organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-N'-(2-Hydroxybenzylidene)-2-(4isobutylphenyl)propanohydrazide

Jia Hao Goh,^a[‡] Hoong-Kun Fun,^a*§ A. C. Vinayaka^b and B. Kalluraya^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malavsia, and ^bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India Correspondence e-mail: hkfun@usm.my

Received 25 November 2009; accepted 26 November 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.076; wR factor = 0.181; data-to-parameter ratio = 17.8.

The title hydrazide compound, $C_{20}H_{24}N_2O_2$, exists in a *trans* configuration with respect to the acyclic C=N bond and an intramolecular $O-H \cdots N$ hydrogen bond generates an S(6)ring motif. The mean plane through the formohydrazide unit is essentially planar [maximum deviation = 0.025(2) Å], and forms dihedral angles of 24.45 (16) and 87.14 (16) $^{\circ}$ with the two benzene rings. In the crystal structure, intermolecular N- $H \cdots O$ and $C - H \cdots O$ hydrogen bonds link neighbouring molecules into extended chains along the c axis, which incorporate $R_2^2(16)$ ring motifs. An intermolecular C-H··· π interaction is also observed.

Related literature

For the metal coordination and pharmacological activity of the title compound, see: Bedia et al. (2006); Rodrìguez-Argüelles et al. (2004); Rollas et al. (2002); Terzioglu & Gürsoy (2003). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2009a,b). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Monoclinic, $P2_1/c$

Experimental

Crystal data

C20H24N2O2 $M_r = 324.41$

```
a = 5.5017 (2) Å
```

‡ Thomson Reuters ResearcherID: C-7576-2009. § Thomson Reuters ResearcherID: A-3561-2009. b = 33.0204 (14) Åc = 9.7279 (4) Å $\beta = 91.731 \ (3)^{\circ}$ V = 1766.45 (12) Å³ Z = 4

Data collection

Bruker SMART APEXII CCD	18817 measured reflections
diffractometer	4059 independent reflections
Absorption correction: multi-scan	3190 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2005)	$R_{\rm int} = 0.042$
$T_{\min} = 0.970, \ T_{\max} = 0.985$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.076$ $w P(F^2) = 0.181$	H atoms treated by a mixture of
S = 1.18	refinement
4059 reflections 228 parameters	$\Delta \rho_{\text{max}} = 0.26 \text{ e } \text{A}^{-3}$ $\Delta \rho_{\text{min}} = -0.28 \text{ e } \text{Å}^{-3}$

Mo $K\alpha$ radiation

 $0.39 \times 0.24 \times 0.19 \text{ mm}$

 $\mu = 0.08 \text{ mm}^{-1}$

T = 100 K

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H1N2\cdotsO2^{i}$ $O1-H1O1\cdotsN1$	0.87(3) 0.90(4)	1.96(3) 1.83(4)	2.790(2) 2.626(3)	159 (3) 147 (4)
$C14 - H14A \cdots O1^{i}$ $C20 - H20C \cdots Cg1^{ii}$	0.93 0.96	2.51 2.80	3.272 (4) 3.722 (3)	139 161

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) x + 1, y, z. Cg1 is the centroid of the C10–C15 benzene ring.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF and JHG thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/ PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5254).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Fun, H.-K., Goh, J. H., Padaki, M., Malladi, S. & Isloor, A. M. (2009a). Acta Cryst. E65, 01591-01592.
- Fun, H.-K., Goh, J. H., Vinayaka, A. C. & Kalluraya, B. (2009b). Acta Cryst. E65, o2094.
- Rodrìguez-Argüelles, M. C., Ferrari, M. B., Bisceglie, F., Pelizzi, C., Pelosi, G., Pinelli, S. & Sassi, M. (2004). J. Inorg. Biochem. 98, 313-321.

Rollas, S., Gulerman, N. & Erdeniz, H. (2002). Il Farmaco, 57, 171-174.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Terzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781-786.

supporting information

Acta Cryst. (2010). E66, o24 [doi:10.1107/S1600536809050971]

(E)-N'-(2-Hydroxybenzylidene)-2-(4-isobutylphenyl)propanohydrazide

Jia Hao Goh, Hoong-Kun Fun, A. C. Vinayaka and B. Kalluraya

S1. Comment

Hydrazone compounds are obtained by the reaction of aromatic and heterocyclic hydrazides with mono- and di-aldehydes or ketones and they have revealed very versatile behaviour in metal coordination (Rodrìguez-Argüelles *et al.*, 2004). Hydrazones have been demonstrated to possess a variety of pharmacological activities (Bedia *et al.*, 2006; Rollas *et al.*, 2002; Terzioglu & Gürsoy, 2003). These observations have been the guidelines for the development of new hydrazone incorporating ibuprofen. Prompted by these observations and in continuation of our work (Fun *et al.*, 2009*b*), we herein report the structure of this new hydrazone.

The title hydrazide compound (Fig. 1) exists in a *trans* configuration with respect to the acyclic C7=N1 bond. An intramolecular O1—H1O1···N1 hydrogen bond (Table 1) generates a six-membered ring, producing an S(6) ring motif (Bernstein *et al.*, 1995). The mean plane through the formohydrazide unit (N1/N2/C8/O2) is essentially planar, with maximum deviation of 0.025 (2) Å for atom C8. This plane is inclined to the C1-C6 benzene ring at a dihedral angle of 24.45 (16)°, and almost perpendicular to the C10-C15 benzene ring, as indicated by the dihedral angle of 87.14 (16)°. The bond lengths and angles are within normal ranges and comparable to those closely related structures (Fun *et al.*, 2009*a*,*b*).

In the crystal packing (Fig. 2), intermolecular N2—H1N2···O2 and C14—H14A···O1 hydrogen bonds (Table 1) link neighbouring molecules into one-dimensional infinite chains of $R^2_2(16)$ hydrogen bond ring motifs (Bernstein *et al.*, 1995) along the *c* axis. An intermolecular C—H··· π interaction (Table 1) involving the C10-C15 benzene ring is also observed.

S2. Experimental

The title compound was obtained by refluxing for 1 h salicylaldehyde (0.01 mol), 2-(4-isobutylphenyl)propanehydrazide (0.01 mol) and ethanol (30 ml) with the addition of three drops of concentrated sulphuric acid. The solid product obtained was filtered, washed with ethanol and dried. Colourless blocks of (I) were obtained by slow evaporation from ethanol. Yield was 74 %. *M.p.* 426 K.

S3. Refinement

The H atoms bound to atoms O1 and N2 were located from the difference Fourier map and allowed to refine freely. All the other H atoms were placed in calculated positions, with C—H = 0.93 - 0.97 Å, and as riding, with $U_{iso} = 1.2$ or 1.5 $U_{eq}(C)$. A rotating group model was used for the methyl groups. The reflection (020) was omitted from the refinement as the intensity was affected by the beam backstop.

Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsoids for non-H atoms. The intramolecular hydrogen bond is shown as a dashed line.

Figure 2

The crystal structure of (I), viewed along the *a* axis, showing one-dimensional extended chains of $R_2^2(16)$ ring motif along the *c* axis. Intermolecular hydrogen bonds are shown as dashed lines.

(E)-N'-(2-Hydroxybenzylidene)-2-(4-isobutylphenyl)propanohydrazide

Crystal data

 $C_{20}H_{24}N_2O_2$ $M_r = 324.41$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 5.5017 (2) Å b = 33.0204 (14) Å c = 9.7279 (4) Å $\beta = 91.731$ (3)° V = 1766.45 (12) Å³ Z = 4

Data collection

Bruker SMART APEXII CCD	18817 measured reflections
diffractometer	4059 independent reflections
Radiation source: fine-focus sealed tube	3190 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.042$
φ and ω scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
Absorption correction: multi-scan	$h = -7 \rightarrow 7$
(SADABS; Bruker, 2005)	$k = -38 \rightarrow 42$
$T_{\min} = 0.970, \ T_{\max} = 0.985$	$l = -12 \rightarrow 12$
D - Con and	

F(000) = 696

 $\theta = 2.4 - 30.0^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$

Block. colourless

 $0.39 \times 0.24 \times 0.19 \text{ mm}$

T = 100 K

 $D_{\rm x} = 1.220 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 7778 reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.076$	Hydrogen site location: inferred from
$wR(F^2) = 0.181$	neighbouring sites
S = 1.18	H atoms treated by a mixture of independent
4059 reflections	and constrained refinement
228 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0443P)^2 + 2.5698P]$
0 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-3}$
	$\Delta ho_{ m min}$ = -0.28 e Å ⁻³

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	X	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	-0.2604 (4)	0.18426 (6)	0.5584 (2)	0.0358 (5)
02	0.3223 (3)	0.25847 (5)	0.60286 (15)	0.0209 (4)

N1	0.1237 (4)	0.20555 (6)	0.4218 (2)	0.0199 (5)
N2	0.3012 (4)	0.23282 (6)	0.3875 (2)	0.0210 (5)
C1	-0.1353 (6)	0.11240 (9)	0.2812 (3)	0.0364 (7)
H1A	-0.0286	0.1087	0.2099	0.044*
C2	-0.3138 (6)	0.08401 (9)	0.3013 (3)	0.0367 (8)
H2A	-0.3268	0.0614	0.2448	0.044*
C3	-0.4735 (6)	0.08962 (9)	0.4065 (4)	0.0385 (8)
H3A	-0.5952	0.0706	0.4205	0.046*
C4	-0.4540(5)	0.12339 (9)	0.4918 (4)	0.0382 (7)
H4A	-0.5625	0.1268	0.5624	0.046*
C5	-0.2736(5)	0.15194 (8)	0.4721 (3)	0.0285 (6)
C6	-0.1095 (5)	0.14680 (8)	0.3650 (3)	0.0269 (6)
C7	0.0819 (5)	0.17603 (8)	0.3390 (3)	0.0276 (6)
H7A	0.1748	0.1732	0.2613	0.033*
C8	0.3850 (4)	0.25968 (7)	0.4827 (2)	0.0156 (5)
С9	0.5550 (5)	0.29208 (8)	0.4303 (3)	0.0235 (5)
H9A	0.6170	0.2834	0.3417	0.028*
C10	0.4016 (5)	0.33029 (8)	0.4081 (3)	0.0235 (5)
C11	0.4132 (5)	0.36299 (8)	0.4983 (3)	0.0310 (6)
H11A	0.5260	0.3628	0.5715	0.037*
C12	0.2587 (5)	0.39598 (8)	0.4807 (3)	0.0277 (6)
H12A	0.2735	0.4177	0.5411	0.033*
C13	0.0842 (6)	0.39741 (8)	0.3763 (3)	0.0277 (6)
C14	0.0756 (8)	0.36506 (9)	0.2855 (3)	0.0518 (11)
H14A	-0.0389	0.3652	0.2131	0.062*
C15	0.2335 (7)	0.33241 (9)	0.2998 (3)	0.0438 (9)
H15A	0.2259	0.3116	0.2354	0.053*
C16	-0.0929(6)	0.43214 (8)	0.3616 (3)	0.0319(7)
H16A	-0.1484	0.4392	0.4522	0.038*
H16B	-0.2334	0.4230	0.3075	0.038*
C17	0.0063 (6)	0.47049 (8)	0.2944 (3)	0.0331 (7)
H17A	0.1393	0.4809	0.3537	0.040*
C18	-0.1918 (7)	0.50278 (9)	0.2851 (3)	0.0435 (8)
H18A	-0.1264	0.5272	0.2472	0.065*
H18B	-0.2499	0.5082	0.3754	0.065*
H18C	-0.3239	0.4933	0.2270	0.065*
C19	0.1076 (7)	0.46188 (9)	0.1530 (3)	0.0402 (8)
H19A	0.1558	0.4869	0.1114	0.060*
H19B	-0.0152	0.4491	0.0960	0.060*
H19C	0.2460	0.4443	0.1628	0.060*
C20	0.7674 (5)	0.29712 (9)	0.5318 (4)	0.0423 (8)
H20A	0.8636	0.2729	0.5335	0.063*
H20B	0.7074	0.3022	0.6218	0.063*
H20C	0.8658	0.3195	0.5043	0.063*
H1N2	0.346 (6)	0.2342 (9)	0.303 (3)	0.034 (9)*
H101	-0.127(8)	0.1984 (12)	0.539 (4)	0.064 (13)*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0260 (11)	0.0248 (10)	0.0569 (14)	-0.0014 (8)	0.0068 (10)	-0.0075 (9)
O2	0.0300 (10)	0.0253 (9)	0.0074 (7)	0.0012 (7)	0.0012 (7)	-0.0001 (7)
N1	0.0248 (11)	0.0194 (10)	0.0150 (9)	-0.0027 (8)	-0.0055 (8)	0.0027 (8)
N2	0.0329 (12)	0.0221 (11)	0.0083 (9)	-0.0060 (9)	0.0021 (8)	0.0006 (8)
C1	0.060(2)	0.0304 (15)	0.0184 (13)	-0.0137 (14)	-0.0084 (13)	0.0022 (11)
C2	0.057 (2)	0.0258 (15)	0.0268 (14)	-0.0115 (13)	-0.0136 (14)	0.0030 (12)
C3	0.0319 (16)	0.0256 (15)	0.057 (2)	-0.0059 (12)	-0.0153 (15)	0.0061 (14)
C4	0.0206 (14)	0.0292 (15)	0.065 (2)	0.0004 (11)	-0.0005 (14)	-0.0014 (14)
C5	0.0243 (13)	0.0198 (13)	0.0409 (16)	0.0032 (10)	-0.0087 (12)	0.0015 (11)
C6	0.0379 (15)	0.0226 (13)	0.0192 (12)	-0.0055 (11)	-0.0128 (11)	0.0059 (10)
C7	0.0434 (16)	0.0256 (14)	0.0134 (11)	-0.0049 (12)	-0.0048 (11)	0.0025 (10)
C8	0.0146 (11)	0.0190 (11)	0.0132 (10)	0.0031 (9)	-0.0001 (8)	0.0004 (9)
C9	0.0239 (13)	0.0202 (12)	0.0272 (13)	-0.0009 (10)	0.0118 (10)	-0.0033 (10)
C10	0.0311 (14)	0.0191 (12)	0.0212 (12)	-0.0024 (10)	0.0130 (10)	0.0016 (10)
C11	0.0232 (14)	0.0261 (14)	0.0435 (16)	-0.0025 (11)	-0.0013 (12)	-0.0117 (12)
C12	0.0255 (14)	0.0239 (13)	0.0339 (15)	-0.0010 (11)	0.0057 (11)	-0.0101 (11)
C13	0.0454 (17)	0.0201 (13)	0.0181 (12)	0.0021 (11)	0.0076 (11)	0.0042 (10)
C14	0.105 (3)	0.0295 (16)	0.0196 (14)	0.0204 (18)	-0.0219 (17)	-0.0017 (12)
C15	0.095 (3)	0.0228 (14)	0.0131 (12)	0.0159 (16)	-0.0038 (15)	-0.0027 (11)
C16	0.0447 (18)	0.0244 (14)	0.0265 (14)	0.0061 (12)	0.0002 (12)	0.0016 (11)
C17	0.0498 (19)	0.0229 (14)	0.0262 (14)	0.0030 (12)	-0.0069 (13)	0.0019 (11)
C18	0.062 (2)	0.0271 (15)	0.0413 (18)	0.0081 (15)	-0.0068 (16)	0.0036 (13)
C19	0.057 (2)	0.0328 (16)	0.0305 (16)	0.0008 (14)	-0.0011 (14)	0.0074 (13)
C20	0.0220 (14)	0.0266 (15)	0.078 (2)	-0.0012 (11)	-0.0006 (15)	-0.0134 (15)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

01—C5	1.359 (3)	C11—C12	1.389 (4)
01—H101	0.89 (4)	C11—H11A	0.9300
O2—C8	1.229 (3)	C12—C13	1.377 (4)
N1—C7	1.281 (3)	C12—H12A	0.9300
N1—N2	1.377 (3)	C13—C14	1.386 (4)
N2—C8	1.354 (3)	C13—C16	1.509 (4)
N2—H1N2	0.86 (3)	C14—C15	1.389 (4)
C1—C2	1.376 (4)	C14—H14A	0.9300
C1—C6	1.403 (4)	C15—H15A	0.9300
C1—H1A	0.9300	C16—C17	1.533 (4)
С2—С3	1.382 (5)	C16—H16A	0.9700
C2—H2A	0.9300	C16—H16B	0.9700
C3—C4	1.392 (4)	C17—C18	1.526 (4)
С3—НЗА	0.9300	C17—C19	1.526 (4)
C4—C5	1.387 (4)	C17—H17A	0.9800
C4—H4A	0.9300	C18—H18A	0.9600
С5—С6	1.409 (4)	C18—H18B	0.9600
С6—С7	1.456 (4)	C18—H18C	0.9600

C7—H7A	0.9300	C19—H19A	0.9600
С8—С9	1.519 (3)	C19—H19B	0.9600
C9—C20	1.516 (4)	C19—H19C	0.9600
C9—C10	1.530 (4)	C20—H20A	0.9600
С9—Н9А	0.9800	C20—H20B	0.9600
C10—C15	1.382 (4)	C20—H20C	0.9600
C10-C11	1.392 (4)		
C5-01-H101	108 (3)	C13—C12—H12A	119.1
C7—N1—N2	117.4 (2)	C11—C12—H12A	119.1
C8—N2—N1	119.4 (2)	C12—C13—C14	117.0 (3)
C8—N2—H1N2	121 (2)	C12—C13—C16	122.0 (2)
N1—N2—H1N2	119 (2)	C14—C13—C16	121.0 (3)
C2-C1-C6	122.0 (3)	C13—C14—C15	121.6 (3)
C2—C1—H1A	119.0	C13—C14—H14A	119.2
C6—C1—H1A	119.0	C15—C14—H14A	119.2
C1—C2—C3	119.1 (3)	C10—C15—C14	121.2 (3)
C1—C2—H2A	120.4	C10—C15—H15A	119.4
C3—C2—H2A	120.4	C14—C15—H15A	119.4
C2—C3—C4	120.6 (3)	C13—C16—C17	115.5 (3)
С2—С3—НЗА	119.7	C13—C16—H16A	108.4
С4—С3—НЗА	119.7	C17—C16—H16A	108.4
C5—C4—C3	120.3 (3)	C13—C16—H16B	108.4
С5—С4—Н4А	119.8	C17—C16—H16B	108.4
C3—C4—H4A	119.8	H16A—C16—H16B	107.5
O1—C5—C4	118.3 (3)	C18—C17—C19	110.9 (2)
O1—C5—C6	121.9 (2)	C18—C17—C16	109.8 (3)
C4—C5—C6	119.8 (3)	C19—C17—C16	112.0 (2)
C1—C6—C5	118.1 (3)	C18—C17—H17A	108.0
C1—C6—C7	119.8 (3)	C19—C17—H17A	108.0
С5—С6—С7	122.1 (2)	C16—C17—H17A	108.0
N1-C7-C6	120.8 (3)	C17—C18—H18A	109.5
N1—C7—H7A	119.6	C17—C18—H18B	109.5
С6—С7—Н7А	119.6	H18A—C18—H18B	109.5
O2—C8—N2	122.0 (2)	C17—C18—H18C	109.5
O2—C8—C9	122.4 (2)	H18A—C18—H18C	109.5
N2	115.6 (2)	H18B—C18—H18C	109.5
C20—C9—C8	109.2 (2)	C17—C19—H19A	109.5
C20—C9—C10	114.4 (2)	C17—C19—H19B	109.5
C8—C9—C10	106.6 (2)	H19A—C19—H19B	109.5
С20—С9—Н9А	108.8	C17—C19—H19C	109.5
С8—С9—Н9А	108.8	H19A—C19—H19C	109.5
С10—С9—Н9А	108.8	H19B—C19—H19C	109.5
C15-C10-C11	117.3 (3)	C9—C20—H20A	109.5
С15—С10—С9	120.2 (2)	C9—C20—H20B	109.5
С11—С10—С9	122.4 (2)	H20A—C20—H20B	109.5
C12-C11-C10	120.9 (3)	C9—C20—H20C	109.5
C12—C11—H11A	119.5	H20A—C20—H20C	109.5

C10—C11—H11A C13—C12—C11	119.5 121.9 (3)	H20B—C20—H20C	109.5
C7—N1—N2—C8	-167.2 (2)	N2-C8-C9-C10	99.7 (2)
C6—C1—C2—C3	0.4 (4)	C20-C9-C10-C15	167.3 (3)
C1—C2—C3—C4	-0.3 (4)	C8—C9—C10—C15	-71.9 (3)
C2—C3—C4—C5	0.0 (4)	C20-C9-C10-C11	-16.6 (4)
C3—C4—C5—O1	-179.5 (3)	C8—C9—C10—C11	104.2 (3)
C3—C4—C5—C6	0.1 (4)	C15-C10-C11-C12	1.0 (4)
C2-C1-C6-C5	-0.2 (4)	C9-C10-C11-C12	-175.2 (3)
C2-C1-C6-C7	-179.7 (3)	C10-C11-C12-C13	1.7 (4)
O1-C5-C6-C1	179.6 (2)	C11—C12—C13—C14	-2.5 (5)
C4—C5—C6—C1	0.0 (4)	C11—C12—C13—C16	176.6 (3)
O1—C5—C6—C7	-0.9 (4)	C12—C13—C14—C15	0.7 (5)
C4—C5—C6—C7	179.4 (3)	C16—C13—C14—C15	-178.4 (3)
N2—N1—C7—C6	-177.5 (2)	C11—C10—C15—C14	-2.8 (5)
C1—C6—C7—N1	-173.3 (2)	C9-C10-C15-C14	173.5 (3)
C5—C6—C7—N1	7.3 (4)	C13-C14-C15-C10	2.0 (6)
N1—N2—C8—O2	6.1 (3)	C12-C13-C16-C17	79.8 (3)
N1—N2—C8—C9	-172.1 (2)	C14—C13—C16—C17	-101.1 (3)
O2—C8—C9—C20	45.5 (3)	C13—C16—C17—C18	179.5 (2)
N2-C8-C9-C20	-136.3 (2)	C13—C16—C17—C19	55.8 (3)
O2—C8—C9—C10	-78.5 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N2—H1 <i>N</i> 2····O2 ⁱ	0.87 (3)	1.96 (3)	2.790 (2)	159 (3)
01—H1 <i>0</i> 1…N1	0.90 (4)	1.83 (4)	2.626 (3)	147 (4)
C14—H14 <i>A</i> ···O1 ⁱ	0.93	2.51	3.272 (4)	139
C20—H20 C ··· $Cg1^{ii}$	0.96	2.80	3.722 (3)	161

Symmetry codes: (i) *x*, –*y*+1/2, *z*–1/2; (ii) *x*+1, *y*, *z*.