Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

$N, N^{\prime}-B i s($ phenylsulfonyl)maleamide. Corrigendum

B. Thimme Gowda, ${ }^{\text {a* }}$ Sabine Foro, ${ }^{\text {b }}$ P. A. Suchetan ${ }^{\text {a }}$ and Hartmut Fuess ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ${ }^{\mathbf{b}}$ Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
Correspondence e-mail: gowdabt@yahoo.com
Received 1 March 2010; accepted 8 March 2010

The chemical name of the title compound in the paper by Gowda, Foro, Suchetan \& Fuess [Acta Cryst. (2010), E66, o187] is corrected.

In the paper by Gowda et al. (2010), the chemical name given in the Title should be for the trans rather than the cis isomer, i.e. the title should be ' N, N '-Bis(phenylsulfonyl)fumaramide'.

References

Gowda, B. T., Foro, S., Suchetan, P. A. \& Fuess, H. (2010). Acta Cryst. E66, o187.

Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

N, N^{\prime}-Bis(phenylsulfonyl)maleamide

B. Thimme Gowda, ${ }^{\text {a }}$ * Sabine Foro, ${ }^{\text {b }}$ P. A. Suchetan ${ }^{\text {a }}$ and Hartmut Fuess ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ${ }^{\mathbf{b}}$ Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany Correspondence e-mail: gowdabt@yahoo.com

Received 13 December 2009; accepted 14 December 2009

Key indicators: single-crystal X-ray study; $T=299 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.030 ; w R$ factor $=0.083$; data-to-parameter ratio $=14.2$.

Molecules of the title compound, $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$, show crystallographic inversion symmetry: there is one half-molecule in the asymmetric unit. The structure exhibits both intramolecular and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For our studies of the effect of ring and the side-chain substituents on the solid-state structures of N -aromatic sulfonamides, see: Gowda et al. $(2009,2010)$, Suchetan et al. (2009).

Experimental

Crystal data
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$
$M_{r}=394.41$
Monoclinic, $P 2_{1} / c$
$a=8.582$ (1) A
$b=5.1464$ (6) \AA
$c=19.691$ (4) \AA
$\beta=101.17$ (2) ${ }^{\circ}$
$V=853.2(2) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.35 \mathrm{~mm}^{-1}$
$T=299 \mathrm{~K}$
$0.48 \times 0.28 \times 0.22 \mathrm{~mm}$

Data collection
Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
Absorption correction: multi-scan (CrysAlis RED; Oxford

Diffraction, 2009)
$T_{\text {min }}=0.850, T_{\text {max }}=0.927$
3236 measured reflections
1720 independent reflections
1500 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.009$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.083$
$S=1.07$
H atoms treated by a mixture of independent and constrained refinement
1720 reflections
121 parameters
1 restraint
$\Delta \rho_{\max }=0.25$ e \AA^{-3}
$\Delta \rho_{\min }=-0.32 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{O}^{\mathrm{i}}$	$0.84(1)$	$2.35(2)$	$3.0254(19)$	$138(2)$
$\mathrm{N} 1-\mathrm{H} 1 N \cdots 1^{\mathrm{ii}}$	$0.84(1)$	$2.45(2)$	$3.1335(19)$	$139(2)$

Symmetry codes: (i) $x, y+1, z$; (ii) $-x+2,-y+1,-z+1$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

PA. thanks the Council of Scientific and Industrial Research, India, for the award of a research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5141).

References

Gowda, B. T., Foro, S., Suchetan, P. A. \& Fuess, H. (2009). Acta Cryst. E65, o2516.
Gowda, B. T., Foro, S., Suchetan, P. A. \& Fuess, H. (2010). Acta Cryst. E66, o181.
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Suchetan, P. A., Gowda, B. T., Foro, S. \& Fuess, H. (2009). Acta Cryst. E65, o3156.

supporting information

Acta Cryst. (2010). E66, o187 [doi:10.1107/S1600536809053811]

N, N^{\prime}-Bis(phenylsulfonyl)maleamide

B. Thimme Gowda, Sabine Foro, P. A. Suchetan and Hartmut Fuess

S1. Comment

Diaryl acylsulfonamides are known as potent antitumor agents against a broad spectrum of human tumor xenografts in nude mice. As part of a study of the effect of ring and the side chain substituents on the solid state structures of N aromatic sulfonamides (Gowda et al., 2009, 2010; Suchetan et al., 2009), in the present work, the structure of N, N-(Diphenylsulfonyl)maleamide (I) has been determined (Fig. 1).
The conformations of $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}=\mathrm{O}$ bonds in the amide fragments are trans to each other and the amide O atoms are anti to the H atoms attached to the adjacent C atoms, similar to that observed in N, N-(diphenylsulfonyl)succinamide (II) (Gowda et al., 2010). The molecule is bent at the S atoms with the $\mathrm{C}-\mathrm{SO}_{2}-\mathrm{NH}-\mathrm{C}(\mathrm{O})$ torsion angle of 66.1 (2) ${ }^{\circ}$ in (II), compared to the value of $65.2(2)^{\circ}$. The dihedral angle between the benzene ring and the $\mathrm{SO}_{2}-\mathrm{NH}-\mathrm{C}(\mathrm{O})-\mathrm{C}$ segment in the two halves of the molecule is $76.4(1)^{\circ}$, compared to the corresponding angle of 77.4 (1) ${ }^{\circ}$ in (II). The structure exhibits both the intramolecular and intermolecular hydrogen bonds. The series of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}(\mathrm{S})$ hydrogen bonds (Table 1) link the molecules into column like infinite chains parallel to a-axis (Fig. 2).

S2. Experimental

N, N-(Diphenylsulfonyl)maleamide was prepared by refluxing a mixture of maleic anhydride (0.01 mol), benzenesulfonamide $(0.02 \mathrm{~mol})$ and POCl 3 for 3 hr on a water bath. The reaction mixture was allowed to cool. Ether was added to it. The solid product obtained was filtered off, washed thoroughly with ether and hot alcohol and recrystallized to the constant melting point of $255-259^{\circ} \mathrm{C}$
Rod like single crystals used in the X-ray diffraction studies were obtained from a solution of the compound in DMF.

S3. Refinement

The H atom of the NH group was located in difference map and later restrained to $\mathrm{N}-\mathrm{H}=0.86$ (1) \AA. The other H atoms were positioned with idealized geometry using a riding model with $\mathrm{C}-\mathrm{H}=0.93 \AA$. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the U_{eq} of the parent atom.

Figure 1
Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50\% probability level.

Figure 2
Molecular packing of (I) with hydrogen bonding shown as dashed lines.

N, N^{\prime}-Bis(phenylsulfonyl)maleamide

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2} \\
& M_{r}=394.41
\end{aligned}
$$

Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=8.582$ (1) \AA
$b=5.1464$ (6) \AA
$c=19.691$ (4) \AA
$\beta=101.17$ (2) ${ }^{\circ}$
$V=853.2(2) \AA^{3}$
$Z=2$
$F(000)=408$
$D_{\mathrm{x}}=1.535 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1915 reflections
$\theta=2.8-27.7^{\circ}$
$\mu=0.35 \mathrm{~mm}^{-1}$
$T=299 \mathrm{~K}$
Rod, colourless
$0.48 \times 0.28 \times 0.22 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Radiation source: fine-focus sealed tube
Graphite monochromator
Rotation method data acquisition using ω and phi scans
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
$T_{\min }=0.850, T_{\text {max }}=0.927$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.083$
$S=1.07$
1720 reflections
121 parameters
1 restraint
Primary atom site location: structure-invariant direct methods

> 3236 measured reflections
> 1720 independent reflections
> 1500 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.009$
> $\theta_{\max }=26.4^{\circ}, \theta_{\min }=3.5^{\circ}$
> $h=-9 \rightarrow 10$
> $k=-6 \rightarrow 6$
> $l=-24 \rightarrow 14$

```
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from
neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
\[
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0402 P)^{2}+0.3647 P\right]
\]
\[
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3
\]
\[
(\Delta / \sigma)_{\max }=0.004
\]
\[
\Delta \rho_{\max }=0.25 \mathrm{e} \AA^{-3}
\]
\[
\Delta \rho_{\min }=-0.32 \mathrm{e}^{-3}
\]
```


Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.81684(18)$	$0.2173(3)$	$0.31947(8)$	$0.0310(3)$
C2	$0.7033(2)$	$0.0409(3)$	$0.28846(9)$	$0.0406(4)$
H2	0.6715	-0.0947	0.3139	0.049^{*}
C3	$0.6381(2)$	$0.0704(4)$	$0.21881(10)$	$0.0539(5)$
H3	0.5618	-0.0465	0.1971	0.065^{*}
C4	$0.6857(3)$	$0.2717(4)$	$0.18171(10)$	$0.0548(5)$
H4	0.6417	0.2894	0.1349	0.066^{*}
C5	$0.7979(3)$	$0.4475(4)$	$0.21310(11)$	$0.0539(5)$
H5	0.8287	0.5837	0.1876	0.065^{*}
C6	$0.8651(2)$	$0.4217(4)$	$0.28269(10)$	$0.0438(4)$
H6	0.9410	0.5393	0.3043	0.053^{*}
C7	$0.64152(19)$	$0.3130(3)$	$0.45450(8)$	$0.0351(4)$
C8	$0.57352(19)$	$0.5096(3)$	$0.49559(8)$	$0.0370(4)$

H8	0.6360	0.6481	0.5153	0.044^{*}
N1	$0.79828(16)$	$0.3588(3)$	$0.45084(8)$	$0.0367(3)$
H1N	$0.842(2)$	$0.498(3)$	$0.4667(10)$	0.044^{*}
O1	$1.05692(13)$	$0.3007(3)$	$0.42044(7)$	$0.0460(3)$
O2	$0.88967(16)$	$-0.0871(2)$	$0.42525(7)$	$0.0474(3)$
O3	$0.56818(16)$	$0.1304(3)$	$0.42616(7)$	$0.0559(4)$
S1	$0.90468(4)$	$0.17803(8)$	$0.40734(2)$	$0.03339(14)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0308(7)$	$0.0305(8)$	$0.0315(8)$	$0.0033(6)$	$0.0056(6)$	$-0.0026(6)$
C2	$0.0435(9)$	$0.0360(9)$	$0.0399(9)$	$-0.0037(7)$	$0.0019(7)$	$-0.0043(7)$
C3	$0.0564(11)$	$0.0548(12)$	$0.0431(10)$	$0.0011(10)$	$-0.0087(9)$	$-0.0103(9)$
C4	$0.0620(12)$	$0.0657(13)$	$0.0339(10)$	$0.0213(11)$	$0.0023(9)$	$0.0009(9)$
C5	$0.0598(12)$	$0.0549(12)$	$0.0502(12)$	$0.0122(10)$	$0.0184(10)$	$0.0169(10)$
C6	$0.0421(9)$	$0.0382(9)$	$0.0514(11)$	$-0.0007(8)$	$0.0100(8)$	$0.0044(8)$
C7	$0.0379(8)$	$0.0382(9)$	$0.0295(8)$	$-0.0074(7)$	$0.0070(6)$	$-0.0050(7)$
C8	$0.0398(8)$	$0.0395(9)$	$0.0315(8)$	$-0.0077(7)$	$0.0061(7)$	$-0.0077(7)$
N1	$0.0354(7)$	$0.0335(7)$	$0.0412(8)$	$-0.0081(6)$	$0.0077(6)$	$-0.0133(6)$
O1	$0.0306(6)$	$0.0568(8)$	$0.0481(7)$	$-0.0031(6)$	$0.0013(5)$	$-0.0122(6)$
O2	$0.0653(8)$	$0.0329(6)$	$0.0403(7)$	$0.0037(6)$	$0.0008(6)$	$0.0023(5)$
O3	$0.0493(7)$	$0.0586(9)$	$0.0639(9)$	$-0.0232(7)$	$0.0212(7)$	$-0.0315(7)$
S1	$0.0335(2)$	$0.0318(2)$	$0.0329(2)$	$0.00033(16)$	$0.00156(15)$	$-0.00477(16)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 2$	$1.384(2)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{C} 1-\mathrm{C} 6$	$1.385(2)$	$\mathrm{C} 7-\mathrm{O} 3$	$1.206(2)$
$\mathrm{C} 1-\mathrm{S} 1$	$1.7600(16)$	$\mathrm{C} 7-\mathrm{N} 1$	$1.381(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.386(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.484(2)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300	$\mathrm{C} 8-\mathrm{C} 8 \mathrm{i}$	$1.310(3)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.375(3)$	$\mathrm{C} 8-\mathrm{H} 8$	0.9300
$\mathrm{C} 3-\mathrm{H} 3$	0.9300	$\mathrm{~N} 1-\mathrm{S} 1$	$1.6541(15)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.378(3)$	$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$0.840(9)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9300	$\mathrm{O} 1-\mathrm{S} 1$	$1.4288(12)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.386(3)$	$\mathrm{O} 2-\mathrm{S} 1$	$1.4215(13)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9300		
		$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	120.6
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$121.56(16)$	$\mathrm{O} 3-\mathrm{C} 7-\mathrm{N} 1$	$122.36(16)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	$119.29(13)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$123.95(15)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{S} 1$	$119.14(13)$	$\mathrm{C} 8-\mathrm{C} 8-\mathrm{C} 7$	$113.69(14)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$118.68(18)$	$\mathrm{C} 8-\mathrm{C} 8-\mathrm{H} 8$	$120.7(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.7	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8$	119.6
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.7	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{S} 1$	119.6
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$120.25(19)$	$124.88(11)$	
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.9	$119.4(13)$	
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$			

C3-C4-C5	120.70 (18)	S1-N1-H1N	115.1 (13)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	119.7	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1$	120.19 (8)
C5-C4-H4	119.7	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1$	109.02 (8)
C4-C5-C6	120.08 (19)	$\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1$	103.61 (7)
C4-C5-H5	120.0	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1$	108.18 (8)
C6-C5-H5	120.0	O1-S1-C1	109.22 (8)
C1-C6-C5	118.74 (18)	N1-S1-C1	105.68 (7)
C1-C6-H6	120.6		
C6-C1-C2-C3	0.5 (3)	C8-C7-N1-S1	-178.46 (12)
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-178.39 (14)	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{S} 1-\mathrm{O} 2$	-49.95 (17)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-0.1 (3)	C7-N1-S1-O1	-179.05 (14)
C2-C3-C4-C5	-0.4 (3)	C7-N1-S1-C1	66.13 (16)
C3-C4-C5-C6	0.5 (3)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 2$	23.00 (16)
C2-C1-C6-C5	-0.3 (3)	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 2$	-155.88 (14)
S1-C1-C6-C5	178.50 (14)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 1$	155.46 (13)
C4-C5-C6-C1	-0.1 (3)	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 1$	-23.41 (16)
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 8^{\text {i }}$	1.4 (3)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 1$	-93.64 (14)
N1-C7-C8-C8 ${ }^{\text {i }}$	-179.2 (2)	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 1$	87.48 (14)
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{N} 1-\mathrm{S} 1$	1.0 (3)		

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N \cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.84(1)$	$2.35(2)$	$3.0254(19)$	$138(2)$
$\mathrm{N} 1 — \mathrm{H} 1 N \cdots 1^{\mathrm{iii}}$	$0.84(1)$	$2.45(2)$	$3.1335(19)$	$139(2)$

Symmetry codes: (ii) $x, y+1, z$; (iii) $-x+2,-y+1,-z+1$.

