organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(propan-2-yl) [(2\$,3\$)-2-hydroxy-3nitrobutan-2-yl]phosphonate

Tanmay Mandal,^a Sampak Samanta,^a Grant A. Broker,^a Cong-Gui Zhao^a[‡] and Edward R. T. Tiekink^b*

^aDepartment of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 4 December 2009; accepted 6 December 2009

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.040; wR factor = 0.105; data-to-parameter ratio = 18.5.

In the title compound, $C_{10}H_{22}NO_6P$, a staggered conformation is found when the molecule is viewed down the central P-C bond, with the oxo and hydroxy groups gauche to each other. The crystal structure features supramolecular chains of helical topology propagating along the b axis, mediated by $O-H \cdots O$ hydrogen bonds.

Related literature

For background to the enantioselective nitroaldol reaction of α -ketophosphonates and nitromethane and for the synthesis, see: Mandal et al. (2007).

Experimental

Crystal data C₁₀H₂₂NO₆P $M_r = 283.26$

Orthorhombic, $P2_12_12_1$ a = 7.8620 (16) Å

b = 11.369 (2) Å	
c = 16.920 (3) Å	
$V = 1512.4 (5) \text{ Å}^3$	
Z = 4	

Data collection

Rigaku AFC12/SATURN724 diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.884, T_{\max} = 1$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	
$wR(F^2) = 0.105$	
S = 1.07	
3072 reflections	
166 parameters	
1 restraint	

Mo $K\alpha$ radiation $\mu = 0.20 \text{ mm}^{-1}$ T = 173 K $0.32 \times 0.10 \times 0.05 \text{ mm}$

13441 measured reflections 3072 independent reflections 3020 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.089$ Standard reflections: 0

H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.19 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 1272 Friedel pairs Flack parameter: 0.05 (11)

Table 1

Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O4-H40\cdots O1^{i}$	0.84	1.90	2.7289 (19)	172
Symmetry code: (i) -	$-r + 1 v + \frac{1}{2} - \frac{1}{2}$	7 + ³		

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

CGZ thanks the Welch Foundation (grant No. AX-1593) and the NIH-MBRS program (S06 GM08194) for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5269).

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Mandal, T., Samanta, S. & Zhao, C.-G. (2007). Org. Lett. 9, 943-945.

Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2009). publCIF. In preparation.

[‡] Additional correspondence author, e-mail: cong.zhao@utsa.edu.

supporting information

Acta Cryst. (2010). E66, o98 [doi:10.1107/S1600536809052428]

Bis(propan-2-yl) [(2S,3S)-2-hydroxy-3-nitrobutan-2-yl]phosphonate

Tanmay Mandal, Sampak Samanta, Grant A. Broker, Cong-Gui Zhao and Edward R. T. Tiekink

S1. Comment

The title compound, (I), was investigated as a part of previous studies on the enantioselective nitroaldol reaction of α -ketophosphonates and nitromethane for the synthesis of optically active α -hydroxy- β -nitrophosphonates (Mandal *et al.*, 2007). The crystal structure analysis of (I), Fig. 1, shows a staggered conformation when the molecule is viewed down the P–C7 axis in which the oxo and hydroxy groups are *gauche* to each other. The presence of O–H…O hydrogen bonding formed between the hydroxy-O4—H and O=P atoms leads to the formation of supramolecular chains along the *b* axis, Fig. 2 and Table 1.

S2. Experimental

The title compound was prepared as described in the literature (Mandal et al., 2007).

S3. Refinement

The C-bound H atoms were geometrically placed (C—H = 0.98–1.00 Å) and refined as riding with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$. The methyl H-atoms were rotated to fit the electron density. The O–H H atom was located from a difference map and refined with O–H = 0.840±0.001 Å, and with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

Molecular structure of (I), showing displacement ellipsoids at the 35% probability level.

Figure 2

Supramolecular chain along the *b* axis in (I) mediated by O–H…O (orange dashed lines) hydrogen bonding. Colour scheme: P, olive; O, red; N, blue; C, grey; and H, green.

Bis(propan-2-yl) [(25,35)-2-hydroxy-3-nitrobutan-2-yl]phosphonate

Crystal data	
$C_{10}H_{22}NO_6P$	Hall symbol: P 2ac 2ab
$M_r = 283.26$	a = 7.8620 (16) A
Orthorhombic, $P2_12_12_1$	b = 11.369(2) A

Cell parameters from 2308 reflections

 $\theta = 4.0 - 30.1^{\circ}$

 $\mu = 0.20 \text{ mm}^{-1}$

Block, pale-yellow $0.32 \times 0.10 \times 0.05 \text{ mm}$

T = 173 K

c = 16.920 (3) Å $V = 1512.4 (5) \text{ Å}^3$ Z = 4 F(000) = 608 $D_x = 1.244 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$

Data collection

Rigaku AFC12K/SATURN724	13441 measured reflections
diffractometer	3072 independent reflections
Radiation source: fine-focus sealed tube	3020 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.089$
ω scans	$\theta_{\rm max} = 26.5^{\circ}, \ \theta_{\rm min} = 4.0^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 8$
(ABSCOR; Higashi, 1995)	$k = -13 \rightarrow 14$
$T_{\min} = 0.884, \ T_{\max} = 1$	$l = -21 \rightarrow 20$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.040$ H-atom parameters constrained $wR(F^2) = 0.105$ $w = 1/[\sigma^2(F_0^2) + (0.0497P)^2 + 0.2822P]$ S = 1.07where $P = (F_0^2 + 2F_c^2)/3$ 3072 reflections $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.19 \text{ e} \text{ Å}^{-3}$ 166 parameters 1 restraint $\Delta \rho_{\rm min} = -0.25 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant Absolute structure: Flack (1983), 1272 Friedel direct methods pairs Secondary atom site location: difference Fourier Absolute structure parameter: 0.05 (11) map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
P1	0.63065 (6)	0.29509 (4)	0.74005 (3)	0.03236 (14)	
01	0.51586 (18)	0.19464 (11)	0.75316 (9)	0.0416 (3)	
O2	0.80539 (18)	0.26553 (13)	0.70112 (9)	0.0415 (3)	
03	0.67933 (17)	0.36408 (13)	0.81677 (8)	0.0383 (3)	
O4	0.41385 (17)	0.46364 (12)	0.71762 (9)	0.0400 (3)	
H4O	0.4448	0.5337	0.7241	0.060*	
05	0.3878 (4)	0.49342 (19)	0.51776 (13)	0.0848 (7)	
06	0.1751 (3)	0.4227 (2)	0.58457 (14)	0.0861 (7)	
N1	0.3262 (3)	0.4256 (2)	0.56573 (14)	0.0608 (6)	

C1	0.9313 (3)	0.18894 (18)	0.74033 (13)	0.0438 (5)
H1	0.8736	0.1412	0.7821	0.053*
C2	0.9985 (4)	0.1089 (3)	0.67718 (17)	0.0706 (8)
H2A	0.9051	0.0617	0.6556	0.106*
H2B	1.0849	0.0567	0.6998	0.106*
H2C	1.0495	0.1560	0.6348	0.106*
C3	1.0653 (3)	0.2668 (2)	0.7782 (2)	0.0656 (8)
H3A	1.0121	0.3162	0.8187	0.098*
H3B	1.1173	0.3168	0.7377	0.098*
H3C	1.1530	0.2175	0.8026	0.098*
C4	0.5800 (3)	0.3614 (2)	0.89018 (13)	0.0551 (6)
H4	0.4659	0.3254	0.8803	0.066*
C5	0.5601 (6)	0.4848 (3)	0.91703 (18)	0.0879 (11)
H5A	0.4970	0.5295	0.8771	0.132*
H5B	0.6726	0.5202	0.9246	0.132*
H5C	0.4976	0.4862	0.9671	0.132*
C6	0.6764 (7)	0.2898 (3)	0.94900 (18)	0.1056 (15)
H6A	0.6874	0.2089	0.9296	0.158*
H6B	0.6152	0.2896	0.9995	0.158*
H6C	0.7897	0.3238	0.9565	0.158*
C7	0.5409 (2)	0.40550 (16)	0.67209 (11)	0.0336 (4)
C8	0.4436 (3)	0.33911 (18)	0.60636 (12)	0.0419 (5)
H8	0.3722	0.2770	0.6318	0.050*
C9	0.5556 (4)	0.2804 (2)	0.54440 (13)	0.0558 (6)
H9A	0.4838	0.2406	0.5053	0.084*
H9B	0.6299	0.2227	0.5700	0.084*
H9C	0.6251	0.3401	0.5179	0.084*
C10	0.6767 (3)	0.49079 (18)	0.64308 (14)	0.0430 (5)
H10A	0.7312	0.5287	0.6885	0.065*
H10B	0.6239	0.5509	0.6095	0.065*
H10C	0.7623	0.4477	0.6125	0.065*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0303 (2)	0.0284 (2)	0.0384 (2)	0.00159 (18)	0.00078 (17)	0.00062 (19)
01	0.0432 (7)	0.0284 (6)	0.0532 (8)	-0.0023 (5)	-0.0002 (6)	0.0044 (7)
02	0.0357 (7)	0.0454 (8)	0.0435 (7)	0.0140 (6)	0.0051 (6)	0.0031 (6)
03	0.0365 (7)	0.0426 (7)	0.0359 (7)	-0.0048 (6)	0.0024 (5)	-0.0017 (6)
O4	0.0342 (7)	0.0316 (7)	0.0541 (8)	0.0031 (6)	0.0021 (6)	-0.0080 (6)
05	0.1205 (19)	0.0631 (12)	0.0708 (13)	0.0063 (14)	-0.0288 (14)	0.0171 (10)
06	0.0593 (13)	0.1078 (17)	0.0912 (16)	0.0212 (13)	-0.0342 (12)	-0.0093 (14)
N1	0.0736 (16)	0.0513 (12)	0.0576 (12)	0.0103 (11)	-0.0261 (11)	-0.0073 (11)
C1	0.0408 (10)	0.0399 (11)	0.0507 (11)	0.0124 (8)	-0.0022 (9)	0.0007 (10)
C2	0.0768 (19)	0.0698 (17)	0.0650 (16)	0.0410 (16)	-0.0121 (14)	-0.0150 (14)
C3	0.0423 (12)	0.0584 (15)	0.096 (2)	0.0113 (11)	-0.0130 (13)	-0.0103 (14)
C4	0.0576 (14)	0.0725 (16)	0.0351 (10)	-0.0157 (12)	0.0104 (9)	-0.0010 (10)
C5	0.128 (3)	0.085 (2)	0.0507 (15)	0.038 (2)	0.0216 (17)	-0.0070 (15)

supporting information

C6	0.189 (5)	0.081 (2)	0.0471 (15)	0.029 (3)	0.004 (2)	0.0180 (16)	
C7	0.0344 (9)	0.0283 (8)	0.0383 (9)	0.0022 (7)	-0.0010 (8)	-0.0021 (8)	
C8	0.0498 (12)	0.0332 (9)	0.0428 (10)	0.0031 (9)	-0.0088 (9)	-0.0032 (9)	
C9	0.0772 (17)	0.0502 (13)	0.0399 (11)	0.0049 (13)	0.0000 (11)	-0.0097 (10)	
C10	0.0451 (11)	0.0334 (10)	0.0506 (12)	-0.0024 (9)	0.0042 (9)	0.0032 (9)	

Geometric parameters (Å, °)

P1-01	1.4723 (14)	C4—C5	1.483 (4)	
P1—O2	1.5602 (14)	C4—C6	1.492 (4)	
P1—O3	1.5643 (15)	C4—H4	1.0000	
P1—C7	1.8428 (19)	C5—H5A	0.9800	
O2—C1	1.476 (2)	C5—H5B	0.9800	
O3—C4	1.467 (2)	C5—H5C	0.9800	
O4—C7	1.424 (2)	C6—H6A	0.9800	
O4—H4O	0.8400	C6—H6B	0.9800	
O5—N1	1.219 (3)	C6—H6C	0.9800	
O6—N1	1.230 (4)	C7—C10	1.524 (3)	
N1—C8	1.514 (3)	C7—C8	1.546 (3)	
C1—C2	1.500 (3)	C8—C9	1.523 (3)	
C1—C3	1.517 (3)	C8—H8	1.0000	
C1—H1	1.0000	С9—Н9А	0.9800	
C2—H2A	0.9800	C9—H9B	0.9800	
C2—H2B	0.9800	С9—Н9С	0.9800	
C2—H2C	0.9800	C10—H10A	0.9800	
С3—НЗА	0.9800	C10—H10B	0.9800	
С3—Н3В	0.9800	C10—H10C	0.9800	
С3—НЗС	0.9800			
O1—P1—O2	115.86 (9)	C4—C5—H5A	109.5	
O1—P1—O3	114.44 (9)	C4—C5—H5B	109.5	
O2—P1—O3	104.06 (8)	H5A—C5—H5B	109.5	
O1—P1—C7	112.80 (9)	C4—C5—H5C	109.5	
O2—P1—C7	102.75 (8)	H5A—C5—H5C	109.5	
O3—P1—C7	105.67 (8)	H5B—C5—H5C	109.5	
C1—O2—P1	121.86 (13)	C4—C6—H6A	109.5	
C4—O3—P1	124.17 (14)	C4—C6—H6B	109.5	
C7—O4—H4O	108.0	H6A—C6—H6B	109.5	
O5—N1—O6	124.9 (3)	C4—C6—H6C	109.5	
O5—N1—C8	118.1 (2)	H6A—C6—H6C	109.5	
O6—N1—C8	117.0 (2)	H6B—C6—H6C	109.5	
O2—C1—C2	105.91 (18)	O4—C7—C10	111.74 (15)	
O2—C1—C3	108.14 (17)	O4—C7—C8	105.60 (16)	
C2—C1—C3	114.2 (2)	C10—C7—C8	115.18 (18)	
O2—C1—H1	109.5	O4—C7—P1	104.31 (12)	
C2-C1-H1	109.5	C10—C7—P1	111.47 (14)	
C3—C1—H1	109.5	C8—C7—P1	107.80 (13)	
C1—C2—H2A	109.5	N1C8C9	108.94 (19)	

C1C2H2B	109.5	N1C8C7	108 11 (16)
	109.5	$\begin{array}{c} \mathbf{N} = \mathbf{C} 0 \\ \mathbf{C}$	108.11(10) 115.0(2)
$\Pi_{2}A = C_{2} = \Pi_{2}B$	109.5	$C_9 = C_0 = C_7$	113.0 (2)
	109.5	$NI = C_0 = H_0$	108.2
H2A—C2—H2C	109.5	C9—C8—H8	108.2
H2B-C2-H2C	109.5	C'/C8H8	108.2
C1—C3—H3A	109.5	С8—С9—Н9А	109.5
C1—C3—H3B	109.5	С8—С9—Н9В	109.5
H3A—C3—H3B	109.5	H9A—C9—H9B	109.5
C1—C3—H3C	109.5	С8—С9—Н9С	109.5
НЗА—СЗ—НЗС	109.5	Н9А—С9—Н9С	109.5
НЗВ—СЗ—НЗС	109.5	Н9В—С9—Н9С	109.5
O3—C4—C5	107.2 (2)	C7—C10—H10A	109.5
O3—C4—C6	107.8 (2)	C7—C10—H10B	109.5
C5—C4—C6	111.4 (3)	H10A—C10—H10B	109.5
O3—C4—H4	110.1	C7—C10—H10C	109.5
C5—C4—H4	110.1	H10A-C10-H10C	109.5
C6—C4—H4	110.1	H10B—C10—H10C	109.5
O1—P1—O2—C1	-63.20 (17)	O3—P1—C7—C10	68.93 (15)
O3—P1—O2—C1	63.34 (17)	O1—P1—C7—C8	-37.99 (17)
C7—P1—O2—C1	173.35 (15)	O2—P1—C7—C8	87.48 (15)
O1—P1—O3—C4	-21.1 (2)	O3—P1—C7—C8	-163.73 (13)
O2—P1—O3—C4	-148.58 (17)	O5—N1—C8—C9	-47.5 (3)
C7—P1—O3—C4	103.58 (19)	O6—N1—C8—C9	133.2 (2)
P1-02-C1-C2	136.98 (19)	O5—N1—C8—C7	78.1 (3)
P1—O2—C1—C3	-100.2(2)	O6—N1—C8—C7	-101.1 (3)
P1-03-C4-C5	-132.8 (2)	O4—C7—C8—N1	51.7 (2)
P1	107.1 (3)	C10—C7—C8—N1	-72.1 (2)
O1—P1—C7—O4	73.94 (14)	P1—C7—C8—N1	162.77 (16)
O2—P1—C7—O4	-160.59 (12)	O4—C7—C8—C9	173.70 (17)
O3—P1—C7—O4	-51.80 (13)	C10—C7—C8—C9	49.9 (2)
O1—P1—C7—C10	-165.33 (14)	P1—C7—C8—C9	-75.2 (2)
O2—P1—C7—C10	-39.85 (16)		
O2—P1—C7—C10	-39.85 (16)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O4—H4o…O1 ⁱ	0.84	1.90	2.7289 (19)	172

Symmetry code: (i) -x+1, y+1/2, -z+3/2.