organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Bromo-2,7-di-tert-butylpyrene

Guang-Ming Xia,^a* Zhi-Qiang Liu,^b Ping Lu,^a Guo-Xin Sun^a and Hong-Yu Chen^c

^aSchool of Chemistry and Chemical Engineering, University of Jinan, Ji'nan 250022, People's Republic of China, ^bState Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong Province, People's Republic of China, and ^cSchool of Chemistry and Chemical Engineering, TaiShan Medical University, Tai'an 271016, People's Republic of China

Correspondence e-mail: chm_xiagm@ujn.edu.cn

Received 7 December 2009; accepted 16 December 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.009 Å; disorder in main residue; R factor = 0.090; wR factor = 0.281; data-to-parameter ratio = 16.7.

In the title molecule, C₂₄H₂₅Br, one of two tert-butyl groups is rotationally disordered between two orientations in a 0.59 (3):0.41 (3) ratio. The crystal packing exhibits no π - π interactions; however, relatively short intermolecular Br...Br contacts of 3.654 (1) Å are observed.

Related literature

For the synthesis, see: Yamato et al. (1997). For a related structure, see: Hazell & Lomborg (1972).

Experimental

Crystal data C24H25Br

 $M_r = 393.35$

Orthorhombic, Pca21 a = 21.4678 (4) Å b = 14.5221 (2) Å c = 6.2436 (1) Å V = 1946.49 (5) Å³

Data collection

Bruker APEXII CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\min} = 0.643, T_{\max} = 0.651$

Refinement

H-atom parameters constrained
$\Delta \rho_{\rm max} = 1.01 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.84 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack (1983),
1930 Friedel pairs
Flack parameter: 0.05 (3)

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Z = 4

Mo $K\alpha$ radiation

 $0.32 \times 0.21 \times 0.13 \text{ mm}$

15786 measured reflections 4402 independent reflections 2741 reflections with $I > 2\sigma(I)$

 $\mu = 2.12 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int}=0.037$

This work was supported by the Shandong Key Scientific and Technological Project (grant No. 2008 GG30002014)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2677).

References

Altomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339-340.

- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hazell, A. C. & Lomborg, J. G. (1972). Acta Cryst. B28, 1059-1064.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Yamato, T., Fujimoto, M., Miyazawa, A. & Matsuo, K. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 1201-1207.

supporting information

Acta Cryst. (2010). E66, o216 [doi:10.1107/S1600536809054257]

1-Bromo-2,7-di-tert-butylpyrene

Guang-Ming Xia, Zhi-Qiang Liu, Ping Lu, Guo-Xin Sun and Hong-Yu Chen

S1. Comment

Pyrene and its derivatives are often used as fluorescent chromophores. Normally, the electrophilic substitution of pyrene occurred at positions 1, 3, 6 or 8 position, but not at other positions (2,4,5,7,9 and 10). However, the orientation in friedel-crafts *tert*-butylation of pyrene have been proved at positions 2 and 7. Yamato and co workers had reported that the bromination of 2,7-di-*tert*-butylpyrene with 1 mol equiv of bromine in carbon tetrachloride solution afford 1-bromo-2,7-di-*tert*-butylpyrene in high yield (Yamato *et al.*, 1997). However, no crystal data were given as a proof. Herein, we report the crystal structure of 1-bromo-2,7-di-*tert*-butylpyrene, (I), which support the conclusion of Yamato. In (I) (Fig. 1), all bond lengths and angles are normal and comparable to those reported for close compound (Hazell *et al.*, 1972). One of two *tert*-butyl groups (attached to pyrene at position 7) is rotationally disordered between two

orientations in a ratio 0.59 (3):0.41 (3). The crystal packing exhibits no π - π interactions, however, relatively short intermolecular Br···Br contacts of 3.654 (1) are observed.

S2. Experimental

The title compound was synthesized by the bromination of 2,7-di-*tert*-butylpyrene. To a solution of 2,7-di-*tert*-butylpyrene(314 mg, 1.0 mmol) in 30 ml CCl₄, a solution of Br₂ (200 mg, 1.1 mmol) in 10 ml CCl₄ was added at 0°C. After the reaction mixture had been stirred for 1 h at room temperature, it was poured into water and the organic layer was extracted with CH_2Cl_2 and washed with solution of sodium thiosulfate and water, dried over MgSO₄ and concentrated. The residue was purified by silica gel column chromatography with hexane as eluent t o afford a solid. Recrystallization from ethanol gave the 1-bromo-2,7-di-*tert*-butylpyrene(yield: 290 mg, 75%) as colorless prism crystals.

S3. Refinement

All H atoms were geometrically fixed and allowed to ride on their attached atoms, which C—H = 0.93 Å and $U_{iso}(H)$ = 1.2 $U_{eq}(C)$ for the H-atom bonded to thiophene ring, N—H= 0.86Å and $U_{iso}(H)$ = 1.2 $U_{eq}(C)$ and the other C—H = 0.93 Å and $U_{iso}(H)$ = 1.5 $U_{eq}(C)$. Tert-butyl group (attached to C20) is disordered between two orientations. Three methyl groups - C22, C23, C24 - were refined to a rigid model around the bond C20—C21 with methyl groups C22', C23' and C24', with the occupancies refined to 0.41 (3) and 0.59 (3), respectively.

Figure 1

The molecular structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoids. Only major parts of disordered atoms are shown. H atoms omitted for clarity.

1-Bromo-2,7-di-tert-butylpyrene

Crystal data	
$C_{24}H_{25}Br$	F(000) = 816
$M_r = 393.35$	$D_{\rm x} = 1.342 {\rm Mg} {\rm m}^{-3}$
Orthorhombic, $Pca2_1$	Mo Ka radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2c -2ac	Cell parameters from 3661 reflections
a = 21.4678 (4) Å	$\theta = 2.8 - 21.3^{\circ}$
b = 14.5221(2) Å	$\mu = 2.12 \text{ mm}^{-1}$
c = 6.2436(1) Å	T = 293 K
$V = 1946.49(5) Å^3$	Prism. colourless
Z = 4	$0.32 \times 0.21 \times 0.13 \text{ mm}$
Data collection	
Bruker APEXII CCD area-detector	15786 measured reflections
diffractometer	4402 independent reflections
Radiation source: fine-focus sealed tube	2741 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.037$
φ and φ scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan	$h = -25 \rightarrow 27$
(APEX2: Bruker, 2005)	$k = -18 \rightarrow 18$
$T_{\min} = 0.643, T_{\max} = 0.651$	$l = -8 \rightarrow 8$
Refinement	
\mathbf{D} -for every \mathbf{r}	II. dae oon olde le codient informed from

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.090$ $wR(F^2) = 0.281$ S = 1.004402 reflections 263 parameters 67 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1998P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.01$ e Å⁻³ $\Delta\rho_{min} = -0.84$ e Å⁻³ Absolute structure: Flack (1983), 1930 Friedel pairs Absolute structure parameter: 0.05 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Br1	0.70576 (5)	0.22447 (6)	0.7036 (4)	0.0927 (5)	
C1	0.5691 (4)	0.0248 (5)	0.2951 (17)	0.080 (2)	
H1A	0.5861	0.0122	0.1559	0.119*	
H1B	0.5318	0.0605	0.2802	0.119*	
H1C	0.5596	-0.0322	0.3659	0.119*	
C2	0.5941 (4)	0.0721 (5)	0.6628 (15)	0.078 (2)	
H2A	0.5854	0.0088	0.6960	0.116*	
H2B	0.5568	0.1078	0.6790	0.116*	
H2C	0.6255	0.0950	0.7583	0.116*	
C3	0.6796 (4)	0.0348 (5)	0.386 (2)	0.090 (3)	
H3A	0.7120	0.0690	0.4560	0.134*	
H3B	0.6872	0.0342	0.2340	0.134*	
H3C	0.6793	-0.0273	0.4385	0.134*	
C4	0.6175 (3)	0.0794 (4)	0.4297 (12)	0.0541 (16)	
C5	0.6193 (3)	0.1826 (4)	0.3626 (10)	0.0430 (13)	
C6	0.6535 (3)	0.2502 (4)	0.4644 (11)	0.0481 (15)	
C7	0.6560 (3)	0.3424 (4)	0.3944 (11)	0.0445 (13)	
C8	0.5863 (3)	0.2102 (4)	0.1850 (14)	0.0542 (16)	
H8	0.5632	0.1657	0.1131	0.065*	
C9	0.5847 (3)	0.2997 (4)	0.1046 (11)	0.0470 (14)	
C10	0.6206 (2)	0.3676 (4)	0.2096 (10)	0.0412 (12)	
C11	0.6917 (3)	0.4127 (5)	0.4975 (12)	0.0518 (16)	
H11	0.7152	0.3976	0.6177	0.062*	
C12	0.6924 (3)	0.5025 (5)	0.4239 (12)	0.0534 (16)	
H12	0.7152	0.5471	0.4967	0.064*	
C13	0.6581 (3)	0.5270 (4)	0.2360 (11)	0.0444 (13)	
C14	0.6213 (3)	0.4595 (4)	0.1356 (9)	0.0412 (12)	
C15	0.5488 (4)	0.3282 (5)	-0.0776 (13)	0.070 (2)	
H15	0.5243	0.2850	-0.1480	0.084*	
C16	0.5495 (4)	0.4147 (5)	-0.1491 (14)	0.068 (2)	
H16	0.5260	0.4293	-0.2696	0.081*	
C17	0.5850 (3)	0.4861 (5)	-0.0475 (11)	0.0513 (15)	
C18	0.5874 (3)	0.5748 (4)	-0.1191 (11)	0.0519 (15)	
H18	0.5638	0.5904	-0.2386	0.062*	
C19	0.6590 (3)	0.6164 (4)	0.1567 (11)	0.0503 (14)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C20 0.6236 (3) 0.6438 (4) -0.0222 (11) 0.0502 (15)C21 0.6244 (3) 0.7430 (5) -0.1038 (9) 0.0588 (18)C22 0.6781 (6) 0.7999 (9) -0.009 (3) 0.067 (5) 0.59 (3)H22A 0.6705 0.8107 0.1400 0.100^* 0.59 (3)H22B 0.6809 0.8577 -0.0832 0.100^* 0.59 (3)H22C 0.7165 0.7667 -0.0261 0.100^* 0.59 (3)C23 0.5639 (5) 0.7879 (9) -0.031 (3) 0.064 (4) 0.59 (3)H23A 0.5298 0.7466 -0.0558 0.096^* 0.59 (3)H23B 0.5573 0.8438 -0.1096 0.096^* 0.59 (3)H24A 0.6656 0.7191 -0.3457 (14) 0.073 (5) 0.59 (3)H24A 0.6656 0.7191 -0.3942 0.109^* 0.59 (3)H24B 0.6305 0.8137 -0.3868 0.109^* 0.59 (3)H24B 0.6305 0.8477 -0.0300 0.299^* 0.41 (3)H22E 0.6850 0.8477 -0.0300 0.299^* 0.41 (3)H22F 0.7014 0.7997 -0.2477 0.299^* 0.41 (3)H22F 0.5751 0.8583 -0.0149 0.106^* 0.41 (3)H22F 0.5979 (14) 0.7905 (15) -0.331 (2) 0.070 (7) 0.41 (3)H22F 0.5979 (14) 0.7505 (15) -0.331 (2) 0.073 (7) 0.41	H19	0.6840	0.6599	0.2244	0.060*	
C21 $0.6244 (3)$ $0.7430 (5)$ $-0.1038 (9)$ $0.0588 (18)$ C22 $0.6781 (6)$ $0.7999 (9)$ $-0.009 (3)$ $0.067 (5)$ $0.59 (3)$ H22A 0.6705 0.8107 0.1400 0.100^* $0.59 (3)$ H22B 0.6809 0.8577 -0.0832 0.100^* $0.59 (3)$ H22C 0.7165 0.7667 -0.0261 0.100^* $0.59 (3)$ C23 $0.5639 (5)$ $0.7879 (9)$ $-0.031 (3)$ $0.064 (4)$ $0.59 (3)$ H23A 0.5298 0.7466 -0.0558 0.096^* $0.59 (3)$ H23B 0.5573 0.8438 -0.1096 0.096^* $0.59 (3)$ H23C 0.5664 0.8017 0.1194 0.096^* $0.59 (3)$ H24A 0.6656 0.7191 -0.3942 0.109^* $0.59 (3)$ H24B 0.6305 0.8137 -0.3868 0.109^* $0.59 (3)$ H24C 0.5927 0.7218 -0.4092 0.109^* $0.59 (3)$ H22E $0.6879 (9)$ $0.790 (3)$ $-0.103 (6)$ $0.20 (3)$ $0.41 (3)$ H22E 0.6850 0.8477 -0.0305 0.299^* $0.41 (3)$ H22F 0.7014 0.7977 -0.2477 0.299^* $0.41 (3)$ H23D 0.5419 0.7669 0.0541 0.106^* $0.41 (3)$ H22E 0.6850 0.8533 -0.0149 0.106^* $0.41 (3)$ H24F $0.599 (14)$ $0.7505 (15)$ -0.3280 0.106^* $0.41 (3)$ <t< td=""><td>C20</td><td>0.6236 (3)</td><td>0.6438 (4)</td><td>-0.0222 (11)</td><td>0.0502 (15)</td><td></td></t<>	C20	0.6236 (3)	0.6438 (4)	-0.0222 (11)	0.0502 (15)	
C22 $0.6781(6)$ $0.7999(9)$ $-0.009(3)$ $0.067(5)$ $0.59(3)$ H22A 0.6705 0.8107 0.1400 0.100^* $0.59(3)$ H22B 0.6809 0.8577 -0.0832 0.100^* $0.59(3)$ H22C 0.7165 0.7667 -0.0261 0.100^* $0.59(3)$ C23 $0.5639(5)$ $0.7879(9)$ $-0.031(3)$ $0.064(4)$ $0.59(3)$ H23A 0.5298 0.7466 -0.0558 0.096^* $0.59(3)$ H23B 0.5573 0.8438 -0.1096 0.096^* $0.59(3)$ H23C 0.5664 0.8017 0.1194 0.096^* $0.59(3)$ H24A 0.6656 0.7191 $-0.3457(14)$ $0.073(5)$ $0.59(3)$ H24B 0.6305 0.8137 -0.3868 0.109^* $0.59(3)$ H24C 0.5927 0.7218 -0.4092 0.109^* $0.59(3)$ H22E $0.6879(9)$ $0.790(3)$ $-0.103(6)$ $0.20(3)$ $0.41(3)$ H22E 0.6850 0.8477 -0.0300 0.299^* $0.41(3)$ H22F 0.7014 </td <td>C21</td> <td>0.6244 (3)</td> <td>0.7430 (5)</td> <td>-0.1038 (9)</td> <td>0.0588 (18)</td> <td></td>	C21	0.6244 (3)	0.7430 (5)	-0.1038 (9)	0.0588 (18)	
H22A 0.6705 0.8107 0.1400 0.100^* $0.59(3)$ H22B 0.6809 0.8577 -0.0832 0.100^* $0.59(3)$ H22C 0.7165 0.7667 -0.0261 0.100^* $0.59(3)$ C23 $0.5639(5)$ $0.7879(9)$ $-0.031(3)$ $0.064(4)$ $0.59(3)$ H23A 0.5298 0.7466 -0.0558 0.096^* $0.59(3)$ H23B 0.5573 0.8438 -0.1096 0.096^* $0.59(3)$ H23C 0.5664 0.8017 0.1194 0.096^* $0.59(3)$ H24A 0.6656 0.7191 $-0.3457(14)$ $0.073(5)$ $0.59(3)$ H24B 0.6305 0.8137 -0.3868 0.109^* $0.59(3)$ H24C 0.5927 0.7218 -0.4092 0.109^* $0.59(3)$ H22D 0.7175 0.7511 -0.0305 0.299^* $0.41(3)$ H22E 0.6850 0.8477 -0.0300 0.299^* $0.41(3)$ H22F 0.7014 0.7997 -0.2477 0.299^* $0.41(3)$ H23E 0.5751 0.8583 -0.0149 0.106^* $0.41(3)$ H23E 0.5751 0.8583 -0.0149 0.106^* $0.41(3)$ H23F 0.5998 0.8025 0.1828 0.106^* $0.41(3)$ H24E 0.6044 0.8118 -0.3841 0.110^* $0.41(3)$ H24F 0.5541 0.7374 -0.3280 0.110^* $0.41(3)$	C22	0.6781 (6)	0.7999 (9)	-0.009(3)	0.067 (5)	0.59 (3)
H22B 0.6809 0.8577 -0.0832 0.100^* $0.59(3)$ H22C 0.7165 0.7667 -0.0261 0.100^* $0.59(3)$ C23 $0.5639(5)$ $0.7879(9)$ $-0.031(3)$ $0.664(4)$ $0.59(3)$ H23A 0.5298 0.7466 -0.0558 0.096^* $0.59(3)$ H23B 0.5573 0.8438 -0.1096 0.096^* $0.59(3)$ H23C 0.5664 0.8017 0.1194 0.096^* $0.59(3)$ C24 $0.6287(9)$ $0.7500(11)$ $-0.3457(14)$ $0.073(5)$ $0.59(3)$ H24A 0.6656 0.7191 -0.3942 0.109^* $0.59(3)$ H24B 0.6305 0.8137 -0.3868 0.109^* $0.59(3)$ H24C 0.5927 0.7218 -0.4092 0.109^* $0.59(3)$ H22E $0.6879(9)$ $0.790(3)$ $-0.103(6)$ $0.20(3)$ $0.41(3)$ H22E 0.6850 0.8477 -0.0305 0.299^* $0.41(3)$ H22F 0.7014 0.7997 -0.2477 0.299^* $0.41(3)$ H23E 0.5751 0.8583 -0.0149 0.106^* $0.41(3)$ H23F 0.5998 0.8025 0.1828 0.106^* $0.41(3)$ H24D 0.6186 0.7072 -0.4224 0.110^* $0.41(3)$ H24F 0.5541 $0.755(15)$ $-0.331(2)$ $0.73(7)$ $0.41(3)$ H24F 0.5541 0.7374 -0.3280 0.110^* $0.41(3)$	H22A	0.6705	0.8107	0.1400	0.100*	0.59 (3)
H22C 0.7165 0.7667 -0.0261 0.100^* $0.59(3)$ C23 $0.5639(5)$ $0.7879(9)$ $-0.031(3)$ $0.064(4)$ $0.59(3)$ H23A 0.5298 0.7466 -0.0558 0.096^* $0.59(3)$ H23B 0.5573 0.8438 -0.1096 0.096^* $0.59(3)$ H23C 0.5664 0.8017 0.1194 0.096^* $0.59(3)$ C24 $0.6287(9)$ $0.7500(11)$ $-0.3457(14)$ $0.073(5)$ $0.59(3)$ H24A 0.6656 0.7191 -0.3942 0.109^* $0.59(3)$ H24B 0.6305 0.8137 -0.3868 0.109^* $0.59(3)$ H24C 0.5927 0.7218 -0.4092 0.109^* $0.59(3)$ H22D 0.7175 0.7511 -0.0305 0.299^* $0.41(3)$ H22E 0.6850 0.8477 -0.0300 0.299^* $0.41(3)$ H22F 0.7014 0.7997 -0.2477 0.299^* $0.41(3)$ H23D 0.5419 0.7669 0.0541 0.106^* $0.41(3)$ H23F 0.5998 0.8025 0.1828 0.106^* $0.41(3)$ H24D 0.6186 0.7072 -0.4224 0.110^* $0.41(3)$ H24E 0.6044 0.8118 -0.3841 0.110^* $0.41(3)$	H22B	0.6809	0.8577	-0.0832	0.100*	0.59 (3)
C23 $0.5639 (5)$ $0.7879 (9)$ $-0.031 (3)$ $0.064 (4)$ $0.59 (3)$ H23A 0.5298 0.7466 -0.0558 0.096^* $0.59 (3)$ H23B 0.5573 0.8438 -0.1096 0.096^* $0.59 (3)$ H23C 0.5664 0.8017 0.1194 0.096^* $0.59 (3)$ C24 $0.6287 (9)$ $0.7500 (11)$ $-0.3457 (14)$ $0.073 (5)$ $0.59 (3)$ H24A 0.6656 0.7191 -0.3942 0.109^* $0.59 (3)$ H24B 0.6305 0.8137 -0.3868 0.109^* $0.59 (3)$ H24C 0.5927 0.7218 -0.4092 0.109^* $0.59 (3)$ C22' $0.6879 (9)$ $0.790 (3)$ $-0.103 (6)$ $0.20 (3)$ $0.41 (3)$ H22D 0.7175 0.7511 -0.0300 0.299^* $0.41 (3)$ H22F 0.7014 0.7997 -0.2477 0.299^* $0.41 (3)$ H23D 0.5419 0.7669 0.0541 0.106^* $0.41 (3)$ H23F 0.5998 0.8025 0.1828 0.106^* $0.41 (3)$ H24D 0.6186 0.7072 -0.4224 0.110^* $0.41 (3)$ H24F 0.5541 0.7374 -0.3280 0.110^* $0.41 (3)$	H22C	0.7165	0.7667	-0.0261	0.100*	0.59 (3)
H23A 0.5298 0.7466 -0.0558 0.096^* $0.59(3)$ H23B 0.5573 0.8438 -0.1096 0.096^* $0.59(3)$ H23C 0.5664 0.8017 0.1194 0.096^* $0.59(3)$ C24 $0.6287(9)$ $0.7500(11)$ $-0.3457(14)$ $0.073(5)$ $0.59(3)$ H24A 0.6656 0.7191 -0.3942 0.109^* $0.59(3)$ H24B 0.6305 0.8137 -0.3868 0.109^* $0.59(3)$ H24C 0.5927 0.7218 -0.4092 0.109^* $0.59(3)$ H22D 0.7175 0.7511 -0.0305 0.299^* $0.41(3)$ H22E 0.6850 0.8477 -0.0300 0.299^* $0.41(3)$ H22F 0.7014 0.7997 -0.2477 0.299^* $0.41(3)$ H23D 0.5419 0.7669 0.0541 0.106^* $0.41(3)$ H23F 0.5998 0.8025 0.1828 0.106^* $0.41(3)$ H23F 0.5998 0.8025 0.1828 0.106^* $0.41(3)$ H24D 0.6186 0.7072 -0.4224 0.110^* $0.41(3)$ H24E 0.6044 0.8118 -0.3841 0.110^* $0.41(3)$ H24F 0.5541 0.7374 -0.3280 0.110^* $0.41(3)$	C23	0.5639 (5)	0.7879 (9)	-0.031 (3)	0.064 (4)	0.59 (3)
H23B 0.5573 0.8438 -0.1096 $0.096*$ $0.59(3)$ H23C 0.5664 0.8017 0.1194 $0.096*$ $0.59(3)$ C24 $0.6287(9)$ $0.7500(11)$ $-0.3457(14)$ $0.073(5)$ $0.59(3)$ H24A 0.6656 0.7191 -0.3942 $0.109*$ $0.59(3)$ H24B 0.6305 0.8137 -0.3868 $0.109*$ $0.59(3)$ H24C 0.5927 0.7218 -0.4092 $0.109*$ $0.59(3)$ H22D $0.6879(9)$ $0.790(3)$ $-0.103(6)$ $0.20(3)$ $0.41(3)$ H22E 0.6850 0.8477 -0.0300 $0.299*$ $0.41(3)$ H22F 0.7014 0.7997 -0.2477 $0.299*$ $0.41(3)$ H23D 0.5419 0.7669 0.0541 $0.106*$ $0.41(3)$ H23F 0.5998 0.8025 0.1828 $0.106*$ $0.41(3)$ H23F $0.5999(14)$ $0.7505(15)$ $-0.331(2)$ $0.773(7)$ $0.41(3)$ H24D 0.6186 0.7072 -0.4224 $0.110*$ $0.41(3)$ H24D 0.6186 0.7072 -0.4224 $0.110*$ $0.41(3)$ H24F 0.5541 0.7374 -0.3280 $0.110*$ $0.41(3)$	H23A	0.5298	0.7466	-0.0558	0.096*	0.59 (3)
H23C0.56640.80170.11940.096*0.59 (3)C240.6287 (9)0.7500 (11)-0.3457 (14)0.073 (5)0.59 (3)H24A0.66560.7191-0.39420.109*0.59 (3)H24B0.63050.8137-0.38680.109*0.59 (3)H24C0.59270.7218-0.40920.109*0.59 (3)C22'0.6879 (9)0.790 (3)-0.103 (6)0.20 (3)0.41 (3)H22D0.71750.7511-0.03050.299*0.41 (3)H22E0.68500.8477-0.03000.299*0.41 (3)H22F0.70140.7997-0.24770.299*0.41 (3)C23'0.5813 (12)0.7978 (15)0.043 (3)0.070 (7)0.41 (3)H23D0.54190.76690.05410.106*0.41 (3)H23F0.59980.80250.18280.106*0.41 (3)H24D0.61860.7072-0.42240.110*0.41 (3)H24D0.61860.7072-0.38410.110*0.41 (3)H24F0.55410.7374-0.32800.110*0.41 (3)	H23B	0.5573	0.8438	-0.1096	0.096*	0.59 (3)
C240.6287 (9)0.7500 (11)-0.3457 (14)0.073 (5)0.59 (3)H24A0.66560.7191-0.39420.109*0.59 (3)H24B0.63050.8137-0.38680.109*0.59 (3)H24C0.59270.7218-0.40920.109*0.59 (3)C22'0.6879 (9)0.790 (3)-0.103 (6)0.20 (3)0.41 (3)H22D0.71750.7511-0.03050.299*0.41 (3)H22F0.68500.8477-0.03000.299*0.41 (3)C23'0.5813 (12)0.7978 (15)0.043 (3)0.070 (7)0.41 (3)H23D0.54190.76690.05410.106*0.41 (3)H23F0.59980.80250.18280.106*0.41 (3)H24D0.61860.7072-0.42240.110*0.41 (3)H24E0.60440.8118-0.38410.110*0.41 (3)	H23C	0.5664	0.8017	0.1194	0.096*	0.59 (3)
H24A 0.6656 0.7191 -0.3942 0.109^* $0.59(3)$ H24B 0.6305 0.8137 -0.3868 0.109^* $0.59(3)$ H24C 0.5927 0.7218 -0.4092 0.109^* $0.59(3)$ C22' $0.6879(9)$ $0.790(3)$ $-0.103(6)$ $0.20(3)$ $0.41(3)$ H22D 0.7175 0.7511 -0.0305 0.299^* $0.41(3)$ H22E 0.6850 0.8477 -0.0300 0.299^* $0.41(3)$ H22F 0.7014 0.7997 -0.2477 0.299^* $0.41(3)$ C23' $0.5813(12)$ $0.7978(15)$ $0.043(3)$ $0.070(7)$ $0.41(3)$ H23D 0.5419 0.7669 0.05411 0.106^* $0.41(3)$ H23F 0.5998 0.8025 0.1828 0.106^* $0.41(3)$ H24D 0.6186 0.7072 -0.4224 0.110^* $0.41(3)$ H24E 0.6044 0.8118 -0.38411 0.110^* $0.41(3)$ H24F 0.55411 0.7374 -0.3280 0.110^* $0.41(3)$	C24	0.6287 (9)	0.7500 (11)	-0.3457 (14)	0.073 (5)	0.59 (3)
H24B 0.6305 0.8137 -0.3868 $0.109*$ $0.59(3)$ H24C 0.5927 0.7218 -0.4092 $0.109*$ $0.59(3)$ C22' $0.6879(9)$ $0.790(3)$ $-0.103(6)$ $0.20(3)$ $0.41(3)$ H22D 0.7175 0.7511 -0.0305 $0.299*$ $0.41(3)$ H22E 0.6850 0.8477 -0.0300 $0.299*$ $0.41(3)$ H22F 0.7014 0.7997 -0.2477 $0.299*$ $0.41(3)$ C23' $0.5813(12)$ $0.7978(15)$ $0.043(3)$ $0.070(7)$ $0.41(3)$ H23D 0.5419 0.7669 0.0541 $0.106*$ $0.41(3)$ H23F 0.5998 0.8025 0.1828 $0.106*$ $0.41(3)$ H23F $0.5999(14)$ $0.7505(15)$ $-0.331(2)$ $0.073(7)$ $0.41(3)$ H24D 0.6186 0.7072 -0.4224 $0.110*$ $0.41(3)$ H24F 0.5541 0.7374 -0.3280 $0.110*$ $0.41(3)$	H24A	0.6656	0.7191	-0.3942	0.109*	0.59 (3)
H24C0.59270.7218-0.40920.109*0.59 (3)C22'0.6879 (9)0.790 (3)-0.103 (6)0.20 (3)0.41 (3)H22D0.71750.7511-0.03050.299*0.41 (3)H22E0.68500.8477-0.03000.299*0.41 (3)H22F0.70140.7997-0.24770.299*0.41 (3)C23'0.5813 (12)0.7978 (15)0.043 (3)0.070 (7)0.41 (3)H23D0.54190.76690.05410.106*0.41 (3)H23F0.57510.8583-0.01490.106*0.41 (3)H23F0.59980.80250.18280.106*0.41 (3)H24D0.61860.7072-0.331 (2)0.073 (7)0.41 (3)H24E0.60440.8118-0.38410.110*0.41 (3)H24F0.55410.7374-0.32800.110*0.41 (3)	H24B	0.6305	0.8137	-0.3868	0.109*	0.59 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H24C	0.5927	0.7218	-0.4092	0.109*	0.59 (3)
H22D 0.7175 0.7511 -0.0305 $0.299*$ $0.41(3)$ H22E 0.6850 0.8477 -0.0300 $0.299*$ $0.41(3)$ H22F 0.7014 0.7997 -0.2477 $0.299*$ $0.41(3)$ C23' $0.5813(12)$ $0.7978(15)$ $0.043(3)$ $0.070(7)$ $0.41(3)$ H23D 0.5419 0.7669 0.0541 $0.106*$ $0.41(3)$ H23E 0.5751 0.8583 -0.0149 $0.106*$ $0.41(3)$ H23F 0.5998 0.8025 0.1828 $0.106*$ $0.41(3)$ C24' $0.5979(14)$ $0.7505(15)$ $-0.331(2)$ $0.073(7)$ $0.41(3)$ H24D 0.6186 0.7072 -0.4224 $0.110*$ $0.41(3)$ H24F 0.5541 0.7374 -0.3280 $0.110*$ $0.41(3)$	C22′	0.6879 (9)	0.790 (3)	-0.103 (6)	0.20 (3)	0.41 (3)
H22E 0.6850 0.8477 -0.0300 $0.299*$ 0.41 (3)H22F 0.7014 0.7997 -0.2477 $0.299*$ 0.41 (3)C23' 0.5813 (12) 0.7978 (15) 0.043 (3) 0.070 (7) 0.41 (3)H23D 0.5419 0.7669 0.0541 $0.106*$ 0.41 (3)H23E 0.5751 0.8583 -0.0149 $0.106*$ 0.41 (3)H23F 0.5998 0.8025 0.1828 $0.106*$ 0.41 (3)C24' 0.5979 (14) 0.7505 (15) -0.331 (2) 0.073 (7) 0.41 (3)H24D 0.6186 0.7072 -0.4224 $0.110*$ 0.41 (3)H24F 0.5541 0.7374 -0.3280 $0.110*$ 0.41 (3)	H22D	0.7175	0.7511	-0.0305	0.299*	0.41 (3)
H22F 0.7014 0.7997 -0.2477 $0.299*$ 0.41 (3)C23' 0.5813 (12) 0.7978 (15) 0.043 (3) 0.070 (7) 0.41 (3)H23D 0.5419 0.7669 0.0541 $0.106*$ 0.41 (3)H23E 0.5751 0.8583 -0.0149 $0.106*$ 0.41 (3)H23F 0.5998 0.8025 0.1828 $0.106*$ 0.41 (3)C24' 0.5979 (14) 0.7505 (15) -0.331 (2) 0.073 (7) 0.41 (3)H24D 0.6186 0.7072 -0.4224 $0.110*$ 0.41 (3)H24E 0.6044 0.8118 -0.3841 $0.110*$ 0.41 (3)H24F 0.5541 0.7374 -0.3280 $0.110*$ 0.41 (3)	H22E	0.6850	0.8477	-0.0300	0.299*	0.41 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H22F	0.7014	0.7997	-0.2477	0.299*	0.41 (3)
H23D 0.5419 0.7669 0.0541 $0.106*$ $0.41(3)$ H23E 0.5751 0.8583 -0.0149 $0.106*$ $0.41(3)$ H23F 0.5998 0.8025 0.1828 $0.106*$ $0.41(3)$ C24' $0.5979(14)$ $0.7505(15)$ $-0.331(2)$ $0.073(7)$ $0.41(3)$ H24D 0.6186 0.7072 -0.4224 $0.110*$ $0.41(3)$ H24E 0.6044 0.8118 -0.3841 $0.110*$ $0.41(3)$ H24F 0.5541 0.7374 -0.3280 $0.110*$ $0.41(3)$	C23′	0.5813 (12)	0.7978 (15)	0.043 (3)	0.070 (7)	0.41 (3)
H23E0.57510.8583-0.01490.106*0.41 (3)H23F0.59980.80250.18280.106*0.41 (3)C24'0.5979 (14)0.7505 (15)-0.331 (2)0.073 (7)0.41 (3)H24D0.61860.7072-0.42240.110*0.41 (3)H24E0.60440.8118-0.38410.110*0.41 (3)H24F0.55410.7374-0.32800.110*0.41 (3)	H23D	0.5419	0.7669	0.0541	0.106*	0.41 (3)
H23F0.59980.80250.18280.106*0.41 (3)C24'0.5979 (14)0.7505 (15)-0.331 (2)0.073 (7)0.41 (3)H24D0.61860.7072-0.42240.110*0.41 (3)H24E0.60440.8118-0.38410.110*0.41 (3)H24F0.55410.7374-0.32800.110*0.41 (3)	H23E	0.5751	0.8583	-0.0149	0.106*	0.41 (3)
C24'0.5979 (14)0.7505 (15)-0.331 (2)0.073 (7)0.41 (3)H24D0.61860.7072-0.42240.110*0.41 (3)H24E0.60440.8118-0.38410.110*0.41 (3)H24F0.55410.7374-0.32800.110*0.41 (3)	H23F	0.5998	0.8025	0.1828	0.106*	0.41 (3)
H24D0.61860.7072-0.42240.110*0.41 (3)H24E0.60440.8118-0.38410.110*0.41 (3)H24F0.55410.7374-0.32800.110*0.41 (3)	C24′	0.5979 (14)	0.7505 (15)	-0.331 (2)	0.073 (7)	0.41 (3)
H24E0.60440.8118-0.38410.110*0.41 (3)H24F0.55410.7374-0.32800.110*0.41 (3)	H24D	0.6186	0.7072	-0.4224	0.110*	0.41 (3)
H24F 0.5541 0.7374 -0.3280 0.110* 0.41 (3)	H24E	0.6044	0.8118	-0.3841	0.110*	0.41 (3)
	H24F	0.5541	0.7374	-0.3280	0.110*	0.41 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.1018 (8)	0.0731 (6)	0.1033 (8)	-0.0084 (4)	-0.0434 (7)	0.0225 (5)
C1	0.100 (6)	0.045 (4)	0.094 (6)	-0.017 (4)	-0.011 (5)	-0.001 (4)
C2	0.104 (6)	0.059 (4)	0.070 (5)	-0.016 (4)	0.009 (5)	0.023 (4)
C3	0.070 (5)	0.044 (4)	0.155 (10)	0.013 (4)	0.019 (6)	0.014 (5)
C4	0.062 (4)	0.038 (3)	0.062 (4)	-0.003 (3)	0.006 (3)	0.007 (3)
C5	0.047 (3)	0.043 (3)	0.039 (3)	-0.005 (2)	0.002 (3)	0.005 (2)
C6	0.052 (3)	0.042 (3)	0.050 (4)	0.006 (3)	-0.012 (3)	0.006 (3)
C7	0.045 (3)	0.039 (3)	0.049 (3)	0.006 (2)	-0.002 (3)	0.007 (3)
C8	0.070 (4)	0.039 (3)	0.054 (4)	-0.008 (3)	0.009 (4)	0.005 (3)
C9	0.054 (3)	0.042 (3)	0.045 (3)	0.000 (3)	-0.009 (3)	-0.002 (3)
C10	0.042 (3)	0.041 (3)	0.041 (3)	0.007 (2)	-0.002(2)	-0.005 (3)
C11	0.063 (4)	0.042 (3)	0.051 (4)	-0.002 (3)	-0.022 (3)	0.004 (3)
C12	0.065 (4)	0.043 (3)	0.053 (4)	0.001 (3)	-0.013 (3)	-0.003 (3)
C13	0.045 (3)	0.039 (3)	0.049 (3)	0.007 (2)	-0.002 (3)	-0.005 (3)
C14	0.046 (3)	0.043 (3)	0.035 (3)	0.006 (2)	0.004 (2)	0.000 (2)
C15	0.100 (6)	0.061 (4)	0.050 (4)	-0.018 (4)	-0.027 (4)	-0.002 (4)
C16	0.081 (5)	0.059 (4)	0.062 (4)	-0.008 (4)	-0.032 (4)	0.004 (3)

C17	0.054 (4)	0.056 (4)	0.045 (3)	0.004 (3)	-0.006 (3)	0.002 (3)
C18	0.056 (4)	0.050 (4)	0.050 (4)	0.009 (3)	-0.006 (3)	0.010 (3)
C19	0.057 (3)	0.037 (3)	0.057 (4)	0.002 (2)	0.006 (3)	0.001 (3)
C20	0.055 (4)	0.048 (3)	0.048 (4)	0.011 (3)	0.011 (3)	0.003 (3)
C21	0.074 (5)	0.037 (3)	0.065 (5)	0.006 (3)	0.009 (4)	0.002 (3)
C22	0.067 (6)	0.060 (6)	0.073 (6)	-0.006 (4)	-0.002 (4)	0.007 (4)
C23	0.061 (5)	0.061 (5)	0.070 (6)	0.003 (4)	-0.005 (4)	0.003 (4)
C24	0.079 (6)	0.069 (6)	0.071 (6)	-0.007 (4)	0.009 (4)	0.002 (4)
C22′	0.20 (3)	0.20 (3)	0.20 (3)	0.000 (5)	0.000 (5)	0.002 (5)
C23′	0.074 (8)	0.068 (8)	0.070 (8)	0.000 (5)	-0.001 (5)	0.000 (5)
C24′	0.077 (8)	0.071 (7)	0.071 (8)	-0.001 (5)	0.004 (5)	0.008 (5)

Geometric parameters (Å, °)

Br1—C6	1.905 (6)	C16—C17	1.435 (10)
C1C4	1.553 (11)	C16—H16	0.9300
C1—H1A	0.9600	C17—C18	1.363 (9)
C1—H1B	0.9600	C18—C20	1.405 (10)
C1—H1C	0.9600	C18—H18	0.9300
C2—C4	1.543 (12)	C19—C20	1.409 (10)
C2—H2A	0.9600	С19—Н19	0.9300
C2—H2B	0.9600	C20—C21	1.529 (9)
C2—H2C	0.9600	C21—C24	1.516 (9)
C3—C4	1.509 (10)	C21—C23	1.524 (8)
С3—НЗА	0.9600	C21—C22′	1.524 (9)
С3—Н3В	0.9600	C21—C23′	1.526 (9)
С3—Н3С	0.9600	C21—C24′	1.530 (9)
C4—C5	1.556 (9)	C21—C22	1.536 (8)
C5—C8	1.376 (10)	C22—H22A	0.9600
C5—C6	1.382 (9)	C22—H22B	0.9600
С6—С7	1.409 (8)	C22—H22C	0.9600
C7—C11	1.430 (9)	C23—H23A	0.9600
C7—C10	1.430 (9)	C23—H23B	0.9600
C8—C9	1.394 (9)	C23—H23C	0.9600
С8—Н8	0.9300	C24—H24A	0.9600
C9—C10	1.412 (8)	C24—H24B	0.9600
C9—C15	1.436 (10)	C24—H24C	0.9600
C10—C14	1.413 (8)	C22′—H22D	0.9600
C11—C12	1.383 (10)	C22′—H22E	0.9600
C11—H11	0.9300	C22′—H22F	0.9600
C12—C13	1.431 (10)	C23'—H23D	0.9600
C12—H12	0.9300	C23′—H23E	0.9600
C13—C19	1.390 (8)	C23′—H23F	0.9600
C13—C14	1.407 (8)	C24′—H24D	0.9600
C14—C17	1.437 (9)	C24′—H24E	0.9600
C15—C16	1.333 (11)	C24′—H24F	0.9600
C15—H15	0.9300		

C4—C1—H1A	109.5	C18—C17—C16	123.9 (6)
C4—C1—H1B	109.5	C18—C17—C14	119.6 (6)
H1A—C1—H1B	109.5	C16—C17—C14	116.4 (6)
C4—C1—H1C	109.5	C17—C18—C20	123.6 (6)
H1A—C1—H1C	109.5	C17—C18—H18	118.2
H1B—C1—H1C	109.5	C20—C18—H18	118.2
C4—C2—H2A	109.5	C13—C19—C20	122.5 (6)
C4—C2—H2B	109.5	С13—С19—Н19	118.7
H_2A — C_2 — H_2B	109.5	C20—C19—H19	118.7
C4-C2-H2C	109.5	C18 - C20 - C19	116.1 (6)
$H^2A - C^2 - H^2C$	109.5	C18 - C20 - C21	122 3 (6)
$H^2B - C^2 - H^2C$	109.5	C19 - C20 - C21	121.6 (6)
C4 - C3 - H3A	109.5	C_{24} C_{21} C_{23}	108.8 (6)
C4-C3-H3B	109.5	$C_{24} = C_{21} = C_{23}$	85.3(11)
$H_3 \Delta - C_3 - H_3 B$	109.5	C_{23} C_{21} C_{22}	124.9(16)
$113A - C_3 - 113B$	109.5	$C_{23} = C_{21} = C_{22}$	124.9(10)
H_{2}^{4} C_{2}^{2} H_{2}^{2} H_{2}^{2}	109.5	$C_{24} = C_{21} = C_{23}$	120.9(11)
H_{2}^{2} H_{2}^{2} H_{3}^{2} H_{3}^{2}	109.5	$C_{23} = C_{21} = C_{23}$	23.1(9)
$H_{3B} = C_{3} = H_{3C}$	109.3	$C_{22} = C_{21} = C_{23}$	108.0(8)
$C_3 = C_4 = C_2$	113.3(8) 105.8(7)	$C_{24} = C_{21} = C_{20}$	113.3(8)
$C_3 = C_4 = C_1$	103.8(7)	$C_{23} = C_{21} = C_{20}$	107.2(7)
$C_2 = C_4 = C_1$	104.9 (7)	$C_{22} = C_{21} = C_{20}$	113.3(10)
C_{3} C_{4} C_{5}	110.0(6)	$C_{23} = C_{21} = C_{20}$	100.5(10)
$C_2 - C_4 - C_5$	109.2 (6)	$C_{24} = C_{21} = C_{24}$	25.3 (8)
C1 - C4 - C5	111.3 (6)	$C_{23} = C_{21} = C_{24}$	86.0 (9)
C8—C5—C6	116.0 (5)	C22'-C21-C24'	107.7 (8)
C8—C5—C4	119.0 (5)	C23'-C21-C24'	107.1 (7)
C6—C5—C4	125.0 (6)	C20—C21—C24′	111.8 (10)
C5—C6—C7	123.6 (6)	C24—C21—C22	107.4 (6)
C5—C6—Br1	122.3 (5)	C23—C21—C22	107.1 (6)
C7—C6—Br1	114.0 (5)	C22'—C21—C22	24.1 (11)
C6—C7—C11	124.0 (6)	C23'—C21—C22	86.8 (11)
C6—C7—C10	118.2 (5)	C20—C21—C22	112.8 (7)
C11—C7—C10	117.8 (5)	C24′—C21—C22	126.5 (11)
C5—C8—C9	125.0 (6)	C21—C22—H22A	109.5
С5—С8—Н8	117.5	C21—C22—H22B	109.5
С9—С8—Н8	117.5	C21—C22—H22C	109.5
C8—C9—C10	118.1 (6)	С21—С23—Н23А	109.5
C8—C9—C15	124.6 (6)	C21—C23—H23B	109.5
C10—C9—C15	117.3 (6)	С21—С23—Н23С	109.5
C9—C10—C14	120.9 (5)	C21—C24—H24A	109.5
C9—C10—C7	119.1 (5)	C21—C24—H24B	109.5
C14—C10—C7	120.0 (5)	C21—C24—H24C	109.5
C12—C11—C7	122.0 (6)	C21—C22′—H22D	109.5
C12—C11—H11	119.0	C21—C22′—H22E	109.5
C7—C11—H11	119.0	H22D—C22'—H22E	109.5
C11—C12—C13	120.1 (6)	C21—C22′—H22F	109.5
C11—C12—H12	119.9	H22D—C22'—H22F	109.5
C13—C12—H12	119.9	H22E—C22'—H22F	109.5

C19—C13—C14	120.1 (6)	C21—C23′—H23D	109.5	
C19—C13—C12	121.1 (6)	C21—C23′—H23E	109.5	
C14—C13—C12	118.8 (5)	H23D—C23′—H23E	109.5	
C13—C14—C10	121.2 (5)	C21—C23′—H23F	109.5	
C13—C14—C17	118.1 (5)	H23D—C23'—H23F	109.5	
C10—C14—C17	120.6 (5)	H23E—C23′—H23F	109.5	
C16—C15—C9	122.1 (7)	C21—C24′—H24D	109.5	
С16—С15—Н15	118.9	C21—C24′—H24E	109.5	
С9—С15—Н15	118.9	H24D—C24′—H24E	109.5	
C15—C16—C17	122.6 (7)	C21—C24′—H24F	109.5	
С15—С16—Н16	118.7	H24D—C24′—H24F	109.5	
С17—С16—Н16	118.7	H24E—C24′—H24F	109.5	