

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Methoxy-2-methyl-1H-benzo[f]indole-3-carbonitrile

Jiang-Sheng Li,^a* Qi-Xi He^b and Peng-Yu Li^a

^aSchool of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410004, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China Correspondence e-mail: js_li@yahoo.com.cn

Received 5 December 2009; accepted 6 December 2009

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.035; wR factor = 0.094; data-to-parameter ratio = 12.4.

Apart from the methyl group of the methoxy fragment, the title compound, C₁₅H₁₂N₂O, is almost planar (r.m.s. deviation = 0.045 Å); the C atom deviates from the mean plane by 1.216 (1) Å. In the crystal, $\pi - \pi$ stacking [shortest centroid– centroid separation = 3.4652 (10) Å] and C-H··· π interactions occur.

Related literature

For the synthesis, see: Du et al. (2008).

Experimental

Crystal data C15H12N2O

 $M_r = 236.27$

Monoclinic, $C2/c$	Z = 8
a = 18.663 (4) Å	Mo $K\alpha$ radiation
b = 7.3763 (15) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 18.589 (4) Å	T = 113 K
$\beta = 113.46 \ (3)^{\circ}$	$0.20 \times 0.18 \times 0.16 \text{ mm}$
V = 2347.6 (8) Å ³	

Data collection

Rigaku Saturn CCD diffractometer	11412 measured reflections
Absorption correction: multi-scan	2060 independent reflections
(CrystalClear; Rigaku/MSC,	1858 reflections with $I > 2\sigma(I)$
2005)	$R_{\rm int} = 0.035$
$T_{\min} = 0.983, T_{\max} = 0.986$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	166 parameters
$wR(F^2) = 0.094$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.19 \text{ e} \text{ Å}^{-3}$
2060 reflections	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C4–C9 ring.

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ $C3-H3\cdots Cg3^{i}$ 0.93 2.65 3.3956 (15) 138 Symmetry code: (i) $x, -y - 1, z - \frac{1}{2}$.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5274).

References

Du, Y. F., Chang, J. B., Reiner, J. & Zhao, K. (2008). J. Org. Chem. 73, 2007-2010.

Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2010). E66, o97 [doi:10.1107/S1600536809052416]

1-Methoxy-2-methyl-1H-benzo[f]indole-3-carbonitrile

Jiang-Sheng Li, Qi-Xi He and Peng-Yu Li

S1. Comment

The title compound, (I), comprises of a benzo ring and its fused indole ring (Fig. 1). The aromatic skeleton is essentially planar.

In the crystal packing, π - π stacking interaction and C—H··· π interaction help establish the molecular packing. The shortest centroid-centroid separation is 3.4652 (10) Å, which occurs between the pyrrole parts of the molecules.

S2. Experimental

The compound was obtained according to the method of Du and his coworkers (2008). Colourless block of (I) was grown by slow evaporation of its ethanolic solution.

S3. Refinement

All H atoms were positioned geometrically (C—H = 0.93 and 0.96 Å)and refined as riding with $U_{iso}(H) = 1.2U_{eq}(CH)$ or $1.5U_{eq}(CH_3)$.

Figure 1

The molecular structure of (I) showing displacement ellipsoids drawn at the 50% probability level.

1-Methoxy-2-methyl-1H-benzo[f]indole-3-carbonitrile

Crystal data

 $C_{15}H_{12}N_2O$ $M_r = 236.27$ Monoclinic, C2/cHall symbol: -C 2yc a = 18.663 (4) Åb = 7.3763 (15) Åc = 18.589 (4) Å $\beta = 113.46 (3)^{\circ}$ V = 2347.6 (8) Å³ Z = 8

Data collection

Rigaku Saturn CCD
diffractometer
Radiation source: rotating anode
Confocal monochromator
Detector resolution: 7.31 pixels mm ⁻¹
ω and φ scans
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
$T_{\min} = 0.983, \ T_{\max} = 0.986$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.035$ H-atom parameters constrained $wR(F^2) = 0.094$ S = 1.04where $P = (F_0^2 + 2F_c^2)/3$ 2060 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.19 \text{ e} \text{ Å}^{-3}$ 166 parameters 0 restraints $\Delta \rho_{\rm min} = -0.16 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier Extinction coefficient: 0.0212 (18) map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\tilde{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.43321 (5)	0.84231 (12)	0.08385 (5)	0.0257 (3)	
N1	0.35813 (6)	0.90176 (14)	0.06827 (6)	0.0203 (3)	

F(000) = 992 $D_{\rm x} = 1.337 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 3553 reflections $\theta = 2.2 - 27.9^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 113 KBlock, colourless $0.20 \times 0.18 \times 0.16 \text{ mm}$

11412 measured reflections 2060 independent reflections 1858 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.035$ $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$ $h = -22 \rightarrow 22$ $k = -8 \rightarrow 8$ $l = -22 \rightarrow 22$

 $w = 1/[\sigma^2(F_0^2) + (0.0542P)^2 + 1.1054P]$ Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

N2	0.11930 (6)	1.14000 (15)	-0.10753 (6)	0.0269 (3)
C1	0.32134 (7)	0.87498 (16)	0.11865 (7)	0.0194 (3)
C2	0.34992 (7)	0.79261 (17)	0.19296 (7)	0.0223 (3)
H2	0.4010	0.7503	0.2163	0.027*
C3	0.29960 (7)	0.77742 (16)	0.22936 (7)	0.0223 (3)
H3	0.3171	0.7248	0.2789	0.027*
C4	0.22060 (7)	0.83997 (16)	0.19371 (7)	0.0201 (3)
C5	0.16852 (7)	0.81573 (17)	0.23131 (7)	0.0235 (3)
Н5	0.1861	0.7589	0.2800	0.028*
C6	0.09292 (7)	0.87424 (18)	0.19742 (7)	0.0256 (3)
H6	0.0597	0.8579	0.2232	0.031*
C7	0.06515 (8)	0.95940 (18)	0.12338 (7)	0.0249 (3)
H7	0.0138	1.0002	0.1008	0.030*
C8	0.11331 (7)	0.98234 (16)	0.08458 (7)	0.0208 (3)
H8	0.0941	1.0372	0.0355	0.025*
C9	0.19198 (7)	0.92382 (15)	0.11816 (7)	0.0181 (3)
C10	0.24518 (7)	0.93956 (15)	0.08037 (7)	0.0181 (3)
C11	0.23885 (7)	1.00368 (15)	0.00486 (7)	0.0185 (3)
C12	0.31010 (7)	0.97803 (16)	-0.00040 (7)	0.0195 (3)
C13	0.33588 (8)	1.02295 (18)	-0.06433 (7)	0.0253 (3)
H13A	0.3631	1.1367	-0.0531	0.038*
H13B	0.2911	1.0317	-0.1131	0.038*
H13C	0.3700	0.9295	-0.0681	0.038*
C14	0.48901 (8)	0.9831 (2)	0.12264 (9)	0.0327 (4)
H14A	0.4818	1.0829	0.0873	0.049*
H14B	0.5410	0.9362	0.1383	0.049*
H14C	0.4813	1.0239	0.1681	0.049*
C15	0.17262 (7)	1.07923 (16)	-0.05700 (7)	0.0196 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0194 (5)	0.0244 (5)	0.0344 (5)	0.0039 (4)	0.0119 (4)	-0.0008 (4)
N1	0.0163 (5)	0.0211 (5)	0.0235 (6)	0.0016 (4)	0.0079 (4)	-0.0004 (4)
N2	0.0258 (6)	0.0317 (7)	0.0227 (6)	0.0015 (5)	0.0093 (5)	0.0016 (5)
C1	0.0211 (6)	0.0161 (6)	0.0216 (6)	-0.0016 (5)	0.0090 (5)	-0.0021 (5)
C2	0.0203 (6)	0.0193 (6)	0.0237 (7)	0.0015 (5)	0.0049 (5)	-0.0005 (5)
C3	0.0274 (7)	0.0180 (6)	0.0190 (6)	-0.0013 (5)	0.0067 (5)	0.0008 (5)
C4	0.0241 (7)	0.0155 (6)	0.0201 (6)	-0.0031 (5)	0.0082 (5)	-0.0034 (5)
C5	0.0300 (7)	0.0205 (6)	0.0200 (6)	-0.0063 (5)	0.0100 (5)	-0.0031 (5)
C6	0.0265 (7)	0.0283 (7)	0.0258 (7)	-0.0094 (6)	0.0145 (6)	-0.0062 (5)
C7	0.0199 (6)	0.0273 (7)	0.0259 (7)	-0.0043 (5)	0.0076 (5)	-0.0063 (5)
C8	0.0209 (6)	0.0200 (6)	0.0190 (6)	-0.0034 (5)	0.0054 (5)	-0.0030 (5)
C9	0.0203 (6)	0.0142 (6)	0.0187 (6)	-0.0042 (5)	0.0067 (5)	-0.0044 (5)
C10	0.0208 (6)	0.0135 (6)	0.0188 (6)	-0.0030 (5)	0.0065 (5)	-0.0033 (5)
C11	0.0203 (6)	0.0158 (6)	0.0181 (6)	-0.0023 (5)	0.0064 (5)	-0.0019 (4)
C12	0.0227 (7)	0.0153 (6)	0.0198 (6)	-0.0026 (5)	0.0076 (5)	-0.0032 (5)
C13	0.0295 (7)	0.0232 (7)	0.0262 (7)	-0.0014 (5)	0.0143 (6)	-0.0012 (5)

supporting information

C14	0.0183 (7)	0.0371 (8)	0.0394 (8)	-0.0031 (6)	0.0079 (6)	-0.0001 (6)
C15	0.0225 (7)	0.0191 (6)	0.0192 (6)	-0.0034 (5)	0.0104 (5)	-0.0025 (5)

Geometric parameters (Å, °)

01—N1	1.3844 (13)	С6—Н6	0.9300
O1—C14	1.4442 (16)	C7—C8	1.3685 (18)
N1—C12	1.3559 (16)	C7—H7	0.9300
N1—C1	1.3784 (16)	C8—C9	1.4149 (18)
N2—C15	1.1529 (16)	C8—H8	0.9300
C1—C10	1.3958 (17)	C9—C10	1.4312 (17)
C1—C2	1.4054 (17)	C10-C11	1.4408 (16)
C2—C3	1.3631 (19)	C11—C12	1.3846 (18)
C2—H2	0.9300	C11—C15	1.4245 (18)
C3—C4	1.4311 (18)	C12—C13	1.4862 (17)
С3—Н3	0.9300	C13—H13A	0.9600
C4—C5	1.4163 (18)	C13—H13B	0.9600
C4—C9	1.4292 (17)	C13—H13C	0.9600
C5—C6	1.3662 (19)	C14—H14A	0.9600
С5—Н5	0.9300	C14—H14B	0.9600
C6—C7	1.4106 (19)	C14—H14C	0.9600
N1-01-C14	110.19 (9)	С9—С8—Н8	119.5
C12 - N1 - C1	112.19 (10)	C8—C9—C4	118.80 (11)
C12 - N1 - O1	124.28 (10)	C8—C9—C10	124.02 (11)
C1—N1—O1	123.30 (10)	C4—C9—C10	117.16 (11)
N1—C1—C10	106.64 (11)	C1—C10—C9	119.12 (11)
N1-C1-C2	129.27 (11)	C1C10C11	106.30 (11)
C10—C1—C2	124.03 (12)	C9—C10—C11	134.51 (11)
C3—C2—C1	117.16 (11)	C12—C11—C15	123.07 (11)
C3—C2—H2	121.4	C12—C11—C10	108.38 (11)
C1—C2—H2	121.4	C15—C11—C10	128.54 (11)
C2—C3—C4	122.01 (12)	N1—C12—C11	106.49 (11)
С2—С3—Н3	119.0	N1—C12—C13	122.83 (11)
C4—C3—H3	119.0	C11—C12—C13	130.67 (12)
C5—C4—C9	118.56 (11)	C12—C13—H13A	109.5
C5—C4—C3	120.91 (11)	C12—C13—H13B	109.5
C9—C4—C3	120.51 (11)	H13A—C13—H13B	109.5
C6—C5—C4	121.21 (12)	C12—C13—H13C	109.5
С6—С5—Н5	119.4	H13A—C13—H13C	109.5
C4—C5—H5	119.4	H13B—C13—H13C	109.5
C5—C6—C7	120.10 (12)	O1—C14—H14A	109.5
С5—С6—Н6	120.0	O1—C14—H14B	109.5
С7—С6—Н6	120.0	H14A—C14—H14B	109.5
C8—C7—C6	120.40 (12)	O1—C14—H14C	109.5
С8—С7—Н7	119.8	H14A—C14—H14C	109.5
С6—С7—Н7	119.8	H14B—C14—H14C	109.5
С7—С8—С9	120.91 (12)	N2-C15-C11	179.39 (13)

С7—С8—Н8	119.5		
C14—O1—N1—C12	93.87 (13)	N1—C1—C10—C9	178.00 (10)
C14—O1—N1—C1	-92.15 (13)	C2-C1-C10-C9	0.53 (18)
C12—N1—C1—C10	-0.59 (13)	N1-C1-C10-C11	0.58 (12)
O1—N1—C1—C10	-175.22 (10)	C2-C1-C10-C11	-176.89 (11)
C12—N1—C1—C2	176.70 (12)	C8—C9—C10—C1	-179.17 (11)
O1—N1—C1—C2	2.08 (19)	C4—C9—C10—C1	-0.57 (16)
N1—C1—C2—C3	-177.49 (11)	C8—C9—C10—C11	-2.7 (2)
C10—C1—C2—C3	-0.62 (18)	C4—C9—C10—C11	175.95 (12)
C1—C2—C3—C4	0.78 (18)	C1—C10—C11—C12	-0.40 (13)
C2—C3—C4—C5	177.32 (11)	C9—C10—C11—C12	-177.24 (12)
C2—C3—C4—C9	-0.89 (18)	C1-C10-C11-C15	178.68 (11)
C9—C4—C5—C6	-1.41 (18)	C9—C10—C11—C15	1.8 (2)
C3—C4—C5—C6	-179.65 (11)	C1—N1—C12—C11	0.33 (13)
C4—C5—C6—C7	0.48 (19)	O1—N1—C12—C11	174.90 (10)
C5—C6—C7—C8	0.70 (19)	C1—N1—C12—C13	179.24 (11)
C6—C7—C8—C9	-0.91 (18)	O1—N1—C12—C13	-6.20 (18)
C7—C8—C9—C4	-0.04 (17)	C15—C11—C12—N1	-179.09 (10)
C7—C8—C9—C10	178.54 (11)	C10-C11-C12-N1	0.05 (13)
C5—C4—C9—C8	1.18 (17)	C15—C11—C12—C13	2.1 (2)
C3—C4—C9—C8	179.42 (10)	C10-C11-C12-C13	-178.73 (12)
C5—C4—C9—C10	-177.50 (10)	C12-C11-C15-N2	20 (14)
C3—C4—C9—C10	0.75 (17)	C10-C11-C15-N2	-159 (14)

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C4–C9 ring.

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
C3—H3··· <i>Cg</i> 3 ⁱ	0.93	2.65	3.3956 (15)	138

Symmetry code: (i) x, -y-1, z-1/2.