Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-Cyclohexyl-2-thioxo-1,3-thiazolidin-4one

Durre Shahwar,^a M. Nawaz Tahir,^b* Asma Yasmeen,^a Naeem Ahmad^a and Muhammad Akmal Khan^a

^aDepartment of Chemistry, Government College University, Lahore, Pakistan, and ^bDepartment of Physics, University of Sargodha, Sargodha, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 1 November 2009; accepted 1 November 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.034; wR factor = 0.096; data-to-parameter ratio = 18.3.

In the title compound, $C_9H_{13}NOS_2$, the complete molecule is generated by crystallographic mirror symmetry, with all the non-H atoms of the rhodanine (2-thioxo-1,3-thiazolidin-4one) system and two C atoms of the cyclohexyl ring lying on the reflecting plane. The conformation is stabilized by intramolecular C-H···O and C-H···S interactions. In the crystal, weak π - π interactions at a distance of 3.8140 (5) Å between the centroids of the heterocyclic rings occur.

Related literature

For related structures, see: Shahwar *et al.* (2009*a*,*b*,*c*,*d*). For graph-set notation, see: Bernstein *et al.* (1995).

Experimental

Crystal data

 $C_9H_{13}NOS_2$ $M_r = 215.32$ Monoclinic, $P2_1/m$ a = 7.3897 (3) Å b = 7.0999 (4) Å

 $0.36 \times 0.25 \times 0.23 \text{ mm}$

5969 measured reflections 1390 independent reflections 1194 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.028$

 $\mu = 0.48 \text{ mm}^{-1}$ T = 296 K

Data collection

Bruker Kappa APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\min} = 0.849, \ T_{\max} = 0.897$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.034 & \text{H atoms treated by a mixture of} \\ wR(F^2) = 0.096 & \text{independent and constrained} \\ S = 1.07 & \text{refinement} \\ 1390 \text{ reflections} & \Delta\rho_{\max} = 0.43 \text{ e } \text{\AA}^{-3} \\ 76 \text{ parameters} & \Delta\rho_{\min} = -0.23 \text{ e } \text{\AA}^{-3} \end{array}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C4−H4···S2 C5−H51···O1	0.98 0.97	2.61 2.51	3.158 (2) 3.095 (2)	115 119

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

DS is grateful to Government College University, Lahore, for providing funds under the GCU funded Research Projects Programme.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5207).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Shahwar, D., Tahir, M. N., Raza, M. A. & Iqbal, B. (2009a). Acta Cryst. E65, 02903.
- Shahwar, D., Tahir, M. N., Raza, M. A., Iqbal, B. & Naz, S. (2009*b*). *Acta Cryst.* E**65**, o2637.
- Shahwar, D., Tahir, M. N., Raza, M. A., Saddaf, M. & Majeed, S. (2009c). Acta Cryst. E65, 02638.
- Shahwar, D., Tahir, M. N., Yasmeen, A., Ahmad, N. & Khan, M. A. (2009d). Acta Cryst. E65, 03014.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, o3015 [doi:10.1107/S1600536809045851]

3-Cyclohexyl-2-thioxo-1,3-thiazolidin-4-one

Durre Shahwar, M. Nawaz Tahir, Asma Yasmeen, Naeem Ahmad and Muhammad Akmal Khan

S1. Comment

Our group is involved in synthesizing various rhodanine derivatives for beta-lactamase and xanthine oxidase enzyme inhibition studies. In this context, we have already reported the preparation and crystal structures of (II) (5*Z*)-5-(2-Hy-droxybenzylidene)-3-phenyl-2-thioxo-1,3- thiazolidin-4-one (Shahwar *et al.*, 2009*a*), (III) (5*E*)-5-(4-Hydroxy-3-meth-oxybenzylidene)-2-thioxo-1, 3-thiazolidin-4-one methanol monosolvate (Shahwar *et al.*, 2009*b*), (IV) (5*Z*)-5-(2-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one methanol hemisolvate (Shahwar *et al.*, 2009*c*) and (V) 3-(2-Methyl-phenyl)-2-thioxo-1,3-thiazolidin-4-one (Shahwar *et al.*, 2009d). The title compound (I, Fig. 1) is in continuation of synthesizing rhodanine derivatives for biological studies.

In (I), the rhodanine group A (N1/C1/S1/C1/C3/O1/S2) and the basal plane B (C5/C6/C5ⁱ/C6ⁱ; symmetry code: i = x, -y + 1/2, z) of cyclohexyl are planar and are perpendicularly oriented. The monomeric molecules are stabilized through intramolecular H-bondings (Table 1, Fig. 1) forming a S(5) and two S(6) ring motifs (Bernstein *et al.*, 1995). The apical C-atoms C4 and C7 of cyclohexyl are at a distance of 0.6430 (28) and -0.6667 (36) Å respectively, from the basal plane. There exist π - π interactions at a distance of 3.8140 (5) Å between the centroids of the heterocyclic rings.

S2. Experimental

The title compound was prepared by a three step reaction procedure. In the first step cyclohexylamine (9.9 g, 0.1 mol) and triethylamine (50.5 g, 0.5 mol) were stirred in ethanol (20 ml) followed by dropwise addition of CS_2 (15.2 g, 0.2 mol) while keeping the flask in an ice bath. The precipitate obtained were filtered off and washed with diethyl ether.

In second step, a solution of sodium chloroacetate (11.6 g, 0.1 mol) and chloroacetic acid (18.9 g, 0.2 mol) was prepared in 50 ml distilled water. To this solution the precipitates obtained in first step were added gradually and stirred at 273 K. This mixture was stirred untill it turned clear yellow.

In third step the yellow mixture was mixed in 140 ml hot (363–368 K) hydrochloric acid (6 N) and stirred for five minutes to obtain colorless crystalline precipitates. These precipitates were recrystalized in chloroform to get colourless prisms of (I).

S3. Refinement

The coordinates of H2 were refined. The other H-atoms were positioned geometrically (C–H = 0.97–0.98 Å) and refined as riding with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

View of (I) with displacement ellipsoids drawn at the 50% probability level. The dotted lines represen the intramolecular H-bonds.

3-Cyclohexyl-2-thioxo-1,3-thiazolidin-4-one

Crystal data

C₉H₁₃NOS₂ $M_r = 215.32$ Monoclinic, $P2_1/m$ Hall symbol: -P 2yb a = 7.3897 (3) Å b = 7.0999 (4) Å c = 10.3399 (5) Å $\beta = 107.535$ (2)° V = 517.29 (4) Å³ Z = 2

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 7.40 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.849, T_{\max} = 0.897$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.096$ S = 1.071390 reflections F(000) = 228 $D_x = 1.382 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1390 reflections $\theta = 2.9-28.4^{\circ}$ $\mu = 0.48 \text{ mm}^{-1}$ T = 296 KPrism, colourless $0.36 \times 0.25 \times 0.23 \text{ mm}$

5969 measured reflections 1390 independent reflections 1194 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 28.4^{\circ}, \theta_{min} = 2.9^{\circ}$ $h = -9 \rightarrow 9$ $k = -9 \rightarrow 9$ $l = -13 \rightarrow 12$

76 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.0474P)^2 + 0.1418P]$
neighbouring sites	where $P = (F_o^2 + 2F_c^2)/3$
H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} < 0.001$
and constrained refinement	$\Delta \rho_{\rm max} = 0.43 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	X	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	0.01379 (9)	0.25000	0.58014 (6)	0.0511 (2)
S2	0.41214 (8)	0.25000	0.58341 (6)	0.0543 (2)
O1	-0.1794 (2)	0.25000	0.19333 (18)	0.0591 (6)
N1	0.1088 (2)	0.25000	0.35969 (16)	0.0351 (4)
C1	0.1866 (3)	0.25000	0.4967 (2)	0.0363 (5)
C2	-0.1778 (3)	0.25000	0.4253 (3)	0.0477 (7)
C3	-0.0908 (3)	0.25000	0.3109 (2)	0.0412 (6)
C4	0.2266 (2)	0.25000	0.26546 (19)	0.0356 (5)
C5	0.1971 (2)	0.0715 (2)	0.18098 (16)	0.0450 (4)
C6	0.3246 (2)	0.0739 (3)	0.08896 (17)	0.0527 (5)
C7	0.2925 (4)	0.25000	0.0025 (3)	0.0590 (8)
H2	-0.255 (2)	0.142 (3)	0.4183 (17)	0.0573*
H4	0.35945	0.25000	0.32201	0.0427*
H51	0.06529	0.06226	0.12627	0.0540*
H52	0.22695	-0.03748	0.24022	0.0540*
H61	0.45638	0.06820	0.14408	0.0633*
H62	0.29826	-0.03620	0.03070	0.0633*
H71	0.16366	0.25000	-0.05835	0.0707*
H72	0.37843	0.25000	-0.05230	0.0707*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
S 1	0.0636 (4)	0.0480 (3)	0.0539 (3)	0.0000	0.0361 (3)	0.0000	
S2	0.0461 (3)	0.0671 (4)	0.0438 (3)	0.0000	0.0046 (2)	0.0000	
01	0.0307 (7)	0.0850 (13)	0.0582 (10)	0.0000	0.0084 (7)	0.0000	
N1	0.0300 (7)	0.0394 (8)	0.0382 (8)	0.0000	0.0138 (6)	0.0000	
C1	0.0431 (9)	0.0288 (8)	0.0401 (10)	0.0000	0.0173 (8)	0.0000	
C2	0.0417 (10)	0.0390 (11)	0.0722 (15)	0.0000	0.0318 (10)	0.0000	
C3	0.0303 (8)	0.0395 (10)	0.0554 (12)	0.0000	0.0153 (8)	0.0000	
C4	0.0273 (7)	0.0445 (10)	0.0365 (9)	0.0000	0.0121 (7)	0.0000	

supporting information

C7	0.0561 (13)	0.0816 (18)	0.0456 (12)	0.0000	0.0230(10)	0.0000
	0.05(1.(10))	0.001((10))	0.045((12))	0.0000	0.0250(10)	0.0000
C6	0.0485 (8)	0.0602 (10)	0.0554 (9)	0.0028 (7)	0.0246 (7)	-0.0120 (8)
C5	0.0444 (7)	0.0422 (8)	0.0528 (8)	0.0012 (6)	0.0213 (6)	-0.0023 (6)

Geometric parameters (Å, °)

S1—C1	1.743 (2)	C6—C7	1.514 (3)
S1—C2	1.789 (3)	C2—H2	0.95 (2)
S2—C1	1.637 (2)	C2—H2 ⁱ	0.95 (2)
O1—C3	1.195 (3)	C4—H4	0.9800
N1—C1	1.359 (3)	C5—H51	0.9700
N1—C3	1.408 (3)	С5—Н52	0.9700
N1—C4	1.489 (2)	C6—H61	0.9700
C2—C3	1.507 (3)	С6—Н62	0.9700
C4—C5	1.5172 (18)	C7—H71	0.9700
$C4-C5^{i}$	1.5172 (18)	С7—Н72	0.9700
C5—C6	1.528 (2)		
C1—S1—C2	93.28 (11)	C3—C2—H2 ⁱ	109.3 (10)
C1—N1—C3	116.24 (17)	$H2-C2-H2^{i}$	108.4 (16)
C1—N1—C4	122.34 (16)	N1C4H4	107.00
C3—N1—C4	121.43 (15)	C5—C4—H4	107.00
S1—C1—S2	120.37 (12)	C5 ⁱ —C4—H4	107.00
S1—C1—N1	111.90 (16)	C4—C5—H51	110.00
S2—C1—N1	127.73 (17)	C4—C5—H52	110.00
S1—C2—C3	107.02 (16)	C6—C5—H51	110.00
O1—C3—N1	124.0 (2)	C6—C5—H52	110.00
O1—C3—C2	124.5 (2)	H51—C5—H52	108.00
N1—C3—C2	111.56 (18)	С5—С6—Н61	109.00
N1-C4-C5	111.45 (9)	С5—С6—Н62	109.00
N1-C4-C5 ⁱ	111.45 (9)	С7—С6—Н61	109.00
$C5-C4-C5^{i}$	113.30 (14)	С7—С6—Н62	109.00
C4—C5—C6	109.92 (13)	H61—C6—H62	108.00
C5—C6—C7	111.15 (17)	С6—С7—Н71	109.00
C6—C7—C6 ⁱ	111.4 (2)	С6—С7—Н72	109.00
S1—C2—H2	111.4 (11)	H71—C7—H72	108.00
S1-C2-H2 ⁱ	111.4 (11)	C6 ⁱ —C7—H71	109.00
С3—С2—Н2	109.3 (10)	C6 ⁱ —C7—H72	109.00
C2—S1—C1—S2	180.00 (1)	C4—N1—C3—C2	180.00 (1)
C2—S1—C1—N1	0.00(1)	C1—N1—C4—C5	116.17 (11)
C1—S1—C2—C3	0.00(1)	C3—N1—C4—C5	-63.83 (11)
C3—N1—C1—S1	0.00(1)	S1—C2—C3—O1	180.00 (1)
C3—N1—C1—S2	180.00(1)	S1—C2—C3—N1	0.00(1)
C4—N1—C1—S1	180.00(1)	N1-C4-C5-C6	-178.24 (13)
C4—N1—C1—S2	0.00(1)	C5 ⁱ C4C5C6	55.10 (17)
C1—N1—C3—O1	180.00 (1)	C4—C5—C6—C7	-54.99 (19)

supporting information

C1—N1—C3—C2	0.00 (1)	C5-C6-C7-C6 ⁱ	56.9 (2)
C4—N1—C3—O1	0.00 (1)		

Symmetry code: (i) x, -y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C4—H4…S2	0.98	2.61	3.158 (2)	115
C5—H51…O1	0.97	2.51	3.095 (2)	119