.0604 (6)
H35A	0.8793	1.1992	0.7450	0.091*
H35B	0.8189	1.0867	0.8317	0.091*
H35C	0.7040	1.1378	0.7553	0.091*
O5	0.37241 (10)	0.38397 (9)	0.79761 (7)	0.02357 (19)
C51	0.39004 (16)	0.26392 (14)	0.79296 (11)	0.0259 (3)
O51	0.40977 (19)	0.21582 (13)	0.70459 (10)	0.0585 (4)
C52	0.38396 (14)	0.20385 (13)	0.91138 (10)	0.0224 (2)
C53	0.54114 (17)	0.27468 (17)	0.98640 (13)	0.0378 (3)
H53A	0.5411	0.2383	1.0622	0.057*
H53B	0.5625	0.3696	0.9963	0.057*
H53C	0.6185	0.2606	0.9479	0.057*
C54	0.26045 (17)	0.22568 (16)	0.97295 (12)	0.0328 (3)
H54A	0.2584	0.1866	1.0476	0.049*
H54B	0.1622	0.1835	0.9247	0.049*
H54C	0.2833	0.3207	0.9852	0.049*
C55	0.3493 (2)	0.05325 (15)	0.89167 (14)	0.0373 (3)
H55A	0.3453	0.0137	0.9661	0.056*

supporting information

H55B	0.4285	0.0404	0.8547	0.056*
H55C	0.2522	0.0108	0.8418	0.056*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	U ²³
C1	0.0195 (5)	0.0191 (5)	0.0172 (5)	0.0095 (4)	-0.0006 (4)	-0.0011 (4)
C2	0.0228 (5)	0.0182 (5)	0.0171 (5)	0.0094 (4)	0.0044 (4)	0.0031 (4)
C3	0.0178 (5)	0.0159 (5)	0.0210 (5)	0.0047 (4)	0.0051 (4)	-0.0007 (4)
C4	0.0193 (5)	0.0216 (6)	0.0176 (5)	0.0090 (4)	0.0008 (4)	-0.0011 (4)
C5	0.0233 (5)	0.0192 (5)	0.0158 (5)	0.0112 (4)	0.0047 (4)	0.0040 (4)
C6	0.0199 (5)	0.0156 (5)	0.0215 (5)	0.0063 (4)	0.0028 (4)	0.0017 (4)
01	0.0258 (4)	0.0196 (4)	0.0206 (4)	0.0107 (3)	-0.0062 (3)	-0.0025 (3)
C11	0.0172 (5)	0.0191 (5)	0.0181 (5)	0.0063 (4)	0.0028 (4)	0.0038 (4)
O11	0.0308 (5)	0.0224 (5)	0.0299 (5)	0.0139 (4)	-0.0048(4)	-0.0043 (4)
C12	0.0195 (5)	0.0225 (6)	0.0164 (5)	0.0090 (4)	0.0002 (4)	0.0000 (4)
C13	0.0239 (6)	0.0247 (6)	0.0324 (7)	0.0024 (5)	0.0000 (5)	-0.0002 (5)
C14	0.0347 (7)	0.0423 (8)	0.0219 (6)	0.0220 (6)	0.0007 (5)	-0.0054 (5)
C15	0.0291 (6)	0.0305 (7)	0.0218 (6)	0.0131 (5)	-0.0027 (5)	0.0036 (5)
O3	0.0235 (4)	0.0191 (4)	0.0259 (4)	0.0005 (3)	0.0085 (3)	-0.0015 (3)
C31	0.0275 (6)	0.0184 (6)	0.0225 (6)	0.0065 (5)	0.0019 (5)	0.0025 (4)
O31	0.0604 (7)	0.0248 (5)	0.0460 (6)	0.0066 (5)	0.0302 (6)	-0.0023 (5)
C32	0.0330 (7)	0.0183 (6)	0.0305 (7)	0.0016 (5)	0.0037 (5)	0.0041 (5)
C33	0.0305 (9)	0.0388 (11)	0.153 (2)	-0.0027 (8)	0.0166 (12)	0.0135 (13)
C34	0.0894 (15)	0.0306 (9)	0.0339 (9)	-0.0049 (9)	-0.0011 (9)	0.0123 (7)
C35	0.0897 (15)	0.0251 (8)	0.0400 (9)	-0.0093 (9)	0.0119 (10)	-0.0039(7)
O5	0.0359 (5)	0.0216 (4)	0.0175 (4)	0.0152 (4)	0.0052 (3)	0.0049 (3)
C51	0.0360 (7)	0.0269 (6)	0.0214 (6)	0.0181 (6)	0.0071 (5)	0.0054 (5)
O51	0.1225 (12)	0.0528 (8)	0.0307 (6)	0.0611 (8)	0.0299 (7)	0.0150 (5)
C52	0.0281 (6)	0.0241 (6)	0.0177 (5)	0.0128 (5)	0.0030 (4)	0.0057 (4)
C53	0.0311 (7)	0.0462 (9)	0.0302 (7)	0.0096 (6)	-0.0015 (6)	0.0051 (6)
C54	0.0387 (7)	0.0405 (8)	0.0267 (7)	0.0201 (7)	0.0140 (6)	0.0122 (6)
C55	0.0513 (9)	0.0267 (7)	0.0374 (8)	0.0178 (7)	0.0084 (7)	0.0069 (6)

Geometric parameters (Å, °)

C1—C6	1.3829 (16)	C31—C32	1.5184 (18)	
C1—C2	1.3861 (16)	C32—C35	1.516 (2)	
C101	1.3999 (14)	C32—C34	1.518 (2)	
C2—C3	1.3802 (16)	C32—C33	1.527 (3)	
С2—Н2	0.9300	С33—Н33А	0.9600	
C3—C4	1.3836 (16)	С33—Н33В	0.9600	
C3—O3	1.4032 (14)	С33—Н33С	0.9600	
C4—C5	1.3822 (17)	C34—H34A	0.9600	
C4—H4	0.9300	C34—H34B	0.9600	
C5—C6	1.3830 (16)	C34—H34C	0.9600	
C5—O5	1.4025 (13)	С35—Н35А	0.9600	
С6—Н6	0.9300	С35—Н35В	0.9600	

O1—C11	1.3699 (13)	С35—Н35С	0.9600
C11—O11	1.1931 (14)	O5—C51	1.3546 (15)
C11—C12	1.5221 (16)	C51—O51	1.1955 (16)
C12—C14	1.5289 (17)	C51—C52	1.5139 (17)
C12—C15	1.5294 (17)	C52—C55	1.5251 (19)
C12—C13	1.5391 (17)	C52—C53	1.5286 (19)
C13—H13A	0.9600	C52—C54	1.5298 (17)
C13—H13B	0.9600	С53—Н53А	0.9600
C13—H13C	0.9600	С53—Н53В	0.9600
C14—H14A	0.9600	С53—Н53С	0.9600
C14—H14B	0.9600	С54—Н54А	0.9600
C14—H14C	0.9600	С54—Н54В	0.9600
С15—Н15А	0.9600	С54—Н54С	0.9600
C15—H15B	0.9600	С55—Н55А	0.9600
C15—H15C	0.9600	C55—H55B	0.9600
03-031	1.3601 (15)	C55—H55C	0.9600
$C_{31} - C_{31}$	1 1933 (16)		0.9000
	(10)		
C6—C1—C2	122.36 (11)	C35—C32—C31	108.92 (12)
C6—C1—O1	116.42 (10)	C34—C32—C31	108.98 (12)
C2—C1—O1	120.95 (10)	C35—C32—C33	109.08 (17)
C3—C2—C1	117.42 (10)	C34—C32—C33	110.80 (18)
С3—С2—Н2	121.3	C31—C32—C33	109.09 (12)
C1—C2—H2	121.3	С32—С33—Н33А	109.5
C2—C3—C4	122.69 (11)	С32—С33—Н33В	109.5
C2—C3—O3	116.51 (10)	H33A—C33—H33B	109.5
C4—C3—O3	120.61 (10)	С32—С33—Н33С	109.5
C5—C4—C3	117.45 (10)	H33A—C33—H33C	109.5
C5—C4—H4	121.3	H33B—C33—H33C	109.5
C3—C4—H4	121.3	С32—С34—Н34А	109.5
C4—C5—C6	122.43 (10)	C32—C34—H34B	109.5
C4—C5—O5	117.03 (10)	H34A—C34—H34B	109.5
C6—C5—O5	120.41 (10)	С32—С34—Н34С	109.5
C1—C6—C5	117.64 (11)	H34A—C34—H34C	109.5
С1—С6—Н6	121.2	H34B—C34—H34C	109.5
С5—С6—Н6	121.2	С32—С35—Н35А	109.5
C11—O1—C1	118.78 (9)	С32—С35—Н35В	109.5
011—C11—O1	123.06 (11)	H35A—C35—H35B	109.5
O11—C11—C12	126.51 (10)	С32—С35—Н35С	109.5
O1—C11—C12	110.38 (9)	H35A—C35—H35C	109.5
C11—C12—C14	111.20 (10)	H35B—C35—H35C	109.5
C11—C12—C15	108.90 (10)	C51—O5—C5	119.00 (9)
C14—C12—C15	109.33 (10)	O51—C51—O5	122.18 (12)
C11—C12—C13	106.60 (10)	O51—C51—C52	126.14 (12)
C14—C12—C13	110.37 (11)	O5—C51—C52	111.67 (10)
C15—C12—C13	110.40 (10)	C51—C52—C55	108.46 (11)
C12—C13—H13A	109.5	C51—C52—C53	107.48 (11)
C12—C13—H13B	109.5	C55—C52—C53	110.45 (12)

109.5	C51 C52 C54	110.01 (10)
	051-052-054	110.91 (10)
109.5	C55—C52—C54	109.98 (12)
109.5	C53—C52—C54	109.53 (11)
109.5	С52—С53—Н53А	109.5
109.5	С52—С53—Н53В	109.5
109.5	H53A—C53—H53B	109.5
109.5	С52—С53—Н53С	109.5
109.5	Н53А—С53—Н53С	109.5
109.5	Н53В—С53—Н53С	109.5
109.5	С52—С54—Н54А	109.5
109.5	С52—С54—Н54В	109.5
109.5	H54A—C54—H54B	109.5
109.5	С52—С54—Н54С	109.5
109.5	H54A—C54—H54C	109.5
109.5	H54B—C54—H54C	109.5
109.5	С52—С55—Н55А	109.5
118.41 (9)	С52—С55—Н55В	109.5
122.71 (12)	H55A—C55—H55B	109.5
126.27 (12)	С52—С55—Н55С	109.5
111.01 (11)	H55A—C55—H55C	109.5
109.94 (14)	H55B—C55—H55C	109.5
-0.10 (17)	O1-C11-C12-C13	79.48 (11)
-0.10 (17) -173.88 (10)	O1—C11—C12—C13 C2—C3—O3—C31	79.48 (11) 118.90 (12)
-0.10 (17) -173.88 (10) 0.68 (17)	O1—C11—C12—C13 C2—C3—O3—C31 C4—C3—O3—C31	79.48 (11) 118.90 (12) -65.99 (14)
-0.10 (17) -173.88 (10) 0.68 (17) 175.68 (9)	O1—C11—C12—C13 C2—C3—O3—C31 C4—C3—O3—C31 C3—O3—C31—O31	79.48 (11) 118.90 (12) -65.99 (14) 2.02 (18)
-0.10 (17) -173.88 (10) 0.68 (17) 175.68 (9) -0.51 (17)	O1—C11—C12—C13 C2—C3—O3—C31 C4—C3—O3—C31 C3—O3—C31—O31 C3—O3—C31—C32	79.48 (11) 118.90 (12) -65.99 (14) 2.02 (18) -177.74 (10)
-0.10 (17) -173.88 (10) 0.68 (17) 175.68 (9) -0.51 (17) -175.32 (10)	O1-C11-C12-C13 C2-C3-O3-C31 C4-C3-O3-C31 C3-O3-C31-O31 C3-O3-C31-C32 O31-C31-C32-C35	79.48 (11) 118.90 (12) -65.99 (14) 2.02 (18) -177.74 (10) 7.0 (2)
-0.10 (17) -173.88 (10) 0.68 (17) 175.68 (9) -0.51 (17) -175.32 (10) -0.24 (17)	$\begin{array}{c} 01 &C11 &C12 &C13 \\ C2 &C3 &O3 &C31 \\ C4 &C3 &O3 &C31 \\ C3 &O3 &C31 &O31 \\ C3 &O3 &C31 &C32 \\ O31 &C31 &C32 &C35 \\ O3 &C31 &C32 &C35 \end{array}$	79.48 (11) 118.90 (12) -65.99 (14) 2.02 (18) -177.74 (10) 7.0 (2) -173.27 (13)
-0.10 (17) -173.88 (10) 0.68 (17) 175.68 (9) -0.51 (17) -175.32 (10) -0.24 (17) -176.02 (10)	$\begin{array}{c} 01 &C11 &C12 &C13 \\ C2 &C3 &O3 &C31 \\ C4 &C3 &O3 &C31 \\ C3 &O3 &C31 &O31 \\ C3 &O3 &C31 &C32 \\ O31 &C31 &C32 &C35 \\ O31 &C31 &C32 &C34 \end{array}$	79.48 (11) 118.90 (12) -65.99 (14) 2.02 (18) -177.74 (10) 7.0 (2) -173.27 (13) -112.97 (18)
-0.10 (17) -173.88 (10) 0.68 (17) 175.68 (9) -0.51 (17) -175.32 (10) -0.24 (17) -176.02 (10) -0.59 (17)	$\begin{array}{c} 01 &C11 &C12 &C13 \\ C2 &C3 &03 &C31 \\ C4 &C3 &03 &C31 \\ C3 &03 &C31 &O31 \\ C3 &O31 &C32 \\ O31 &C31 &C32 &C35 \\ O31 &C31 &C32 &C34 \\ O3 &C31 &C32 &C34 \end{array}$	79.48 (11) 118.90 (12) -65.99 (14) 2.02 (18) -177.74 (10) 7.0 (2) -173.27 (13) -112.97 (18) 66.78 (16)
-0.10 (17) -173.88 (10) 0.68 (17) 175.68 (9) -0.51 (17) -175.32 (10) -0.24 (17) -176.02 (10) -0.59 (17) 173.45 (10)	$\begin{array}{c} 01 &C11 &C12 &C13\\ C2 &C3 &O3 &C31\\ C4 &C3 &O3 &C31\\ C3 &O3 &C31 &O31\\ C3 &O3 &C31 &C32\\ O31 &C31 &C32 &C35\\ O31 &C31 &C32 &C34\\ O3 &C31 &C32 &C34\\ O31 &C31 &C32 &C33\\ \end{array}$	79.48 (11) 118.90 (12) -65.99 (14) 2.02 (18) -177.74 (10) 7.0 (2) -173.27 (13) -112.97 (18) 66.78 (16) 125.94 (19)
$\begin{array}{c} -0.10\ (17)\\ -173.88\ (10)\\ 0.68\ (17)\\ 175.68\ (9)\\ -0.51\ (17)\\ -175.32\ (10)\\ -0.24\ (17)\\ -176.02\ (10)\\ -0.59\ (17)\\ 173.45\ (10)\\ 0.77\ (17)\end{array}$	$\begin{array}{c} 01 &C11 &C12 &C13 \\ C2 &C3 &O3 &C31 \\ C4 &C3 &O3 &C31 \\ C3 &O3 &C31 &O31 \\ C3 &O3 &C31 &C32 \\ O31 &C31 &C32 &C35 \\ O31 &C31 &C32 &C34 \\ O3 &C31 &C32 &C34 \\ O31 &C31 &C32 &C33 \\ O3 &C31 &C32 &C33 \\ \end{array}$	79.48 (11) 118.90 (12) -65.99 (14) 2.02 (18) -177.74 (10) 7.0 (2) -173.27 (13) -112.97 (18) 66.78 (16) 125.94 (19) -54.31 (18)
$\begin{array}{c} -0.10\ (17)\\ -173.88\ (10)\\ 0.68\ (17)\\ 175.68\ (9)\\ -0.51\ (17)\\ -175.32\ (10)\\ -0.24\ (17)\\ -176.02\ (10)\\ -0.59\ (17)\\ 173.45\ (10)\\ 0.77\ (17)\\ 176.41\ (10) \end{array}$	$\begin{array}{c} 01 &C11 &C12 &C13 \\ C2 &C3 &O3 &C31 \\ C4 &C3 &O3 &C31 \\ C3 &O3 &C31 &O31 \\ C3 &O3 &C31 &C32 \\ O31 &C31 &C32 &C35 \\ O31 &C31 &C32 &C34 \\ O3 &C31 &C32 &C34 \\ O31 &C31 &C32 &C33 \\ O3 &C31 &C32 &C33 \\ O3 &C31 &C32 &C33 \\ C4 &C5 &O5 &C51 \end{array}$	79.48 (11) 118.90 (12) -65.99 (14) 2.02 (18) -177.74 (10) 7.0 (2) -173.27 (13) -112.97 (18) 66.78 (16) 125.94 (19) -54.31 (18) -117.71 (12)
$\begin{array}{c} -0.10\ (17)\\ -173.88\ (10)\\ 0.68\ (17)\\ 175.68\ (9)\\ -0.51\ (17)\\ -175.32\ (10)\\ -0.24\ (17)\\ -176.02\ (10)\\ -0.59\ (17)\\ 173.45\ (10)\\ 0.77\ (17)\\ 176.41\ (10)\\ 127.36\ (11) \end{array}$	$\begin{array}{c} 01 &C11 &C12 &C13\\ C2 &C3 &O3 &C31\\ C4 &C3 &O3 &C31\\ C3 &O3 &C31 &O31\\ C3 &O3 &C31 &C32\\ O31 &C31 &C32 &C35\\ O31 &C31 &C32 &C34\\ O3 &C31 &C32 &C34\\ O31 &C31 &C32 &C33\\ O3 &C31 &C32 &C33\\ O3 &C31 &C32 &C33\\ C4 &C5 &O5 &C51\\ C6 &C5 &O5 &C51\\ \end{array}$	79.48 (11) 118.90 (12) -65.99 (14) 2.02 (18) -177.74 (10) 7.0 (2) -173.27 (13) -112.97 (18) 66.78 (16) 125.94 (19) -54.31 (18) -117.71 (12) 66.42 (15)
$\begin{array}{r} -0.10\ (17)\\ -173.88\ (10)\\ 0.68\ (17)\\ 175.68\ (9)\\ -0.51\ (17)\\ -175.32\ (10)\\ -0.24\ (17)\\ -176.02\ (10)\\ -0.59\ (17)\\ 173.45\ (10)\\ 0.77\ (17)\\ 176.41\ (10)\\ 127.36\ (11)\\ -58.51\ (14) \end{array}$	$\begin{array}{c} 01 &C11 &C12 &C13\\ C2 &C3 &O3 &C31\\ C4 &C3 &O3 &C31\\ C3 &O3 &C31 &O31\\ C3 &O3 &C31 &C32\\ O31 &C31 &C32 &C35\\ O31 &C31 &C32 &C34\\ O3 &C31 &C32 &C34\\ O31 &C31 &C32 &C33\\ O3 &C31 &C32 &C33\\ O3 &C31 &C32 &C33\\ O3 &C31 &C32 &C33\\ C4 &C5 &O5 &C51\\ C6 &C5 &O5 &C51\\ C5 &O5 &C51 &O51\\ \end{array}$	79.48 (11) 118.90 (12) -65.99 (14) 2.02 (18) -177.74 (10) 7.0 (2) -173.27 (13) -112.97 (18) 66.78 (16) 125.94 (19) -54.31 (18) -117.71 (12) 66.42 (15) -1.3 (2)
$\begin{array}{r} -0.10\ (17)\\ -173.88\ (10)\\ 0.68\ (17)\\ 175.68\ (9)\\ -0.51\ (17)\\ -175.32\ (10)\\ -0.24\ (17)\\ -176.02\ (10)\\ -0.59\ (17)\\ 173.45\ (10)\\ 0.77\ (17)\\ 176.41\ (10)\\ 127.36\ (11)\\ -58.51\ (14)\\ -4.65\ (16) \end{array}$	$\begin{array}{c} 01 - C11 - C12 - C13\\ C2 - C3 - 03 - C31\\ C4 - C3 - 03 - C31\\ C3 - 03 - C31 - 031\\ C3 - 03 - C31 - C32\\ 031 - C31 - C32 - C35\\ 03 - C31 - C32 - C35\\ 031 - C31 - C32 - C34\\ 03 - C31 - C32 - C34\\ 031 - C31 - C32 - C33\\ C31 - C32 - C33\\ C31 - C32 - C33\\ C4 - C5 - 05 - C51\\ C6 - C5 - 05 - C51\\ C5 - 05 - C51 - C51\\ C5 - 05 - C51 - C52\\ \end{array}$	$79.48 (11) \\118.90 (12) \\-65.99 (14) \\2.02 (18) \\-177.74 (10) \\7.0 (2) \\-173.27 (13) \\-112.97 (18) \\66.78 (16) \\125.94 (19) \\-54.31 (18) \\-117.71 (12) \\66.42 (15) \\-1.3 (2) \\177.76 (10)$
$\begin{array}{c} -0.10\ (17)\\ -173.88\ (10)\\ 0.68\ (17)\\ 175.68\ (9)\\ -0.51\ (17)\\ -175.32\ (10)\\ -0.24\ (17)\\ -176.02\ (10)\\ -0.59\ (17)\\ 173.45\ (10)\\ 0.77\ (17)\\ 176.41\ (10)\\ 127.36\ (11)\\ -58.51\ (14)\\ -4.65\ (16)\\ 177.63\ (10)\end{array}$	$\begin{array}{c} 01 - C11 - C12 - C13\\ C2 - C3 - 03 - C31\\ C4 - C3 - 03 - C31\\ C3 - 03 - C31 - 031\\ C3 - 03 - C31 - C32\\ 031 - C31 - C32 - C35\\ 03 - C31 - C32 - C35\\ 031 - C31 - C32 - C34\\ 03 - C31 - C32 - C34\\ 031 - C31 - C32 - C33\\ 03 - C31 - C32 - C33\\ C4 - C5 - 05 - C51\\ C6 - C5 - 05 - C51\\ C5 - 05 - C51 - C52\\ 051 - C51 - C52 - C55\\ \end{array}$	$79.48 (11) \\ 118.90 (12) \\ -65.99 (14) \\ 2.02 (18) \\ -177.74 (10) \\ 7.0 (2) \\ -173.27 (13) \\ -112.97 (18) \\ 66.78 (16) \\ 125.94 (19) \\ -54.31 (18) \\ -117.71 (12) \\ 66.42 (15) \\ -1.3 (2) \\ 177.76 (10) \\ -20.2 (2) \\ $
$\begin{array}{r} -0.10\ (17)\\ -173.88\ (10)\\ 0.68\ (17)\\ 175.68\ (9)\\ -0.51\ (17)\\ -175.32\ (10)\\ -0.24\ (17)\\ -176.02\ (10)\\ -0.59\ (17)\\ 173.45\ (10)\\ 0.77\ (17)\\ 176.41\ (10)\\ 127.36\ (11)\\ -58.51\ (14)\\ -4.65\ (16)\\ 177.63\ (10)\\ 141.50\ (13)\end{array}$	$\begin{array}{c} 01 - C11 - C12 - C13\\ C2 - C3 - 03 - C31\\ C4 - C3 - 03 - C31\\ C3 - 03 - C31 - 031\\ C3 - 03 - C31 - C32\\ 031 - C31 - C32 - C35\\ 03 - C31 - C32 - C35\\ 031 - C31 - C32 - C34\\ 03 - C31 - C32 - C34\\ 031 - C31 - C32 - C33\\ 03 - C31 - C32 - C33\\ C4 - C5 - 05 - C51\\ C6 - C5 - 05 - C51\\ C5 - 05 - C51 - C52\\ 051 - C51 - C52 - C55\\ 05 - C51 - C52 - C55\\ \end{array}$	$79.48 (11) \\118.90 (12) \\-65.99 (14) \\2.02 (18) \\-177.74 (10) \\7.0 (2) \\-173.27 (13) \\-112.97 (18) \\66.78 (16) \\125.94 (19) \\-54.31 (18) \\-117.71 (12) \\66.42 (15) \\-1.3 (2) \\177.76 (10) \\-20.2 (2) \\160.80 (12) \\$
$\begin{array}{r} -0.10\ (17)\\ -173.88\ (10)\\ 0.68\ (17)\\ 175.68\ (9)\\ -0.51\ (17)\\ -175.32\ (10)\\ -0.24\ (17)\\ -176.02\ (10)\\ -0.59\ (17)\\ 173.45\ (10)\\ 0.77\ (17)\\ 176.41\ (10)\\ 127.36\ (11)\\ -58.51\ (14)\\ -4.65\ (16)\\ 177.63\ (10)\\ 141.50\ (13)\\ -40.87\ (13)\end{array}$	$\begin{array}{c} 01 - C11 - C12 - C13\\ C2 - C3 - 03 - C31\\ C4 - C3 - 03 - C31\\ C3 - 03 - C31 - 031\\ C3 - 03 - C31 - C32\\ 031 - C31 - C32 - C35\\ 03 - C31 - C32 - C35\\ 031 - C31 - C32 - C34\\ 03 - C31 - C32 - C34\\ 031 - C31 - C32 - C33\\ 03 - C31 - C32 - C33\\ C4 - C5 - 05 - C51\\ C6 - C5 - 05 - C51\\ C5 - 05 - C51 - C52\\ 051 - C51 - C52 - C55\\ 05 - C51 - C52 - C55\\ 051 - C51 - C52 - C53\\ \end{array}$	$79.48 (11) \\118.90 (12) \\-65.99 (14) \\2.02 (18) \\-177.74 (10) \\7.0 (2) \\-173.27 (13) \\-112.97 (18) \\66.78 (16) \\125.94 (19) \\-54.31 (18) \\-117.71 (12) \\66.42 (15) \\-1.3 (2) \\177.76 (10) \\-20.2 (2) \\160.80 (12) \\99.26 (18) \\$
$\begin{array}{c} -0.10\ (17)\\ -173.88\ (10)\\ 0.68\ (17)\\ 175.68\ (9)\\ -0.51\ (17)\\ -175.32\ (10)\\ -0.24\ (17)\\ -176.02\ (10)\\ -0.59\ (17)\\ 173.45\ (10)\\ 0.77\ (17)\\ 176.41\ (10)\\ 127.36\ (11)\\ -58.51\ (14)\\ -4.65\ (16)\\ 177.63\ (10)\\ 141.50\ (13)\\ -40.87\ (13)\\ 20.96\ (17) \end{array}$	$\begin{array}{c} 01 - C11 - C12 - C13\\ C2 - C3 - 03 - C31\\ C4 - C3 - 03 - C31\\ C3 - 03 - C31 - 031\\ C3 - 03 - C31 - C32\\ 031 - C31 - C32 - C35\\ 03 - C31 - C32 - C35\\ 031 - C31 - C32 - C34\\ 03 - C31 - C32 - C34\\ 031 - C31 - C32 - C33\\ C31 - C32 - C33\\ C4 - C5 - 05 - C51\\ C6 - C5 - 05 - C51\\ C5 - 05 - C51 - C52\\ 051 - C51 - C52 - C55\\ 05 - C51 - C52 - C55\\ 051 - C51 - C52 - C53\\ 05 -$	$79.48 (11) \\118.90 (12) \\-65.99 (14) \\2.02 (18) \\-177.74 (10) \\7.0 (2) \\-173.27 (13) \\-112.97 (18) \\66.78 (16) \\125.94 (19) \\-54.31 (18) \\-117.71 (12) \\66.42 (15) \\-1.3 (2) \\177.76 (10) \\-20.2 (2) \\160.80 (12) \\99.26 (18) \\-79.78 (14)$
$\begin{array}{c} -0.10\ (17)\\ -173.88\ (10)\\ 0.68\ (17)\\ 175.68\ (9)\\ -0.51\ (17)\\ -175.32\ (10)\\ -0.24\ (17)\\ -176.02\ (10)\\ -0.59\ (17)\\ 173.45\ (10)\\ 0.77\ (17)\\ 176.41\ (10)\\ 127.36\ (11)\\ -58.51\ (14)\\ -4.65\ (16)\\ 177.63\ (10)\\ 141.50\ (13)\\ -40.87\ (13)\\ 20.96\ (17)\\ -161.40\ (9) \end{array}$	$\begin{array}{c} 01 - C11 - C12 - C13\\ C2 - C3 - 03 - C31\\ C4 - C3 - 03 - C31\\ C3 - 03 - C31 - 031\\ C3 - 03 - C31 - 032\\ O31 - C31 - C32 - C35\\ O3 - C31 - C32 - C34\\ O3 - C31 - C32 - C34\\ O3 - C31 - C32 - C34\\ O31 - C31 - C32 - C33\\ O3 - C31 - C32 - C33\\ O3 - C31 - C32 - C33\\ O3 - C31 - C32 - C33\\ C4 - C5 - 05 - C51\\ C6 - C5 - 05 - C51\\ C5 - 05 - C51 - C52\\ O51 - C51 - C52 - C55\\ O5 - C51 - C52 - C55\\ O51 - C51 - C52 - C53\\ O5 - C51 - C52 - C54\\ \end{array}$	$79.48 (11) \\ 118.90 (12) \\ -65.99 (14) \\ 2.02 (18) \\ -177.74 (10) \\ 7.0 (2) \\ -173.27 (13) \\ -112.97 (18) \\ 66.78 (16) \\ 125.94 (19) \\ -54.31 (18) \\ -117.71 (12) \\ 66.42 (15) \\ -1.3 (2) \\ 177.76 (10) \\ -20.2 (2) \\ 160.80 (12) \\ 99.26 (18) \\ -79.78 (14) \\ -141.04 (17) \\ $
$\begin{array}{r} -0.10\ (17)\\ -173.88\ (10)\\ 0.68\ (17)\\ 175.68\ (9)\\ -0.51\ (17)\\ -175.32\ (10)\\ -0.24\ (17)\\ -176.02\ (10)\\ -0.59\ (17)\\ 173.45\ (10)\\ 0.77\ (17)\\ 176.41\ (10)\\ 127.36\ (11)\\ -58.51\ (14)\\ -4.65\ (16)\\ 177.63\ (10)\\ 141.50\ (13)\\ -40.87\ (13)\\ 20.96\ (17)\\ -161.40\ (9)\\ -98.15\ (14)\end{array}$	$\begin{array}{c} 01 - C11 - C12 - C13\\ C2 - C3 - 03 - C31\\ C4 - C3 - 03 - C31\\ C3 - 03 - C31 - 031\\ C3 - 03 - C31 - C32\\ 031 - C31 - C32 - C35\\ 03 - C31 - C32 - C35\\ 031 - C31 - C32 - C34\\ 03 - C31 - C32 - C33\\ C4 - C5 - 05 - C51\\ C6 - C5 - 05 - C51\\ C5 - 05 - C51 - C52\\ 051 - C51 - C52 - C55\\ 05 - C51 - C52 - C55\\ 051 - C51 - C52 - C53\\ 05 - C51 - C52 - C54\\ 05 - C51 - C52 - C54\\ \end{array}$	$79.48 (11) \\118.90 (12) \\-65.99 (14) \\2.02 (18) \\-177.74 (10) \\7.0 (2) \\-173.27 (13) \\-112.97 (18) \\66.78 (16) \\125.94 (19) \\-54.31 (18) \\-117.71 (12) \\66.42 (15) \\-1.3 (2) \\177.76 (10) \\-20.2 (2) \\160.80 (12) \\99.26 (18) \\-79.78 (14) \\-141.04 (17) \\39.92 (15) \\$
	109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 118.41 (9) 122.71 (12) 126.27 (12) 111.01 (11) 109.94 (14)	109.5 $C52-C53-H53A$ 109.5 $C52-C53-H53B$ 109.5 $H53A-C53-H53B$ 109.5 $C52-C53-H53C$ 109.5 $H53A-C53-H53C$ 109.5 $H53B-C53-H53C$ 109.5 $H53B-C53-H53C$ 109.5 $C52-C54-H54A$ 109.5 $C52-C54-H54B$ 109.5 $C52-C54-H54B$ 109.5 $C52-C54-H54B$ 109.5 $C52-C54-H54C$ 109.5 $H54A-C54-H54C$ 109.5 $H54B-C54-H54C$ 109.5 $H54B-C54-H54C$ 109.5 $H54B-C54-H54C$ 109.5 $C52-C55-H55A$ 118.41 (9) $C52-C55-H55B$ 122.71 (12) $H55A-C55-H55C$ 111.01 (11) $H55A-C55-H55C$ 111.01 (11) $H55B-C55-H55C$ 109.94 (14) $H55B-C55-H55C$

Hydrogen-bond geometry (Å, °)

D—Н

 $H \cdots A$

 $D \cdots A$

D—H···A

supporting information

C13—H13 B ···Cg1 ⁱ	0.96	2.82	3.7608 (16)	168	

Symmetry code: (i) -x, -y+1, -z+1.