

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diaquabis(5-carboxy-2-propyl-1*H*imidazole-4-carboxylato- $\kappa^2 N^3$, O^4)manganese(II) *N*,*N*-dimethylformamide disolvate

Jian-Bin Yan, Shi-Jie Li, Wen-Dong Song,* Hao Wang and Dong-Liang Miao

College of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China Correspondence e-mail: songwd60@126.com

Received 14 December 2009; accepted 18 December 2009

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.004 Å; R factor = 0.041; wR factor = 0.114; data-to-parameter ratio = 13.1.

In the title complex, $[Mn(C_8H_9N_2O_4)_2(H_2O)_2]\cdot 2C_3H_7NO$, the Mn^{II} atom, lying on an inversion centre, is six-coordinated by two *N*,*O*-bidentate 5-carboxy-2-propyl-1*H*-imidazole-4-carboxylate ligands and two water molecules in a distorted octahedral environment. In the crystal structure, the complex molecules and dimethylformamide solvent molecules are linked by $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds into a two-dimensional supramolecular network parallel to (001).

Related literature

For the potential uses and diverse structural types of complexes containing metals and *N*-heterocyclic carboxylic acids, see: Liang *et al.* (2002); Net *et al.* (1989); Nie *et al.* (2007); Song *et al.* (2010).

Experimental

Crystal data $[Mn(C_8H_9N_2O_4)_2(H_2O)_2]$ -- $2C_3H_7NO$ $M_r = 631.51$ Triclinic, $P\overline{1}$

a = 7.3992 (8) Å b = 9.4429 (11) Å c = 11.1978 (13) Å $\alpha = 76.591$ (1)° $\beta = 87.927 (1)^{\circ}$ $\gamma = 68.863 (1)^{\circ}$ $V = 708.89 (14) \text{ Å}^{3}$ Z = 1

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996)) $T_{min} = 0.847, T_{max} = 0.896$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.114$ S = 1.052508 reflections 191 parameters Mo $K\alpha$ radiation $\mu = 0.54 \text{ mm}^{-1}$ T = 273 K $0.32 \times 0.25 \times 0.21 \text{ mm}$

metal-organic compounds

3653 measured reflections 2508 independent reflections 2131 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.025$

27 restraints H-atom parameters constrained $\Delta \rho_{max} = 0.34$ e Å⁻³ $\Delta \rho_{min} = -0.32$ e Å⁻³

Table 1

Selected bond lengths (Å).

Mn1-N1 Mn1 O1W	2.1960 (18)	Mn1-O1	2.2530 (17)
MIII=01W	2.2050 (17)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdots O9^{i}$	0.86	1.84	2.682 (3)	165
O3−H3···O2	0.82	1.65	2.471 (2)	176
$O1W - H1W \cdot \cdot \cdot O4^{ii}$	0.85	1.92	2.764 (2)	170
$O1W - H2W \cdots O4^{iii}$	0.84	2.11	2.927 (2)	164

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x, -y + 1, -z; (iii) x - 1, y + 1, z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge Guang Dong Ocean University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2265).

References

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Liang, Y. C., Cao, R. & Hong, M. C. (2002). Inorg. Chem. Commun. 5, 366–368.Net, G., Bayon, J. C., Butler, W. M. & Rasmussen, P. (1989). J. Chem. Soc. Chem. Commun. pp. 1022–1023.

Nie, X.-L., Wen, H.-L., Wu, Z.-S., Liu, D.-B. & Liu, C.-B. (2007). Acta Cryst. E63, m753–m755.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Song, W.-D., Yan, J.-B., Li, S.-J., Miao, D.-L. & Li, X.-F. (2010). Acta Cryst. E66, m53.

supporting information

Acta Cryst. (2010). E66, m99 [doi:10.1107/S1600536809054634]

Diaquabis(5-carboxy-2-propyl-1*H*-imidazole-4-carboxylato- $\kappa^2 N^3$, O^4)manganese(II) *N*, *N*-dimethylformamide disolvate

Jian-Bin Yan, Shi-Jie Li, Wen-Dong Song, Hao Wang and Dong-Liang Miao

S1. Comment

Structures of complexes containing metals and N-heterocyclic carboxylic acids have attracted much attention. The N-heterocyclic carboxylic acids can function as multidentate ligands, exhibiting diverse structrual types, and their metal complexes can be potentially used as functional materials (Liang *et al.*, 2002; Net *et al.*, 1989; Nie *et al.*, 2007). Recently, we have reported a new complex, poly[diaquabis(4-carboxy-2-propyl-1*H*-imidazole-5-carboxylato- $\kappa^3 N^3, O^4: O^5$) calcium(II)] (Song *et al.*, 2010). In this paper, we report the synthesis and structure of a Mn^{II} complex obtained under hydrothermal conditions.

As illustrated in Fig. 1, the title complex molecule contains one Mn^{II} atom, lying on an inversion centre, one monodeprotonated 5-carboxy-2-propyl-1*H*-imidazole-4-carboxylate ligand, one coordinated water molecule and one dimethylformamide solvent molecule in the asymmetric unit. The Mn^{II} atom is six-coordinated by two N,*O*-bidentate ligands and two water molecules in a distorted octahedral environment (Table 1). In the crystal structure, a two-dimensional supramolecular network is formed by N—H···O and O—H···O hydrogen bonds (Table 2 and Fig. 2).

S2. Experimental

A mixture of $MnCl_2$ (0.5 mmol, 0.06 g) and 2-propyl-1*H*-imidazole-4,5-dicarboxylic acid (0.5 mmol, 0.99 g) in 15 ml of dimethylformamide solution was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 433 K for 4 d. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

S3. Refinement

C- and N-bound H atoms were placed at calculated positions and refined as riding atoms, with C—H = 0.93 (CH), 0.97 (CH₂) and 0.96 (CH₃) Å and N—H = 0.86 Å and with $U_{iso}(H) = 1.2(1.5 \text{ for methyl})U_{eq}(C, N)$. H atoms of water and carboxyl group were located in a difference Fourier map and refined as riding atoms, with $U_{iso}(H) = 1.5U_{eq}(O)$.

Molecular structure of the title compound. Displacement ellipsoids are shown at the 30% probability level. [Symmetry code: (i) -x, 2 - y, -z.]

Figure 2

A view of the two-dimensional network constructed by O—H…O and N—H…O hydrogen bonds (dashed lines).

Diaquabis(5-carboxy-2-propyl-1*H*-imidazole-4-carboxylato- $\kappa^2 N^3$, O^4)manganese(II) *N*, *N*-dimethylformamide disolvate

Crystal data	
$[Mn(C_8H_9N_2O_4)_2H_2O)_2] \cdot 2C_3H_7NO$ $M_r = 631.51$ Triclinic, $P1$ Hall symbol: -P 1 a = 7.3992 (8) Å b = 9.4429 (11) Å c = 11.1978 (13) Å a = 76.591 (1)° $\beta = 87.927$ (1)° $\gamma = 68.863$ (1)° V = 708.89 (14) Å ³	Z = 1 F(000) = 331 $D_x = 1.479 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3600 reflections $\theta = 1.4-28^{\circ}$ $\mu = 0.54 \text{ mm}^{-1}$ T = 273 K Block, colourless $0.32 \times 0.25 \times 0.21 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube φ and ω scan Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996)) $T_{min} = 0.847, T_{max} = 0.896$ 3653 measured reflections	2508 independent reflections 2131 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 25.2^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = -8 \rightarrow 8$ $k = -9 \rightarrow 11$ $l = -13 \rightarrow 12$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.114$ S = 1.05 2508 reflections 191 parameters 27 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0549P)^2 + 0.120P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.34 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.32 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Mn1	0.0000	1.0000	0.0000	0.03110 (18)
O1	-0.0548 (3)	0.92199 (19)	-0.16620 (15)	0.0379 (4)
O1W	-0.2795 (2)	0.9893 (2)	0.06711 (17)	0.0434 (4)
H1W	-0.2933	0.9113	0.0484	0.065*
H2W	-0.3672	1.0743	0.0329	0.065*
O2	0.0012 (3)	0.7160 (2)	-0.24509 (15)	0.0424 (4)
O3	0.1886 (3)	0.4324 (2)	-0.18355 (17)	0.0469 (5)
Н3	0.1294	0.5271	-0.2021	0.070*

O4	0.3630 (3)	0.25664 (19)	-0.02155 (18)	0.0456 (5)
N1	0.1434 (3)	0.7447 (2)	0.04969 (16)	0.0279 (4)
N2	0.3073 (3)	0.4924 (2)	0.10599 (17)	0.0312 (4)
H2	0.3782	0.4030	0.1504	0.037*
C1	0.1335 (3)	0.6770 (2)	-0.0454 (2)	0.0261 (5)
C2	0.2340 (3)	0.5196 (3)	-0.0111 (2)	0.0285 (5)
C3	0.2498 (3)	0.6292 (3)	0.1400 (2)	0.0303 (5)
C4	0.0194 (3)	0.7798 (3)	-0.1592 (2)	0.0306 (5)
C5	0.2661 (3)	0.3927 (3)	-0.0755 (2)	0.0337 (5)
C6	0.2933 (4)	0.6449 (3)	0.2642 (2)	0.0410 (6)
H6A	0.2584	0.7548	0.2625	0.049*
H6B	0.4317	0.5939	0.2840	0.049*
C7	0.1855 (5)	0.5745 (4)	0.3637 (3)	0.0616 (8)
H7A	0.0477	0.6206	0.3409	0.074*
H7B	0.2268	0.4633	0.3688	0.074*
C8	0.2178 (5)	0.5986 (4)	0.4887 (3)	0.0648 (9)
H8A	0.3457	0.5307	0.5217	0.097*
H8B	0.1234	0.5753	0.5427	0.097*
H8C	0.2049	0.7052	0.4811	0.097*
O9	0.4607 (3)	-0.2429 (2)	0.7294 (2)	0.0626 (6)
N5	0.3789 (3)	0.0120 (3)	0.6354 (2)	0.0470 (6)
C17	0.4889 (4)	-0.1190 (4)	0.7092 (3)	0.0501 (7)
H17	0.5962	-0.1181	0.7492	0.060*
C18	0.2038 (5)	0.0185 (4)	0.5761 (3)	0.0702 (10)
H18A	0.0937	0.0641	0.6212	0.105*
H18B	0.2138	-0.0852	0.5745	0.105*
H18C	0.1880	0.0810	0.4936	0.105*
C19	0.4104 (7)	0.1561 (4)	0.6248 (4)	0.0879 (12)
H19A	0.5309	0.1353	0.6673	0.132*
H19B	0.3061	0.2259	0.6604	0.132*
H19C	0.4151	0.2033	0.5396	0.132*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.0369 (3)	0.0180 (3)	0.0364 (3)	-0.0063 (2)	-0.0014 (2)	-0.0080 (2)
01	0.0483 (10)	0.0222 (9)	0.0367 (9)	-0.0057 (8)	-0.0087 (7)	-0.0043 (7)
O1W	0.0411 (10)	0.0287 (9)	0.0616 (12)	-0.0120 (8)	0.0038 (8)	-0.0142 (8)
O2	0.0568 (11)	0.0346 (10)	0.0329 (9)	-0.0101 (9)	-0.0099 (8)	-0.0112 (8)
O3	0.0609 (12)	0.0307 (10)	0.0473 (11)	-0.0079 (9)	-0.0035 (9)	-0.0189 (8)
O4	0.0465 (10)	0.0218 (9)	0.0645 (12)	-0.0044 (8)	-0.0026 (9)	-0.0145 (8)
N1	0.0344 (10)	0.0210 (10)	0.0277 (10)	-0.0092 (8)	-0.0017 (8)	-0.0055 (8)
N2	0.0332 (10)	0.0188 (9)	0.0351 (11)	-0.0048 (8)	-0.0052 (8)	-0.0002 (8)
C1	0.0279 (11)	0.0210 (11)	0.0294 (11)	-0.0085 (9)	0.0007 (9)	-0.0064 (9)
C2	0.0288 (11)	0.0228 (12)	0.0341 (12)	-0.0087 (9)	0.0016 (9)	-0.0083 (9)
C3	0.0340 (12)	0.0234 (12)	0.0328 (12)	-0.0106 (10)	-0.0036 (9)	-0.0040 (9)
C4	0.0330 (12)	0.0272 (12)	0.0295 (12)	-0.0087 (10)	-0.0024 (9)	-0.0055 (10)
C5	0.0326 (12)	0.0267 (13)	0.0440 (14)	-0.0105 (10)	0.0066 (10)	-0.0138 (11)

supporting information

C6	0.0512 (15)	0.0365 (14)	0.0354 (13)	-0.0164 (12)	-0.0098 (11)	-0.0062 (11)
C7	0.072 (2)	0.076 (2)	0.0455 (16)	-0.0325 (18)	0.0089 (15)	-0.0238 (15)
C8	0.069 (2)	0.077 (2)	0.0424 (16)	-0.0168 (19)	0.0026 (15)	-0.0191 (16)
09	0.0712 (14)	0.0298 (11)	0.0699 (14)	-0.0062 (10)	-0.0216 (11)	0.0047 (10)
N5	0.0535 (13)	0.0309 (12)	0.0502 (13)	-0.0098 (11)	0.0019 (11)	-0.0065 (10)
C17	0.0472 (15)	0.0471 (18)	0.0500 (16)	-0.0084 (14)	-0.0051 (13)	-0.0129 (13)
C18	0.0575 (19)	0.058 (2)	0.073 (2)	-0.0073 (16)	-0.0120 (16)	0.0061 (17)
C19	0.134 (4)	0.050 (2)	0.089 (3)	-0.044 (2)	0.019 (3)	-0.0182 (19)

Geometric parameters (Å, °)

Mn1—N1	2.1960 (18)	С6—Н6А	0.9700
Mn1—O1W	2.2036 (17)	C6—H6B	0.9700
Mn1—O1	2.2530 (17)	C7—C8	1.509 (4)
O1—C4	1.238 (3)	С7—Н7А	0.9700
O1W—H1W	0.8509	С7—Н7В	0.9700
O1W—H2W	0.8436	C8—H8A	0.9600
O2—C4	1.282 (3)	C8—H8B	0.9600
O3—C5	1.272 (3)	C8—H8C	0.9600
О3—Н3	0.8200	O9—C17	1.229 (4)
O4—C5	1.240 (3)	N5-C17	1.313 (4)
N1—C3	1.326 (3)	N5—C19	1.440 (4)
N1—C1	1.379 (3)	N5—C18	1.452 (4)
N2—C3	1.347 (3)	C17—H17	0.9300
N2—C2	1.369 (3)	C18—H18A	0.9600
N2—H2	0.8600	C18—H18B	0.9600
C1—C2	1.367 (3)	C18—H18C	0.9600
C1—C4	1.480 (3)	C19—H19A	0.9600
C2—C5	1.481 (3)	C19—H19B	0.9600
C3—C6	1.491 (3)	C19—H19C	0.9600
C6—C7	1.516 (4)		
N1 ⁱ —Mn1—N1	180.0	O4—C5—C2	118.9 (2)
N1 ⁱ —Mn1—O1W	87.40 (7)	O3—C5—C2	116.6 (2)
N1—Mn1—O1W	92.60 (6)	C3—C6—C7	112.7 (2)
$N1^{i}$ — $Mn1$ — $O1W^{i}$	92.60 (6)	С3—С6—Н6А	109.1
N1-Mn1-O1W ⁱ	87.40 (7)	С7—С6—Н6А	109.1
O1W-Mn1-O1W ⁱ	180.0	С3—С6—Н6В	109.1
$N1^{i}$ — $Mn1$ — $O1^{i}$	75.41 (6)	С7—С6—Н6В	109.1
$N1$ — $Mn1$ — $O1^i$	104.59 (6)	H6A—C6—H6B	107.8
O1W—Mn1—O1 ⁱ	91.40 (6)	C8—C7—C6	113.4 (3)
O1W ⁱ —Mn1—O1 ⁱ	88.60 (6)	С8—С7—Н7А	108.9
N1 ⁱ —Mn1—O1	104.59 (6)	С6—С7—Н7А	108.9
N1—Mn1—O1	75.41 (6)	С8—С7—Н7В	108.9
O1W—Mn1—O1	88.60 (6)	С6—С7—Н7В	108.9
O1W ⁱ —Mn1—O1	91.40 (6)	H7A—C7—H7B	107.7
Ol ⁱ —Mn1—Ol	180.0	С7—С8—Н8А	109.5
C4—O1—Mn1	115.45 (14)	C7—C8—H8B	109.5

107.7	H8A—C8—H8B	109.5
107.5	С7—С8—Н8С	109.5
112.0	H8A—C8—H8C	109.5
109.5	H8B—C8—H8C	109.5
105.96 (18)	C17—N5—C19	121.9 (3)
141.35 (15)	C17—N5—C18	119.5 (3)
112.53 (13)	C19—N5—C18	118.0 (3)
108.51 (18)	O9—C17—N5	125.0 (3)
125.7	O9—C17—H17	117.5
125.7	N5—C17—H17	117.5
109.72 (19)	N5—C18—H18A	109.5
132.5 (2)	N5—C18—H18B	109.5
117.81 (19)	H18A—C18—H18B	109.5
105.37 (19)	N5—C18—H18C	109.5
132.1 (2)	H18A—C18—H18C	109.5
122.5 (2)	H18B—C18—H18C	109.5
110.44 (19)	N5—C19—H19A	109.5
125.5 (2)	N5—C19—H19B	109.5
124.0 (2)	H19A—C19—H19B	109.5
123.4 (2)	N5—C19—H19C	109.5
118.6 (2)	H19A—C19—H19C	109.5
117.9 (2)	H19B—C19—H19C	109.5
124.4 (2)		
	107.7 107.5 112.0 109.5 $105.96 (18)$ $141.35 (15)$ $112.53 (13)$ $108.51 (18)$ 125.7 125.7 $109.72 (19)$ $132.5 (2)$ $117.81 (19)$ $105.37 (19)$ $132.1 (2)$ $122.5 (2)$ $110.44 (19)$ $125.5 (2)$ $124.0 (2)$ $123.4 (2)$ $118.6 (2)$ $117.9 (2)$ $124.4 (2)$	107.7 $H8A-C8-H8B$ 107.5 $C7-C8-H8C$ 112.0 $H8A-C8-H8C$ 109.5 $H8B-C8-H8C$ 105.96 (18) $C17-N5-C19$ 141.35 (15) $C17-N5-C18$ 112.53 (13) $C19-N5-C18$ 108.51 (18) $O9-C17-N5$ 125.7 $O9-C17-H17$ 125.7 $N5-C18-H18A$ 132.5 (2) $N5-C18-H18B$ 117.81 (19) $H18A-C18-H18B$ 105.37 (19) $N5-C18-H18C$ 132.1 (2) $H18B-C18-H18C$ 125.5 (2) $N5-C19-H19A$ 125.5 (2) $N5-C19-H19B$ 124.0 (2) $H19A-C19-H19B$ 123.4 (2) $N5-C19-H19C$ 117.9 (2) $H19B-C19-H19C$ 117.9 (2) $H19B-C19-H19C$

Symmetry code: (i) -x, -y+2, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N2—H2…O9 ⁱⁱ	0.86	1.84	2.682 (3)	165
O3—H3…O2	0.82	1.65	2.471 (2)	176
O1 <i>W</i> —H1 <i>W</i> ···O4 ⁱⁱⁱ	0.85	1.92	2.764 (2)	170
$O1W - H2W - O4^{iv}$	0.84	2.11	2.927 (2)	164

Symmetry codes: (ii) -*x*+1, -*y*, -*z*+1; (iii) -*x*, -*y*+1, -*z*; (iv) *x*-1, *y*+1, *z*.