Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

2-(2H-Tetrazol-5-yl)pyridinium perchlorate monohydrate

Jing Dai* and Wen-Ni Zheng

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast UniVersity, Nanjing 210096, People's Republic of China Correspondence e-mail: fudavid88@yahoo.com.cn

Received 30 November 2009; accepted 3 December 2009

Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.065 ; w R$ factor $=0.195$; data-to-parameter ratio $=17.3$.

In the cation of the title compound, $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{5}{ }^{+} \cdot \mathrm{ClO}_{4}{ }^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, the pyridinium and tetrazole rings are essentially coplanar, making a dihedral angle of $1.2(2)^{\circ}$. In the crystal, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the cations, anions and water molecules into a ribbon-like structure along the c axis. Adjacent ribbons are linked via $\pi-\pi$ stacking interactions between the tetrazole rings, with a centroid-centroid distance of 3.484 (2) \AA.

Related literature

For applications of tetrazole derivatives in coordination chemistry, see: Zhao et al. (2008); Fu et al. (2008, 2009). For related structures, see: Fu et al. (2007); Fu \& Xiong (2008).

Experimental

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{5}{ }^{+} \cdot \mathrm{ClO}_{4}{ }^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$\alpha=78.28(3)^{\circ}$
$M_{r}=265.62$
$\beta=70.20$ (3) ${ }^{\circ}$
Triclinic, $P 1$
$\gamma=67.97$ (3)
$a=7.9945(16) \AA$
$b=8.8679$ (18) A
$c=9.4184$ (19) \AA
$Z=2$
Mo $K \alpha$ radiation

$$
\mu=0.35 \mathrm{~mm}^{-1}
$$

$$
T=298 \mathrm{~K}
$$

Data collection

Rigaku Mercury2 diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)
$T_{\text {min }}=0.881, T_{\max }=0.940$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065 \quad 154$ parameters
$w R\left(F^{2}\right)=0.195$
H -atom parameters constrained
$S=1.04$
2661 reflections
$0.40 \times 0.35 \times 0.20 \mathrm{~mm}$

6033 measured reflections 2661 independent reflections 2081 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.026$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 \cdots \mathrm{O} 4$	0.90	1.76	$2.640(4)$	166
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1 W^{\mathrm{i}}$	0.86	1.79	$2.633(4)$	166
$\mathrm{O}^{\mathrm{H}} W-\mathrm{H} 1 W B \cdots \mathrm{O} 3$	0.72	2.06	$2.778(4)$	172
$\mathrm{O}^{\mathrm{Hii}} W-\mathrm{H} 1 W A \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.78	1.99	$2.771(4)$	174

Symmetry codes: (i) $x, y, z-1$; (ii) $-x+1,-y,-z+2$.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2980).

References

Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. \& Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.
Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. \& Huang, S.-D. (2007). J. Am. Chem. Soc. 129, 5346-5347.
Fu, D.-W. \& Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.
Fu, D.-W., Zhang, W. \& Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Zhao, H., Qu, Z.-R., Ye, H.-Y. \& Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84100.

supporting information

Acta Cryst. (2010). E66, o71 [doi:10.1107/S160053680905199X]

2-(2H-Tetrazol-5-yl)pyridinium perchlorate monohydrate

Jing Dai and Wen-Ni Zheng

S1. Comment

In the past few years, more and more people have focused on the chemistry of tetrazole derivatives because of their multiple coordination modes as ligands to metal ions and for the construction of novel metal-organic frameworks (Zhao et al., 2008; Fu et al., 2008). As an extension of these work on the structure and properties (Fu et al., 2007; Fu \& Xiong 2008), we report here the crystal structure of the title compound 2-(2 H -tetrazol-5-yl)pyridinium perchlorate monohydrate.
In the title compound (Fig.1), the pyridine N atom is protonated. The pyridinium and tetrazole rings are essentially coplanar, with the dihedral angle between them being $1.2(2)^{\circ}$. The geometric parameters of the tetrazole rings are comparable to those in related structures (Zhao et al., 2008; Fu et al., 2009).
The crystal packing is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. These hydrogen bonds link the ionic units and water molecules to form a ribbon like structure parallel to the c axis (Table 1 and Fig.2).

S2. Experimental

Picolinonitrile (30 mmol), $\mathrm{NaN}_{3}(45 \mathrm{mmol}), \mathrm{NH}_{4} \mathrm{Cl}(33 \mathrm{mmol})$ and DMF $(50 \mathrm{ml})$ were added in a flask under nitrogen atmosphere and the mixture was stirred at $110^{\circ} \mathrm{C}$ for 20 h . The resulting solution was then poured into ice-water $(100 \mathrm{ml})$, and a white solid was obtained after adding $\mathrm{HCl}(6 M)$ till $\mathrm{pH}=6$. The precipitate was filtered and washed with distilled water. Colourless block-shaped crystals suitable for X-ray analysis were obtained from the crude product by slow evaporation of a water- $\mathrm{HClO}_{4}(50: 1 \mathrm{v} / \mathrm{v})$ solution.

S3. Refinement

All H atoms attached to C and N atoms were fixed geometrically and treated as riding with $\mathrm{C}-\mathrm{H}=0.93 \AA$ (aromatic), $\mathrm{N}-$ $\mathrm{H}=0.86 \AA$ (pyridine N) and $\mathrm{N}-\mathrm{H}=0.90 \AA$ (tetrazole N) with $U_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C}, \mathrm{N}) . \mathrm{H}$ atoms of the water molecule were located in difference Fourier maps and freely refined. In the last stage of the refinement they were treated as riding on the O atom, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{e q}(\mathrm{O})$.

Figure 1

The asymmetric unit of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The crystal packing of the title compound, viewed along the a axis, showing the two dimensionnal hydrogen-bonded network. H atoms not involved in hydrogen bonding (dashed line) have been omitted for clarity.

2-(2H-Tetrazol-5-yl)pyridinium perchlorate monohydrate

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{5}{ }^{+} \cdot \mathrm{ClO}_{4}-{ }^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=265.62$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=7.9945$ (16) \AA
$b=8.8679$ (18) \AA
$c=9.4184(19) \AA$
$\alpha=78.28(3)^{\circ}$
$\beta=70.20(3)^{\circ}$
$\gamma=67.97(3)^{\circ}$
$V=580.1(2) \AA^{3}$

Data collection

Rigaku Mercury2
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 13.6612 pixels mm^{-1}
ω scans

$$
Z=2
$$

$$
F(000)=272
$$

$$
D_{\mathrm{x}}=1.521 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$$
\text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA
$$

$$
\text { Cell parameters from } 2081 \text { reflections }
$$

$$
\theta=3.1-27.5^{\circ}
$$

$$
\mu=0.35 \mathrm{~mm}^{-1}
$$

$$
T=298 \mathrm{~K}
$$

Block, colourless
$0.40 \times 0.35 \times 0.20 \mathrm{~mm}$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.1^{\circ}$
$h=-10 \rightarrow 10$

$$
\begin{aligned}
& k=-11 \rightarrow 11 \\
& l=-12 \rightarrow 12
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$
$w R\left(F^{2}\right)=0.195$
$S=1.04$
2661 reflections
154 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
N1	$0.2411(4)$	$0.5225(3)$	$0.0449(3)$	$0.0337(6)$
H1	0.3305	0.4346	0.0590	0.040^{*}
N2	$0.3244(4)$	$0.4372(3)$	$0.3287(3)$	$0.0398(7)$
N3	$0.3065(4)$	$0.4464(3)$	$0.4707(3)$	$0.0411(7)$
H3	0.3806	0.3754	0.5256	0.049^{*}
N4	$0.1668(5)$	$0.5728(4)$	$0.5322(3)$	$0.0459(7)$
N5	$0.0848(4)$	$0.6535(3)$	$0.4264(3)$	$0.0412(7)$
C1	$0.2097(6)$	$0.5603(5)$	$-0.0901(4)$	$0.0445(8)$
H1A	0.2857	0.4927	-0.1676	0.053^{*}
C2	$0.0668(6)$	$0.6976(5)$	$-0.1161(4)$	$0.0525(10)$
H2A	0.0448	0.7239	-0.2104	0.063^{*}
C3	$-0.0443(6)$	$0.7964(5)$	$0.0006(4)$	$0.0517(10)$
H3A	-0.1431	0.8896	-0.0144	0.062^{*}
C4	$-0.0087(5)$	$0.7568(4)$	$0.1392(4)$	$0.0442(8)$
H4A	-0.0825	0.8233	0.2178	0.053^{*}
C5	$0.1372(4)$	$0.6176(4)$	$0.1602(3)$	$0.0330(7)$
C6	$0.1842(4)$	$0.5680(4)$	$0.3032(3)$	$0.0323(7)$
C11	$0.58684(12)$	$0.09352(10)$	$0.68911(9)$	$0.0393(3)$
O1	$0.7478(6)$	$0.0326(6)$	$0.5118(5)$	$0.0995(13)$
O2	$0.4562(4)$	$0.0041(4)$	$0.7313(3)$	$0.0565(7)$
O3	$0.6963(4)$	$0.0591(3)$	$0.7938(3)$	$0.0557(8)$
O4	$0.4923(4)$	$0.2690(3)$	$0.6656(3)$	$0.0501(7)$
O1W	$0.5256(4)$	$0.2475(3)$	$1.0393(3)$	$0.0483(7)$

H1WA	0.5261	0.1815	1.1080	0.073^{*}
H1WB	0.5728	0.2054	0.9710	0.073^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0345(14)$	$0.0324(13)$	$0.0324(13)$	$-0.0090(11)$	$-0.0084(11)$	$-0.0057(10)$
N2	$0.0450(16)$	$0.0349(14)$	$0.0343(14)$	$-0.0017(12)$	$-0.0165(12)$	$-0.0060(11)$
N3	$0.0482(16)$	$0.0363(15)$	$0.0360(14)$	$-0.0055(13)$	$-0.0197(13)$	$-0.0010(11)$
N4	$0.0537(18)$	$0.0441(16)$	$0.0345(15)$	$-0.0054(14)$	$-0.0158(13)$	$-0.0079(12)$
N5	$0.0465(16)$	$0.0368(15)$	$0.0326(14)$	$-0.0002(12)$	$-0.0140(12)$	$-0.0088(11)$
C1	$0.055(2)$	$0.049(2)$	$0.0323(17)$	$-0.0221(18)$	$-0.0079(15)$	$-0.0086(14)$
C2	$0.062(2)$	$0.062(2)$	$0.0369(18)$	$-0.019(2)$	$-0.0240(17)$	$0.0028(17)$
C3	$0.051(2)$	$0.049(2)$	$0.048(2)$	$-0.0013(17)$	$-0.0260(18)$	$0.0017(17)$
C4	$0.0438(19)$	$0.0415(19)$	$0.0392(18)$	$-0.0013(15)$	$-0.0151(15)$	$-0.0058(14)$
C5	$0.0333(15)$	$0.0332(15)$	$0.0315(15)$	$-0.0083(13)$	$-0.0110(12)$	$-0.0030(12)$
C6	$0.0336(15)$	$0.0296(15)$	$0.0309(15)$	$-0.0059(12)$	$-0.0094(12)$	$-0.0053(12)$
C11	$0.0429(5)$	$0.0358(4)$	$0.0364(4)$	$-0.0004(3)$	$-0.0210(3)$	$-0.0054(3)$
O1	$0.086(3)$	$0.122(3)$	$0.083(3)$	$-0.016(3)$	$-0.014(2)$	$-0.046(2)$
O2	$0.0581(17)$	$0.0598(17)$	$0.0539(16)$	$-0.0220(14)$	$-0.0222(13)$	$0.0051(13)$
O3	$0.0647(17)$	$0.0527(16)$	$0.0510(15)$	$0.0011(13)$	$-0.0408(14)$	$-0.0056(12)$
O4	$0.0583(16)$	$0.0351(13)$	$0.0477(14)$	$0.0082(11)$	$-0.0281(12)$	$-0.0083(11)$
O1W	$0.0575(16)$	$0.0363(13)$	$0.0405(13)$	$-0.0069(12)$	$-0.0088(11)$	$-0.0067(10)$

Geometric parameters ($\AA,{ }^{\circ}$)

N1-C1	1.331 (4)	C2-H2A	0.93
N1-C5	1.348 (4)	C3-C4	1.378 (5)
N1-H1	0.86	C3-H3A	0.93
N2-N3	1.312 (4)	C4-C5	1.378 (5)
N2-C6	1.324 (4)	C4-H4A	0.93
N3-N4	1.314 (4)	C5-C6	1.458 (4)
N3-H3	0.90	$\mathrm{Cl} 1-\mathrm{O} 2$	1.446 (3)
N4-N5	1.318 (4)	$\mathrm{Cl1}-\mathrm{O} 3$	1.447 (3)
N5-C6	1.354 (4)	C11-O4	1.460 (3)
C1-C2	1.368 (6)	Cl1-O1	1.768 (4)
C1-H1A	0.93	O1W-H1WA	0.78
C2-C3	1.382 (6)	O1W-H1WB	0.72
C1-N1-C5	122.0 (3)	C2-C3-H3A	120.0
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1$	119.0	C3-C4-C5	119.4 (3)
C5-N1-H1	119.0	C3-C4-H4A	120.3
N3-N2-C6	101.6 (3)	C5-C4-H4A	120.3
N2-N3-N4	114.4 (3)	N1-C5-C4	119.2 (3)
N2-N3-H3	125.6	N1-C5-C6	118.2 (3)
N4-N3-H3	120.0	C4-C5-C6	122.6 (3)
N3-N4-N5	106.4 (3)	N2-C6-N5	112.5 (3)
N4-N5-C6	105.1 (3)	N2-C6-C5	125.1 (3)

$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$120.7(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	119.7
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	119.7
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$118.7(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.7
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.7
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$120.0(4)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.0

$\mathrm{N} 5-\mathrm{C} 6-\mathrm{C} 5$	$122.3(3)$
$\mathrm{O} 2-\mathrm{Cl} 1-\mathrm{O} 3$	$113.55(17)$
$\mathrm{O} 2-\mathrm{Cl} 1-\mathrm{O} 4$	$111.66(17)$
$\mathrm{O} 3-\mathrm{Cl} 1-\mathrm{O} 4$	$110.80(16)$
$\mathrm{O} 2-\mathrm{Cl} 1-\mathrm{O} 1$	$107.3(2)$
$\mathrm{O} 3-\mathrm{Cl} 1-\mathrm{O} 1$	$107.05(19)$
$\mathrm{O} 4-\mathrm{Cl} 1-\mathrm{O} 1$	$106.0(2)$
$\mathrm{H} 1 \mathrm{WA}-\mathrm{O} 1 W-\mathrm{H} 1 W B$	107.6

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3 — \mathrm{H} 3 \cdots \mathrm{O} 4$	0.90	1.76	$2.640(4)$	166
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O} 1 W^{\mathrm{i}}$	0.86	1.79	$2.633(4)$	166
$\mathrm{O} 1 W — \mathrm{H} 1 W B \cdots \mathrm{O} 3$	0.72	2.06	$2.778(4)$	172
$\mathrm{O} 1 W — \mathrm{H} 1 W A \cdots 2^{\text {ii }}$	0.78	1.99	$2.771(4)$	174

Symmetry codes: (i) $x, y, z-1$; (ii) $-x+1,-y,-z+2$.

