Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

(2E)-3-(4-Bromophenyl)-1-(3-chloro-phenyl)prop-2-en-1-one

Jerry P. Jasinski, ${ }^{\text {a* }}$ Ray J. Butcher, ${ }^{\text {b }}$ B. Narayana, ${ }^{\text {c }}$ K. Veena ${ }^{c}$ and H. S. Yathirajan ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ${ }^{\text {b }}$ Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, ${ }^{\text {c }}$ Department of Studies in Chemistry, Mangalore University, Manalaganotri, 574 199, India, and ${ }^{\text {d Department of Studies in }}$ Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India Correspondence e-mail: jjasinski@keene.edu

Received 5 December 2009; accepted 11 December 2009
Key indicators: single-crystal X-ray study; $T=110 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.058 ; w R$ factor $=0.164 ;$ data-to-parameter ratio $=14.9$.

In the title compound, $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{BrClO}$, the dihedral angle between mean planes of the bromo- and chloro-substituted benzene rings is $46.2(2)^{\circ}$ compared to $45.20(9)^{\circ}$ in the structure with the Cl substituent in the meta position of the aromatic ring. The dihedral angles between the mean plane of the prop-2-ene-1-one group and the mean planes of the 4bromophenyl and 3-chlorophenyl rings are 28.7 (5) and $24.2(4)^{\circ}$, respectively. In the crystal, weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions occur.

Related literature

For a related structure, see: Ng et al. (2006).

Experimental

Crystal data
$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{BrClO}$
Triclinic, $P \overline{1}$
$M_{r}=321.59$ $a=5.9197$ (8) \AA

$$
\begin{aligned}
& b=7.3391(11) \AA \\
& c=14.8171(17) \AA \\
& \alpha=101.929(11)^{\circ} \\
& \beta=94.371(10)^{\circ} \\
& \gamma=93.299(11)^{\circ} \\
& V=626.22(15) \AA^{3}
\end{aligned}
$$

$Z=2$

$\mathrm{Cu} K \alpha$ radiation
$\mu=6.29 \mathrm{~mm}^{-1}$
$T=110 \mathrm{~K}$
$0.50 \times 0.21 \times 0.12 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur diffractometer with a Ruby Gemini detector
Absorption correction: analytical (CrysAlis RED; Oxford

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058 \quad 163$ parameters
$w R\left(F^{2}\right)=0.164 \quad \mathrm{H}$-atom parameters constrained
$S=1.07$
2432 reflections

Diffraction, 2007)
$T_{\text {min }}=0.041, T_{\text {max }}=0.344$
3868 measured reflections 2432 independent reflections 2312 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.037$
$\Delta \rho_{\text {max }}=1.78 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-1.29 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2 A-\mathrm{H} 2 A A \cdots C 2^{\mathrm{i}}$	0.95	2.97	$3.588(4)$	124
C5A-H5AA $\cdots \mathrm{Cg}^{\text {ii }}$	0.95	2.84	$3.463(4)$	124
C12A-H12A $\cdots \mathrm{Cg}^{\text {iii }}$	0.95	2.83	$3.527(4)$	131
Symmetry codes:	(i)	$-x+1,-y+1,-z+1 ;$	(ii) $-x,-y,-z+1 ;$	(iii)

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97) (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

KV thanksthe UGC for the sanction of a Junior Research Fellowship and for a SAP Chemical grant. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5130).

References

Ng, S.-L., Razak, I. A., Fun, H.-K., Shettigar, V., Patil, P. S. \& Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2175-o2177.

Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2010). E66, o158 [doi:10.1107/S1600536809053446]

(2E)-3-(4-Bromophenyl)-1-(3-chlorophenyl) prop-2-en-1-one

Jerry P. Jasinski, Ray J. Butcher, B. Narayana, K. Veena and H. S. Yathirajan

S1. Comment

In continuation of our interest in the synthesis and crystal structure determination of chalcones, the title chalcone, $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{BrClO}$, is synthesized and its crystal structure is reported.

The title compound, (I), is a chalcone derivative with 4-bromophenyl and 3-chlorophenyl rings bonded at the opposite ends of a propenone group, the biologically active region (Fig.1). The dihedral angle between mean planes of the chloro and bromo substituted benzene rings is $46.2(2)^{\circ}$ compared to $45.20(9)^{\circ}\left(\mathrm{Ng}\right.$ et al. (2006)) and $46.70(5)^{\circ}$ for a similar related molecule. The angles between the mean plane of the prop-2-ene-1-one group and the mean planes of the 4-bromophenyl and 3-chlorophenyl rings are $28.7(5)^{\circ}$ and $24.2(4)^{\circ}$ and respectively. This compares to $20.66(1)^{\circ}$ and $24.54(1)^{\circ}$ in the similar structure. While no classical hydrogen bonds are present, weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$-ring interactions are observed which contribute to the stability of crystal packing (Fig.2, Table 1).

S2. Experimental

$50 \% \mathrm{KOH}$ was added to a mixture of 3-chloroacetophenone (0.01 mol) and p-bromobenzaldehyde $(0.01 \mathrm{~mol})$ in 25 ml of ethanol (Scheme 2). The mixture was stirred for an hour at room temperature and the precipitate was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from ethyl acetate by slow evaporation method with the yield of the compound being 70% (m.p. $412-414 \mathrm{~K}$). Analytical data for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{BrClO}$:
Found (Calculated): C \%: 55.97 (56.02); H\%: 3.09 (3.13).

S3. Refinement

All of the H atoms were placed in calculated positions and then refined using the riding model with $\mathrm{C}-\mathrm{H}=0.95 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.17-1.21 U_{\text {eq }}(\mathrm{C})$.

Figure 1

Molecular structure of the title compound, $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{BrClO}$, showing the atom labeling scheme and 50% probability displacement ellipsoids.

Figure 2
Packing diagram of the title compound, (I), viewed down the a axis.

KOH

Figure 3
The formation of the title compound.

(2E)-3-(4-Bromophenyl)-1-(3-chlorophenyl)prop-2-en-1-one

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{BrClO}$
$M_{r}=321.59$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=5.9197$ (8) \AA
$b=7.3391$ (11) \AA
$c=14.8171$ (17) \AA
$\alpha=101.929(11)^{\circ}$
$\beta=94.371$ (10) ${ }^{\circ}$
$\gamma=93.299(11)^{\circ}$
$V=626.22(15) \AA^{3}$

Data collection

Oxford Diffraction Xcalibur
diffractometer with a Ruby Gemini detector
Radiation source: fine-focus sealed tube
Graphite monochromator
$Z=2$
$F(000)=320$
$D_{\mathrm{x}}=1.706 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 3370 reflections
$\theta=6.1-73.9^{\circ}$
$\mu=6.29 \mathrm{~mm}^{-1}$
$T=110 \mathrm{~K}$
Plate, colorless
$0.50 \times 0.21 \times 0.12 \mathrm{~mm}$

Detector resolution: 10.5081 pixels mm^{-1}
ω scans
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2007)
$T_{\text {min }}=0.041, T_{\text {max }}=0.344$
3868 measured reflections
2432 independent reflections
2312 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.164$
$S=1.07$
2432 reflections
163 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& \theta_{\max }=74.0^{\circ}, \theta_{\min }=6.1^{\circ} \\
& h=-7 \rightarrow 6 \\
& k=-9 \rightarrow 8 \\
& l=-18 \rightarrow 18
\end{aligned}
$$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1305 P)^{2}+0.5925 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=1.78 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.29 \mathrm{e} \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Br1A	$-0.10431(6)$	$0.72017(5)$	$0.94001(2)$	$0.0266(2)$
C11A	$0.58277(16)$	$-0.04318(14)$	$0.11075(6)$	$0.0269(3)$
O1A	$0.7080(5)$	$0.2207(4)$	$0.47588(19)$	$0.0270(6)$
C12A	$-0.0341(6)$	$0.5947(5)$	$0.7495(3)$	$0.0205(7)$
H12A	-0.1777	0.6408	0.7378	0.025^{*}
C1A	$0.3919(6)$	$0.1019(5)$	$0.3683(3)$	$0.0195(7)$
C2A	$0.5227(6)$	$0.0801(5)$	$0.2923(3)$	$0.0214(7)$
H2AA	0.6756	0.1315	0.2992	0.026^{*}
C11A	$0.0849(6)$	$0.5125(5)$	$0.6764(3)$	$0.0215(7)$
H11A	0.0215	0.5019	0.6146	0.026^{*}
C5A	$0.0776(6)$	$-0.0794(5)$	$0.2713(3)$	$0.0232(8)$
H5AA	-0.0727	-0.1364	0.2645	0.028^{*}
C10A	$0.2967(6)$	$0.4452(5)$	$0.6929(3)$	$0.0207(7)$
C8A	$0.3490(7)$	$0.2931(6)$	$0.5299(3)$	$0.0245(8)$
H8AA	0.1944	0.3044	0.5110	0.029^{*}
C14A	$0.2701(6)$	$0.5451(5)$	$0.8595(3)$	$0.0229(7)$
H14A	0.3318	0.5556	0.9216	0.027^{*}
C3A	$0.4245(6)$	$-0.0180(5)$	$0.2068(3)$	$0.0200(7)$
C15A	$0.3894(6)$	$0.4648(5)$	$0.7854(2)$	$0.0210(7)$
H15A	0.5352	0.4227	0.7974	0.025^{*}

C13A	$0.0594(7)$	$0.6090(5)$	$0.8404(2)$	$0.0200(7)$
C6A	$0.1690(6)$	$0.0229(5)$	$0.3577(3)$	$0.0214(7)$
H6AA	0.0799	0.0386	0.4091	0.026^{*}
C7A	$0.5018(6)$	$0.2071(5)$	$0.4605(2)$	$0.0213(7)$
C9A	$0.4280(6)$	$0.3546(5)$	$0.6187(3)$	$0.0210(7)$
H9AA	0.5826	0.3381	0.6351	0.025^{*}
C4A	$0.2037(6)$	$-0.0988(5)$	$0.1951(3)$	$0.0228(7)$
H4AA	0.1399	-0.1661	0.1360	0.027^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1A	$0.0240(3)$	$0.0339(3)$	$0.0202(3)$	$0.00673(19)$	$0.00381(18)$	$0.0001(2)$
C11A	$0.0292(5)$	$0.0316(5)$	$0.0200(5)$	$0.0051(4)$	$0.0061(3)$	$0.0036(4)$
O1A	$0.0217(13)$	$0.0343(15)$	$0.0224(14)$	$0.0029(12)$	$0.0001(10)$	$0.0010(11)$
C12A	$0.0183(16)$	$0.0213(17)$	$0.0211(17)$	$-0.0020(13)$	$-0.0003(13)$	$0.0044(14)$
C1A	$0.0205(17)$	$0.0196(17)$	$0.0191(17)$	$0.0030(13)$	$0.0014(13)$	$0.0057(13)$
C2A	$0.0207(17)$	$0.0211(17)$	$0.0213(17)$	$0.0032(14)$	$-0.0002(13)$	$0.0026(14)$
C11A	$0.0230(17)$	$0.0209(17)$	$0.0195(17)$	$-0.0015(14)$	$-0.0015(13)$	$0.0039(13)$
C5A	$0.0174(16)$	$0.0211(17)$	$0.030(2)$	$-0.0020(13)$	$-0.0039(14)$	$0.0061(15)$
C10A	$0.0222(18)$	$0.0199(17)$	$0.0194(17)$	$-0.0032(14)$	$-0.0003(14)$	$0.0050(13)$
C8A	$0.0228(18)$	$0.0278(19)$	$0.0217(18)$	$0.0016(14)$	$0.0005(14)$	$0.0033(15)$
C14A	$0.0227(18)$	$0.0233(18)$	$0.0213(17)$	$-0.0006(14)$	$-0.0019(14)$	$0.0036(14)$
C3A	$0.0201(17)$	$0.0211(18)$	$0.0197(17)$	$0.0058(13)$	$0.0029(13)$	$0.0047(14)$
C15A	$0.0179(16)$	$0.0258(18)$	$0.0192(17)$	$0.0022(13)$	$0.0018(13)$	$0.0045(14)$
C13A	$0.0252(18)$	$0.0181(17)$	$0.0155(17)$	$0.0027(14)$	$0.0045(14)$	$-0.0006(13)$
C6A	$0.0208(17)$	$0.0239(18)$	$0.0208(18)$	$0.0013(14)$	$0.0034(13)$	$0.0075(14)$
C7A	$0.0239(17)$	$0.0218(17)$	$0.0187(17)$	$0.0006(14)$	$0.0017(14)$	$0.0061(14)$
C9A	$0.0203(17)$	$0.0208(17)$	$0.0218(18)$	$-0.0003(14)$	$0.0008(14)$	$0.0055(14)$
C4A	$0.0240(18)$	$0.0218(17)$	$0.0203(17)$	$0.0035(14)$	$-0.0043(14)$	$0.0008(14)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Br} 1 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A}$	$1.896(4)$	$\mathrm{C} 5 \mathrm{~A}-\mathrm{H} 5 \mathrm{AA}$	0.9500
$\mathrm{C} 11 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$1.747(4)$	$\mathrm{C} 10 \mathrm{~A}-\mathrm{C} 15 \mathrm{~A}$	$1.413(5)$
$\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$	$1.219(5)$	$\mathrm{C} 10 \mathrm{~A}-\mathrm{C} 9 \mathrm{~A}$	$1.463(5)$
$\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}$	$1.388(6)$	$\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 9 \mathrm{~A}$	$1.339(5)$
$\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A}$	$1.398(5)$	$\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$	$1.487(5)$
$\mathrm{C} 12 \mathrm{~A}-\mathrm{H} 12 \mathrm{~A}$	0.9500	$\mathrm{C} 8 \mathrm{~A}-\mathrm{H} 8 \mathrm{AA}$	0.9500
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$	$1.395(5)$	$\mathrm{C} 14 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A}$	$1.387(5)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$1.402(5)$	$\mathrm{C} 14 \mathrm{~A}-\mathrm{C} 15 \mathrm{~A}$	$1.396(5)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$	$1.503(5)$	$\mathrm{C} 14 \mathrm{~A}-\mathrm{H} 14 \mathrm{~A}$	0.9500
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$1.387(5)$	$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$1.387(5)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{AA}$	0.9500	$\mathrm{C} 15 \mathrm{~A}-\mathrm{H} 15 \mathrm{~A}$	0.9500
$\mathrm{C} 11 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}$	$1.396(5)$	$\mathrm{C} 6 \mathrm{~A}-\mathrm{H} 6 \mathrm{AA}$	0.9500
$\mathrm{C} 11 \mathrm{~A}-\mathrm{H} 11 \mathrm{~A}$	0.9500	$\mathrm{C} 9 \mathrm{~A}-\mathrm{H} 9 \mathrm{AA}$	0.9500
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$1.388(6)$	$\mathrm{C} 4 \mathrm{~A}-\mathrm{H} 4 \mathrm{AA}$	0.9500
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$	$1.395(5)$		

$\mathrm{C} 11 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A}$	119.4 (3)
C11A-C12A-H12A	120.3
$\mathrm{C} 13 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}-\mathrm{H} 12 \mathrm{~A}$	120.3
C6A-C1A-C2A	120.2 (3)
C6A-C1A-C7A	121.8 (3)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$	117.9 (3)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	118.7 (3)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{AA}$	120.7
C1A-C2A-H2AA	120.7
$\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}$	120.8 (3)
C12A-C11A-H11A	119.6
C10A-C11A-H11A	119.6
C4A-C5A-C6A	120.7 (3)
C4A-C5A-H5AA	119.6
C6A-C5A-H5AA	119.6
C11A-C10A-C15A	118.7 (4)
C11A-C10A-C9A	123.1 (3)
C15A-C10A-C9A	118.2 (3)
C9A-C8A-C7A	120.4 (4)
C9A-C8A-H8AA	119.8
C7A-C8A-H8AA	119.8
C13A-C14A-C15A	118.5 (3)
C13A-C14A-H14A	120.7
$\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	1.2 (5)
$\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	179.4 (3)
C13A-C12A-C11A-C10A	-0.4 (6)
C12A-C11A-C10A-C15A	-0.9 (6)
C12A-C11A-C10A-C9A	179.0 (3)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	-1.7 (5)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{Cl1A}$	178.8 (3)
C13A-C14A-C15A-C10A	-1.3 (6)
C11A-C10A-C15A-C14A	1.7 (6)
C9A-C10A-C15A-C14A	-178.1 (3)
C15A-C14A-C13A-C12A	0.0 (6)
C15A-C14A-C13A-Br1A	-179.5 (3)
C11A-C12A-C13A-C14A	0.8 (6)
C11A-C12A-C13A-Br1A	-179.7 (3)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	0.6 (5)

$\mathrm{C} 15 \mathrm{~A}-\mathrm{C} 14 \mathrm{~A}-\mathrm{H} 14 \mathrm{~A}$	120.7
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$122.0(3)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}$	$119.4(3)$
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}$	$118.6(3)$
$\mathrm{C} 14 \mathrm{~A}-\mathrm{C} 15 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}$	$121.1(3)$
$\mathrm{C} 14 \mathrm{~A}-\mathrm{C} 15 \mathrm{~A}-\mathrm{H} 15 \mathrm{~A}$	119.5
$\mathrm{C} 10 \mathrm{~A}-\mathrm{C} 15 \mathrm{~A}-\mathrm{H} 15 \mathrm{~A}$	119.5
C14A-C13A-C12A	$121.5(3)$
C14A-C13A-Br1A	$119.2(3)$
C12A-C13A-Br1A	$119.3(3)$
C1A-C6A-C5A	$119.6(3)$
C1A-C6A-H6AA	120.2
C5A-C6A-H6AA	120.2
O1A-C7A-C8A	$122.6(3)$
O1A-C7A-C1A	$120.2(3)$
C8A-C7A-C1A	$117.2(3)$
C8A-C9A-C10A	$125.6(4)$
C8A-C9A-H9AA	117.2
C10A-C9A-H9AA	117.2
C3A-C4A-C5A	$118.8(3)$
C3A-C4A-H4AA	120.6
C5A-C4A-H4AA	120.6

$\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	$-177.6(3)$
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	$-1.9(6)$
$\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A}$	$-14.5(6)$
$\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	$166.1(4)$
$\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A}$	$155.6(4)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A}$	$-22.6(5)$
$\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$	$-25.0(5)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$	$156.8(3)$
$\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}$	$178.5(3)$
$\mathrm{C} 11 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}-\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$	$-13.4(6)$
$\mathrm{C} 15 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}-\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$	$166.4(4)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	$0.4(5)$
$\mathrm{C} 11 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	$179.8(3)$
$\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$1.4(6)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)
Cg 1 is the centroid of the $\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$ ring and Cg 2 is the centroid of the $\mathrm{C} 10 \mathrm{~A}-\mathrm{C} 15 \mathrm{~A}$ ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2 A-\mathrm{H} 2 A A \cdots C g 2^{\mathrm{i}}$	0.95	2.97	$3.588(4)$	124

supporting information

$\mathrm{C} 5 A-\mathrm{H} 5 A A \cdots C g 2^{\mathrm{ii}}$	0.95	2.84	$3.463(4)$	124
$\mathrm{C} 12 A-\mathrm{H} 12 A \cdots C g 1^{\mathrm{iii}}$	0.95	2.83	$3.527(4)$	131

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x,-y,-z+1$; (iii) $-x,-y+1,-z+1$.

