

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Chloro-3-hydroxymethyl-6-methoxyquinoline

F. Nawaz Khan,^a S. Mohana Roopan,^a Venkatesha R. Hathwar^b and Seik Weng Ng^c*

^aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, ^bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 12 December 2009; accepted 15 December 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.041; wR factor = 0.108; data-to-parameter ratio = 17.0.

All the non-H atoms of the title compound, $C_{11}H_{10}CINO_2$, are roughly coplanar (r.m.s. deviation = 0.058 Å). In the crystal, adjacent molecules are linked by an $O-H \cdots N$ hydrogen bond, generating chains running along the *a* axis.

Related literature

Substituted quinoline-3-carbaldehydes are intermediates for annelation and functional group modification; for a review of the synthesis of quinolines by the Vilsmeier–Haack reaction, see: Meth-Cohn (1993).

Experimental

Crystal data $C_{11}H_{10}CINO_2$ $M_r = 223.65$

Monoclinic, $P2_1/n$ a = 6.9738 (3) Å
$$\begin{split} b &= 21.4668 \ (9) \text{ \AA} & \text{Mo } K\alpha \text{ radiation} \\ c &= 7.3479 \ (4) \text{ \AA} & \mu &= 0.34 \text{ mm}^{-1} \\ \beta &= 108.220 \ (5)^{\circ} & T &= 293 \text{ K} \\ V &= 1044.87 \ (8) \text{ \AA}^3 & 0.28 \times 0.21 \times 0.20 \text{ mm} \end{split}$$

Data collection

Z = 4

Bruker SMART area-detector diffractometer	11517 measured reflections 2348 independent reflections
Absorption correction: multi-scan	1487 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.035$
$T_{\min} = 0.910, \ T_{\max} = 0.935$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ 138 parameters $wR(F^2) = 0.108$ H-atom parameters constrainedS = 0.97 $\Delta \rho_{max} = 0.21 \text{ e} \text{ Å}^{-3}$ 2348 reflections $\Delta \rho_{min} = -0.25 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1\cdots N1^i$	0.82	2.16	2.913 (2)	153
Symmetry code: (i)	r ⊥ 1 µ 7			

Symmetry code: (i) x + 1, y, z.

Data collection: *SMART* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the Department of Science and Technology, India, for use of the diffraction facility at IISc under the IRHPA–DST program. FNK thanks the DST for Fast Track Proposal funding. We thank VIT University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5140).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

- Meth-Cohn, O. (1993). Heterocycles, 35, 539–557.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). publCIF. In preparation.

supporting information

Acta Cryst. (2010). E66, o201 [doi:10.1107/S1600536809054051]

2-Chloro-3-hydroxymethyl-6-methoxyquinoline

F. Nawaz Khan, S. Mohana Roopan, Venkatesha R. Hathwar and Seik Weng Ng

S1. Experimental

2-Chloro-8-methoxyquinoline-3-carbaldehyde (220 mg, 1 mmol), sodium borohydride (38 mg, 1 mmol) and a catalytic amount of montmorillonite K-10 were placed in a beaker. The contents were irradiated at 500 W for 5 min. The product was dissolved in ethyl acetate and the residue removed by filtration. The filtrate was subjected to column chromatography on silica, and ethyl acetate/petroleum ether was used as the eluant. The solvent was evaporated and the residue recrystallized from chloroform to give colorless crystals.

S2. Refinement

Hydrogen atoms were placed in calculated positions (C–H 0.93–0.97, O–H 0.82 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2-1.5U(C,O).

Figure 1

Anisotropic displacement ellipsoid plot (Barbour, 2001) of $C_{11}H_{10}CINO_2$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

2-Chloro-3-hydroxymethyl-6-methoxyquinoline

Crystal data	
$C_{11}H_{10}CINO_2$	Monoclinic, $P2_1/n$
$M_r = 223.65$	Hall symbol: -P 2yr

Mo *K* α radiation, $\lambda = 0.71073$ Å

 $\theta = 3.1 - 25.5^{\circ}$

 $\mu = 0.34 \text{ mm}^{-1}$

Block, colorless

 $0.28 \times 0.21 \times 0.20 \text{ mm}$

T = 293 K

Cell parameters from 1941 reflections

a = 6.9738 (3) Å b = 21.4668 (9) Å c = 7.3479 (4) Å $\beta = 108.220 (5)^{\circ}$ $V = 1044.87 (8) \text{ Å}^{3}$ Z = 4 F(000) = 464 $D_{x} = 1.422 \text{ Mg m}^{-3}$

Data collection

Bruker SMART area-detector	11517 measured reflections
diffractometer	2348 independent reflections
Radiation source: fine-focus sealed tube	1487 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.035$
φ and ω scans	$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 3.1^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 8$
(SADABS; Sheldrick, 1996)	$k = -26 \rightarrow 27$
$T_{\min} = 0.910, \ T_{\max} = 0.935$	$l = -9 \longrightarrow 9$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$wR(F^2) = 0.108$	neighbouring sites
S = 0.97	H-atom parameters constrained
2348 reflections	$w = 1/[\sigma^2(F_o^2) + (0.058P)^2]$
138 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.25 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C11	0.33210 (8)	0.65210 (2)	0.10064 (7)	0.0648 (2)
01	0.97027 (18)	0.59162 (7)	0.33602 (19)	0.0672 (4)
H1	1.0200	0.5790	0.2554	0.101*
O2	0.4314 (2)	0.29302 (7)	0.3876 (2)	0.0766 (5)
N1	0.2607 (2)	0.53770 (7)	0.16969 (18)	0.0446 (4)
C1	0.4061 (3)	0.57605 (8)	0.1763 (2)	0.0430 (4)
C2	0.6156 (2)	0.56246 (8)	0.2401 (2)	0.0408 (4)
C3	0.6650(2)	0.50291 (8)	0.2994 (2)	0.0437 (4)
H3	0.8004	0.4916	0.3461	0.052*
C4	0.5149 (2)	0.45775 (8)	0.2917 (2)	0.0390 (4)
C5	0.5600 (3)	0.39542 (9)	0.3483 (2)	0.0494 (5)
Н5	0.6935	0.3821	0.3926	0.059*
C6	0.4070 (3)	0.35449 (9)	0.3379 (2)	0.0526 (5)
C7	0.2053 (3)	0.37443 (9)	0.2741 (2)	0.0546 (5)
H7	0.1027	0.3463	0.2698	0.065*
C8	0.1583 (3)	0.43397 (9)	0.2189 (2)	0.0507 (5)
H8	0.0238	0.4463	0.1758	0.061*
C9	0.3120 (2)	0.47761 (8)	0.2261 (2)	0.0405 (4)

supporting information

C10	0.7702 (3)	0.61178 (9)	0.2442 (3)	0.0528 (5)	
H10A	0.7575	0.6240	0.1138	0.063*	
H10B	0.7430	0.6482	0.3103	0.063*	
C11	0.6296 (4)	0.26820 (11)	0.4324 (4)	0.0912 (8)	
H11A	0.6799	0.2747	0.3263	0.137*	
H11B	0.6264	0.2244	0.4573	0.137*	
H11C	0.7163	0.2887	0.5439	0.137*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0574 (3)	0.0603 (3)	0.0736 (4)	0.0151 (2)	0.0158 (3)	0.0111 (3)
01	0.0365 (8)	0.0931 (11)	0.0762 (9)	-0.0030 (7)	0.0235 (7)	-0.0079 (8)
O2	0.0887 (12)	0.0522 (9)	0.0807 (10)	0.0010 (8)	0.0147 (8)	0.0016 (7)
N1	0.0306 (8)	0.0591 (9)	0.0412 (8)	0.0057 (7)	0.0069 (6)	-0.0035 (7)
C1	0.0389 (10)	0.0539 (10)	0.0365 (9)	0.0122 (8)	0.0123 (8)	-0.0006 (8)
C2	0.0347 (9)	0.0573 (11)	0.0341 (8)	0.0033 (8)	0.0161 (7)	-0.0036 (8)
C3	0.0277 (9)	0.0628 (11)	0.0403 (9)	0.0106 (8)	0.0103 (7)	-0.0021 (8)
C4	0.0328 (9)	0.0524 (10)	0.0307 (8)	0.0059 (8)	0.0083 (7)	-0.0051 (7)
C5	0.0420 (11)	0.0593 (12)	0.0428 (10)	0.0127 (9)	0.0076 (8)	-0.0032 (9)
C6	0.0589 (13)	0.0534 (12)	0.0427 (10)	-0.0005 (9)	0.0119 (9)	-0.0073 (9)
C7	0.0504 (12)	0.0631 (13)	0.0476 (10)	-0.0115 (10)	0.0115 (9)	-0.0095 (9)
C8	0.0334 (10)	0.0698 (13)	0.0443 (10)	-0.0022 (9)	0.0056 (8)	-0.0093 (9)
C9	0.0334 (9)	0.0559 (11)	0.0304 (8)	0.0047 (8)	0.0070 (7)	-0.0069 (8)
C10	0.0433 (11)	0.0653 (12)	0.0547 (11)	0.0001 (9)	0.0223 (9)	0.0013 (10)
C11	0.113 (2)	0.0600 (14)	0.1016 (18)	0.0275 (14)	0.0342 (16)	0.0121 (13)

Geometric parameters (Å, °)

Cl1—C1	1.7496 (18)	C4—C9	1.411 (2)
O1—C10	1.414 (2)	C5—C6	1.366 (2)
01—H1	0.8200	С5—Н5	0.9300
O2—C6	1.366 (2)	C6—C7	1.403 (3)
O2—C11	1.421 (3)	С7—С8	1.350 (3)
N1-C1	1.295 (2)	С7—Н7	0.9300
N1-C9	1.368 (2)	C8—C9	1.412 (2)
C1—C2	1.418 (2)	C8—H8	0.9300
С2—С3	1.360 (2)	C10—H10A	0.9700
C2-C10	1.505 (2)	C10—H10B	0.9700
C3—C4	1.415 (2)	C11—H11A	0.9600
С3—Н3	0.9300	C11—H11B	0.9600
C4—C5	1.407 (2)	C11—H11C	0.9600
C10—O1—H1	109.5	C8—C7—C6	120.86 (18)
C6-02-C11	117.08 (18)	C8—C7—H7	119.6
C1—N1—C9	117.42 (14)	С6—С7—Н7	119.6
N1—C1—C2	126.53 (16)	C7—C8—C9	120.44 (17)
N1-C1-Cl1	115.57 (13)	С7—С8—Н8	119.8

C2—C1—Cl1	117.90 (14)	С9—С8—Н8	119.8
C3—C2—C1	115.52 (16)	N1—C9—C4	121.87 (16)
C3—C2—C10	123.17 (16)	N1—C9—C8	119.38 (15)
C1-C2-C10	121.30 (16)	C4—C9—C8	118.75 (16)
C2—C3—C4	121.42 (16)	O1—C10—C2	112.82 (16)
С2—С3—Н3	119.3	O1-C10-H10A	109.0
С4—С3—Н3	119.3	C2C10H10A	109.0
C5—C4—C9	119.71 (16)	O1-C10-H10B	109.0
C5—C4—C3	123.07 (16)	C2-C10-H10B	109.0
C9—C4—C3	117.21 (15)	H10A—C10—H10B	107.8
C6—C5—C4	119.79 (17)	O2-C11-H11A	109.5
С6—С5—Н5	120.1	O2—C11—H11B	109.5
С4—С5—Н5	120.1	H11A—C11—H11B	109.5
O2—C6—C5	125.23 (18)	O2—C11—H11C	109.5
O2—C6—C7	114.34 (18)	H11A—C11—H11C	109.5
C5—C6—C7	120.43 (18)	H11B—C11—H11C	109.5
C9—N1—C1—C2	-1.4 (2)	C4—C5—C6—C7	-1.1 (3)
C9—N1—C1—Cl1	179.45 (10)	O2—C6—C7—C8	-179.55 (16)
N1—C1—C2—C3	0.1 (2)	C5—C6—C7—C8	1.1 (3)
Cl1—C1—C2—C3	179.24 (12)	C6—C7—C8—C9	-0.6 (3)
N1-C1-C2-C10	-178.78 (16)	C1—N1—C9—C4	0.9 (2)
Cl1—C1—C2—C10	0.4 (2)	C1—N1—C9—C8	-179.17 (15)
C1—C2—C3—C4	1.7 (2)	C5—C4—C9—N1	179.93 (14)
C10—C2—C3—C4	-179.43 (15)	C3—C4—C9—N1	0.8 (2)
C2—C3—C4—C5	178.76 (15)	C5—C4—C9—C8	0.0 (2)
C2—C3—C4—C9	-2.1 (2)	C3—C4—C9—C8	-179.16 (14)
C9—C4—C5—C6	0.5 (2)	C7—C8—C9—N1	-179.89 (15)
C3—C4—C5—C6	179.60 (16)	C7—C8—C9—C4	0.1 (2)
C11—O2—C6—C5	-7.7 (3)	C3-C2-C10-O1	-6.8 (2)
C11—O2—C6—C7	173.00 (17)	C1-C2-C10-O1	171.94 (14)
C4—C5—C6—O2	179.68 (15)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O1—H1…N1 ⁱ	0.82	2.16	2.913 (2)	153

Symmetry code: (i) x+1, y, z.