

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,4-Dichloro-1-[1-(2,4-dichlorobenzyloxy)ethyl]benzene

Jerry P. Jasinski,^a* Ray J. Butcher,^b C. S. Chidan Kumar,^c H. S. Yathirajan^c and B. Narayana^d

^aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ^bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, ^cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India Correspondence e-mail: jjasinski@keene.edu

Received 7 December 2009; accepted 11 December 2009

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.002 Å; R factor = 0.031; wR factor = 0.086; data-to-parameter ratio = 27.3.

In the title compound, C₁₅H₁₂Cl₄O, the dihedral angle between the least-squares planes of the two benzene rings is 82.6 $(9)^{\circ}$. The dihedral angles between the COC mean plane of the oxy group and the two benzene rings are 84.3 (5) and 10.8 (5)°. In the crystal, two weak $\pi - \pi$ interactions [centroid– centroid distances = 3.9989(8) and 3.7912(8) Å] and a C- $H \cdots \pi$ interaction are observed.

Related literature

For related structures, see: Yan et al. (2007); Cui et al. (2005); Moratti et al. (2007); Kotila et al. (1996). For compounds related to bis-lactim ethers of cyclic dipeptides, see: Bolte et al. (1999). For catalytic transfer hydrogenolysis of benzyl ethers, see: Brigas et al. (1999). For details of theoretical calculations, see: Becke (1988, 1993); Frisch et al. (2004); Hehre et al. (1986); Lee et al. (1988); Schmidt & Polik (2007). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental

Crystal data

-	
C ₁₅ H ₁₂ Cl ₄ O	$\gamma = 71.467 \ (4)^{\circ}$
$M_r = 350.05$	V = 758.22 (5) Å ³
Triclinic, $P\overline{1}$	Z = 2
a = 9.3755 (4) Å	Mo $K\alpha$ radiation
b = 9.9229 (4) Å	$\mu = 0.77 \text{ mm}^{-1}$
c = 9.9667 (4) Å	$T = 200 { m K}$
$\alpha = 62.313 \ (3)^{\circ}$	$0.47 \times 0.42 \times 0.27 \text{ mm}$
$\beta = 70.246 \ (4)^{\circ}$	

Data collection

Oxford Diffraction Gemini
diffractometer
Absorption correction: multi-scan
(CrysAlis RED; Oxford
Diffraction, 2007)
$T_{\rm min} = 0.638, T_{\rm max} = 0.812$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.086$ S = 1.024961 reflections

10547 measured reflections 4961 independent reflections 3334 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.015$

182 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.25$ e Å⁻³

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	Н∙∙∙А	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C12-H12A\cdots Cg1^{i}$	0.95	2.97	3.8888 (15)	162

Symmetry code: (i) x, y - 1, z + 1. Cg1 is the centroid of the C1–C6 ring.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

CSC thanks the University of Mysore for use of their research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2502).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Becke, A. D. (1988). Phys. Rev. A38, 3098-100.
- Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.
- Bolte, M., Benecke, B. & Egert, E. (1999). Acta Cryst. C55, 964-968.
- Brigas, A. F., Clegg, W., Johnstone, R. A. W. & Mendonca, R. F. (1999). Acta Cryst. C55, 778-781.
- Cui, Y., Liu, H.-M. & Zhang, W.-Q. (2005). Acta Cryst. E61, 0685-0686.
- Frisch, M. J. et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA. Hehre, W. J., Random, L., Schleyer, P. R. & Pople, J. A. (1986). In Ab Initio Molecular Orbital Theory. New York: Wiley.

- Kotila, S., Jäntti, A., Penttinen, S. & Bach, T. (1996). Acta Cryst. C52, 1722-1725.

- Lee, C., Yang, W. & Parr, R. G. (1988). *Phys. Rev. B*, **37**, 785–789.
 Moratti, S. C., Simpson, J. & Tierney, S. M. (2007). *Acta Cryst.* E63, 03954.
 Oxford Diffraction (2007). *CrysAlis PRO* and *CrysAlis RED*. Oxford Diffraction Ltd, Abingdon, England.
- Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC: Holland, MI, USA, available from http://www.webmo.net. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yan, L.-Z., Bi, S. & Ren, R. (2007). Acta Cryst. E63, 0775-0776.

supporting information

Acta Cryst. (2010). E66, o165-o166 [doi:10.1107/S1600536809053422]

2,4-Dichloro-1-[1-(2,4-dichlorobenzyloxy)ethyl]benzene

Jerry P. Jasinski, Ray J. Butcher, C. S. Chidan Kumar, H. S. Yathirajan and B. Narayana

S1. Comment

Ether is a class of chemical compounds which contain an ether group — an oxygen atom connected to two (substituted) alkyl or aryl groups — of general formula R–O–*R'*. Ethers, with their characteristic solvation abilities, excel as inert reaction media in numerous synthetic procedures. However, in practice this usefulness is often tempered by an unfortunate proclivity to facile air oxidation at ambient temperatures which leads to peroxide formation. The structures of the few related compounds *viz.*, 4-(benzyloxy)-2-fluorobenzonitrile (Yan *et al.*, 2007), 2-benzyloxy-3-nitropyridine (Cui *et al.*, 2005), 2,6-bis[2-(4-benzyloxyphenyl)ethyl]biphenyl (Moratti *et al.*, 2007), 3-*tert*-butyl-4-methyl-2-phenyl-3-(trimethylsilyloxy)oxetane and 2-(2-benzyloxyphenyl)-3-*tert*-butyl-3-(trimethylsilyloxy)oxetane (Kotila *et al.*, 1996), bislactim ethers of cyclic dipeptides: Compounds derived from *cyclo*(Gly-*L*-Val) (Bolte *et al.*, 1999) and 5-benzyloxy-1-phenyltetrazole: catalytic transfer hydrogenolysis of benzyl ethers (Brigas *et al.*, 1999) are already reported. In view of the importance of ethers, the synthesis and crystal structure of the title compound, (I), is reported.

In the title compound, $C_{15}H_{12}Cl_4O$, (I), the dihedral angle between the least squares planes of the two benzene rings is 82.6 (9)° (Fig.1). The angle between the mean planes of the oxy group and the two benzene rings is 84.3 (5)° and 10.8 (5)°, respectively. Each of the two dichloro benzene rings are stacked diagonally along the (011) plane (Fig. 2). While no classic hydrogen bonds are found, weak $\pi - \pi [Cg1 \cdots Cg1 = 3.9989$ (8) Å; 1 - *x*, 2 - *y*, 1 - *z* and $Cg2 \cdots Cg2 = 3.7912$ (8) Å; 2 - *x*, 1 - *y*, 2 - *z*] and C–H… π [C12–H12A…Cg1; Table 1] intermolecular interactions are observed. Bond length and bond angles are within normal ranges (Allen, 2002).

Following geometry optimization using AM1 with MOPAC (Schmidt & Polik, 2007) and density functional theory (DFT) theoretical calculations (Schmidt & Polik, 2007) at the B3LYP/6–31G(*d*) level (Becke, 1988, 1993; Lee *et al.*, 1988; Hehre *et al.*, 1986) with the Gaussian03 program package (Frisch *at al.*, 2004), the dihedral angle between the least squares planes of the two benzene rings becomes 83.6 (3)° (AM1) or 85.9 (6)° (DFT). The angles between the mean planes of the oxy group and the two benzene rings become 86.4 (2) and 3.5 (6)° (AM1) or 88.6 (5) and 5.5 (3)° (DFT), respectively. It is clear that the weak π - π and C—H··· π intermolecular interactions do influence crystal packing stability.

S2. Experimental

A mixture of 1-(2,4-dichlorophenyl)ethanol (0.01 mol, 1.91 g) and 2,4-dichloro-1-(chloromethyl)benzene (0.01 mol, 1.95 g) in 30 ml dry acetone was refluxed over water bath for 6 h (Fig. 3). The crude compound was filtered and recrystallized from ethyl acetate (m.p. 449–451 K). Composition for $C_{15}H_{12}Cl_4O$: C 51.39 (51.46), H 3.42 (3.46).

S3. Refinement

All of the C-bonded H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.95 to 1.00 Å, and with $U_{iso}(H) = 1.18-1.49 U_{eq}(C)$. The methyl group was allowed to rotate about the C—C bond.

Figure 1

Molecular structure of (I), showing the atom labeling scheme and 50% probability displacement ellipsoids. H atoms are presented as small circles of arbitrary radius.

Figure 2

Packing diagram of the title compound, (I), viewed down the *a* axis.

Figure 3

Scheme for the synthesis of 2,4-dichloro-1-{1-[(2,4-dichlorobenzyl) oxy]ethyl}benzene.

2,4-Dichloro-1-[1-(2,4-dichlorobenzyloxy)ethyl]benzene

Crystal data	
$C_{15}H_{12}Cl_4O$	Z = 2
$M_r = 350.05$	F(000) = 356
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.533 { m Mg m^{-3}}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.3755 (4) Å	Cell parameters from 5527 reflections
b = 9.9229 (4) Å	$\theta = 4.7 - 32.4^{\circ}$
c = 9.9667 (4) Å	$\mu=0.77~\mathrm{mm^{-1}}$
$\alpha = 62.313 \ (3)^{\circ}$	T = 200 K
$\beta = 70.246 \ (4)^{\circ}$	Chunk, colorless
$\gamma = 71.467 \ (4)^{\circ}$	$0.47 \times 0.42 \times 0.27 \text{ mm}$
$V = 758.22 (5) Å^3$	

Data collection

Oxford Diffraction Gemini diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 10.5081 pixels mm ⁻¹ φ and ω scans Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2007) $T_{\min} = 0.638, T_{\max} = 0.812$	10547 measured reflections 4961 independent reflections 3334 reflections with $I > 2\sigma(I)$ $R_{int} = 0.015$ $\theta_{max} = 32.5^{\circ}, \theta_{min} = 4.7^{\circ}$ $h = -13 \rightarrow 14$ $k = -14 \rightarrow 14$ $l = -14 \rightarrow 14$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.086$ S = 1.02 4961 reflections 182 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0476P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.34$ e Å ⁻³ $\Delta\rho_{min} = -0.25$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.36865 (4)	1.29719 (4)	0.57705 (4)	0.03911 (9)	
Cl2	0.69931 (4)	1.09520 (4)	0.12662 (4)	0.03879 (10)	
C13	0.62657 (4)	0.54530 (4)	1.05029 (5)	0.04802 (11)	
Cl4	1.07650 (5)	0.37832 (4)	1.34956 (4)	0.05247 (12)	
01	0.75079 (10)	1.00830 (9)	0.81884 (9)	0.0308 (2)	
C1	0.65742 (14)	1.12007 (12)	0.58044 (13)	0.0267 (2)	
C2	0.53833 (14)	1.19326 (12)	0.50167 (14)	0.0267 (2)	
C3	0.54921 (14)	1.18650 (12)	0.36200 (13)	0.0281 (3)	
H3A	0.4666	1.2370	0.3100	0.034*	
C4	0.68305 (15)	1.10458 (13)	0.30135 (13)	0.0286 (3)	
C5	0.80410 (15)	1.02893 (14)	0.37548 (14)	0.0323 (3)	
H5A	0.8951	0.9720	0.3324	0.039*	
C6	0.78960 (14)	1.03809 (14)	0.51481 (14)	0.0308 (3)	
H6A	0.8724	0.9869	0.5665	0.037*	
C7	0.64875 (15)	1.13389 (13)	0.72917 (13)	0.0298 (3)	
H7A	0.5404	1.1344	0.7932	0.036*	

C8	0.6967 (2)	1.28197 (15)	0.69213 (17)	0.0428 (3)	
H8A	0.6857	1.2908	0.7892	0.064*	
H8B	0.6307	1.3714	0.6291	0.064*	
H8C	0.8046	1.2794	0.6342	0.064*	
C9	0.69843 (15)	0.86580 (13)	0.89183 (14)	0.0301 (3)	
H9A	0.7024	0.8313	0.8118	0.036*	
H9B	0.5899	0.8804	0.9504	0.036*	
C10	0.79787 (14)	0.74457 (13)	1.00075 (13)	0.0259 (2)	
C11	0.77114 (14)	0.59377 (14)	1.08286 (14)	0.0298 (3)	
C12	0.85496 (15)	0.47887 (14)	1.19003 (14)	0.0330 (3)	
H12A	0.8339	0.3769	1.2447	0.040*	
C13	0.97003 (15)	0.51798 (14)	1.21437 (14)	0.0343 (3)	
C14	1.00324 (16)	0.66490 (15)	1.13334 (15)	0.0354 (3)	
H14A	1.0845	0.6889	1.1500	0.042*	
C15	0.91710 (15)	0.77740 (14)	1.02725 (14)	0.0298 (3)	
H15A	0.9399	0.8787	0.9717	0.036*	

Atomic displacement parameters (\mathring{A}^2)

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.03580 (17)	0.03395 (17)	0.03615 (18)	0.00737 (13)	-0.01065 (14)	-0.01213 (14)
0.0446 (2)	0.04732 (19)	0.02785 (16)	-0.01169 (15)	-0.00955 (14)	-0.01509 (14)
0.0493 (2)	0.03993 (19)	0.0552 (2)	-0.02003 (16)	-0.02309 (18)	-0.00438 (16)
0.0482 (2)	0.0489 (2)	0.0426 (2)	0.00674 (17)	-0.02492 (18)	-0.00436 (16)
0.0381 (5)	0.0265 (4)	0.0249 (4)	-0.0084 (4)	-0.0141 (4)	-0.0018 (3)
0.0305 (6)	0.0236 (5)	0.0224 (5)	-0.0070 (5)	-0.0087 (5)	-0.0033 (5)
0.0273 (6)	0.0194 (5)	0.0264 (6)	-0.0027 (4)	-0.0068 (5)	-0.0042 (4)
0.0283 (6)	0.0260 (6)	0.0254 (6)	-0.0056 (5)	-0.0113 (5)	-0.0028 (5)
0.0360 (7)	0.0277 (6)	0.0201 (5)	-0.0107 (5)	-0.0074 (5)	-0.0042 (5)
0.0292 (6)	0.0326 (6)	0.0281 (6)	-0.0019 (5)	-0.0057 (5)	-0.0097 (5)
0.0259 (6)	0.0350 (6)	0.0258 (6)	-0.0021 (5)	-0.0099 (5)	-0.0072 (5)
0.0351 (7)	0.0269 (6)	0.0232 (6)	-0.0033 (5)	-0.0111 (5)	-0.0054 (5)
0.0641 (10)	0.0304 (6)	0.0389 (7)	-0.0115 (7)	-0.0219 (7)	-0.0092 (6)
0.0342 (6)	0.0281 (6)	0.0258 (6)	-0.0091 (5)	-0.0107 (5)	-0.0044 (5)
0.0271 (6)	0.0265 (5)	0.0206 (5)	-0.0030 (5)	-0.0053 (5)	-0.0080 (5)
0.0296 (6)	0.0302 (6)	0.0287 (6)	-0.0075 (5)	-0.0070 (5)	-0.0097 (5)
0.0342 (7)	0.0268 (6)	0.0297 (6)	-0.0028 (5)	-0.0064 (5)	-0.0073 (5)
0.0338 (7)	0.0342 (6)	0.0262 (6)	0.0051 (5)	-0.0112 (5)	-0.0094 (5)
0.0330 (7)	0.0396 (7)	0.0360 (7)	-0.0053 (6)	-0.0140 (6)	-0.0140 (6)
0.0311 (6)	0.0296 (6)	0.0272 (6)	-0.0052 (5)	-0.0089 (5)	-0.0090 (5)
	U^{11} 0.03580 (17) 0.0446 (2) 0.0493 (2) 0.0482 (2) 0.0381 (5) 0.0305 (6) 0.0273 (6) 0.0283 (6) 0.0283 (6) 0.0259 (6) 0.0259 (6) 0.0351 (7) 0.0641 (10) 0.0342 (6) 0.0271 (6) 0.0296 (6) 0.0342 (7) 0.0338 (7) 0.0330 (7) 0.0311 (6)	U^{11} U^{22} $0.03580(17)$ $0.03395(17)$ $0.0446(2)$ $0.04732(19)$ $0.0493(2)$ $0.03993(19)$ $0.0482(2)$ $0.0489(2)$ $0.0381(5)$ $0.0265(4)$ $0.0305(6)$ $0.0236(5)$ $0.0273(6)$ $0.0194(5)$ $0.0283(6)$ $0.0260(6)$ $0.0360(7)$ $0.0277(6)$ $0.0292(6)$ $0.0350(6)$ $0.0259(6)$ $0.0350(6)$ $0.0341(10)$ $0.0269(6)$ $0.0296(6)$ $0.0302(6)$ $0.0342(7)$ $0.0268(6)$ $0.0338(7)$ $0.0342(6)$ $0.0330(7)$ $0.0296(6)$	U^{11} U^{22} U^{33} $0.03580(17)$ $0.03395(17)$ $0.03615(18)$ $0.0446(2)$ $0.04732(19)$ $0.02785(16)$ $0.0493(2)$ $0.03993(19)$ $0.0552(2)$ $0.0482(2)$ $0.0489(2)$ $0.0426(2)$ $0.0381(5)$ $0.0265(4)$ $0.0249(4)$ $0.0305(6)$ $0.0236(5)$ $0.0224(5)$ $0.0273(6)$ $0.0194(5)$ $0.0264(6)$ $0.0283(6)$ $0.0260(6)$ $0.0254(6)$ $0.0360(7)$ $0.0277(6)$ $0.0201(5)$ $0.0292(6)$ $0.0326(6)$ $0.0281(6)$ $0.0259(6)$ $0.0350(6)$ $0.0232(6)$ $0.0351(7)$ $0.0269(6)$ $0.0258(6)$ $0.0271(6)$ $0.0281(6)$ $0.0258(6)$ $0.0296(6)$ $0.0302(6)$ $0.0287(6)$ $0.0342(7)$ $0.0268(6)$ $0.0297(6)$ $0.0338(7)$ $0.0342(6)$ $0.0262(6)$ $0.0330(7)$ $0.0396(7)$ $0.0360(7)$ $0.0311(6)$ $0.0296(6)$ $0.0272(6)$	U^{11} U^{22} U^{33} U^{12} 0.03580 (17)0.03395 (17)0.03615 (18)0.00737 (13)0.0446 (2)0.04732 (19)0.02785 (16) $-0.01169 (15)$ 0.0493 (2)0.03993 (19)0.0552 (2) $-0.02003 (16)$ 0.0482 (2)0.0489 (2)0.0426 (2)0.00674 (17)0.0381 (5)0.0265 (4)0.0249 (4) $-0.0084 (4)$ 0.0305 (6)0.0236 (5)0.0224 (5) $-0.0070 (5)$ 0.0273 (6)0.0194 (5)0.0264 (6) $-0.0027 (4)$ 0.0283 (6)0.0260 (6)0.021 (5) $-0.0107 (5)$ 0.0292 (6)0.0326 (6)0.0281 (6) $-0.0021 (5)$ 0.0259 (6)0.0350 (6)0.0258 (6) $-0.0033 (5)$ 0.0351 (7)0.0269 (6)0.0258 (6) $-0.0091 (5)$ 0.0271 (6)0.0265 (5)0.0206 (5) $-0.0030 (5)$ 0.0271 (6)0.0265 (5)0.0206 (5) $-0.0030 (5)$ 0.0296 (6)0.0326 (6)0.0287 (6) $-0.0028 (5)$ 0.0342 (7)0.0268 (6)0.0297 (6) $-0.0028 (5)$ 0.0338 (7)0.0342 (6)0.0297 (6) $-0.0053 (6)$ 0.0330 (7)0.0396 (7)0.0360 (7) $-0.0053 (6)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Geometric parameters (Å, °)

Cl1—C2	1.7401 (13)	C7—H7A	1.0000
Cl2—C4	1.7398 (12)	C8—H8A	0.9800
Cl3—C11	1.7409 (12)	C8—H8B	0.9800
Cl4—C13	1.7398 (12)	C8—H8C	0.9800
O1—C9	1.4189 (14)	C9—C10	1.5008 (16)

supporting information

01	1 4325 (13)	С9—Н9А	0.000
C1 - C6	1 3896 (17)	C9H9B	0.9900
C1 $C2$	1.3000(17) 1.3020(16)		1 3905 (16)
C1 C7	1.5920(10) 1.5242(16)	C10 C15	1.3905(10) 1 3015(17)
$C_1 = C_1$	1.3242(10) 1.3026(16)	C_{11} C_{12}	1.3913(17) 1.3873(16)
$C_2 = C_3$	1.3920(10) 1.2770(19)	C12 - C12	1.3673(10) 1.2700(18)
$C_3 = U_2 \Lambda$	1.5770 (18)	C12—C13	1.3799 (18)
C3—H3A	0.9500	C12—H12A	0.9500
C4—C5	1.3811 (17)	C13—C14	1.3780 (18)
C5-C6	1.391/(1/)	C14—C15	1.3869 (17)
C5—H5A	0.9500	CI4—HI4A	0.9500
С6—Н6А	0.9500	CI5—HI5A	0.9500
C/C8	1.5170 (16)		
C9—O1—C7	112.73 (9)	С7—С8—Н8С	109.5
C6-C1-C2	117.47 (11)	H8A—C8—H8C	109.5
C6-C1-C7	120 34 (10)	H8B-C8-H8C	109.5
$C^2 - C^1 - C^7$	122.13(11)	01 - C9 - C10	110.07 (9)
C1 - C2 - C3	122.13 (11)	01-C9-H9A	109.6
C1 - C2 - C11	120.19(9)	C10-C9-H9A	109.6
C_{3} C_{2} C_{11}	117 69 (9)	01 - C9 - H9B	109.6
$C_4 - C_3 - C_2$	118 14 (11)	C10-C9-H9B	109.6
C4-C3-H3A	120.9	H9A - C9 - H9B	109.0
$C_2 = C_3 = H_3 \Lambda$	120.9	C11 - C10 - C15	100.2
$C_2 = C_3 = HSR$	120.9 122.02(11)	C_{11} C_{10} C_{10}	117.12(11) 120.55(10)
$C_3 = C_4 = C_3$	122.02(11) 118.80(0)	$C_{10} = C_{10} = C_{20}$	120.33(10) 122.31(10)
$C_{5} = C_{4} = C_{12}$	110.09(9)	$C_{12} = C_{10} = C_{23}$	122.31(10) 123.01(11)
C_{3}	119.09(10) 118.40(12)	$C_{12} = C_{11} = C_{10}$	123.01(11)
C4 = C5 = U5 A	110.40 (12)	$C_{12} = C_{11} = C_{13}$	118.05 (9)
C4 - C5 - H5A	120.8	C10 - C11 - C13	118.90(9)
$C_0 = C_5 = H_5 A$	120.8	C13 - C12 - C11	117.05 (11)
C1 - C6 - C5	121.85 (11)	C13—C12—H12A	121.2
СІ—С6—Н6А	119.1	CII = CI2 = HI2A	121.2
C_{2}	119.1	C14 - C13 - C12	121.51 (11)
01 - 07 - 08	106.63 (10)		119.22 (10)
	111.59 (10)	C12—C13—C14	119.27 (10)
C8—C7—C1	110.86 (10)	C13—C14—C15	119.47 (12)
01—C7—H7A	109.2	C13—C14—H14A	120.3
С8—С7—Н7А	109.2	C15—C14—H14A	120.3
С1—С7—Н7А	109.2	C14—C15—C10	121.21 (11)
С7—С8—Н8А	109.5	C14—C15—H15A	119.4
С7—С8—Н8В	109.5	C10—C15—H15A	119.4
H8A—C8—H8B	109.5		
C6—C1—C2—C3	-0.25 (17)	C2—C1—C7—C8	-83,23 (14)
C7-C1-C2-C3	176.98 (10)	C7 - 01 - C9 - C10	-172.27(9)
C_{6} C_{1} C_{2} C_{1}	179 61 (9)	01 - C9 - C10 - C11	-17834(11)
C7-C1-C2-C11	-3 16 (15)	01 - C9 - C10 - C15	3 20 (17)
$C_1 = C_2 = C_3 = C_4$	-0.16(17)	C_{15} C_{10} C_{11} C_{12}	1.43(10)
$C_1 C_2 C_3 C_4$	170.08 (8)	$C_{10} = C_{10} = C_{11} = C_{12}$	-177 11 (12)
011 - 02 - 03 - 04	1/2.20 (0)	C7-C10-C11-C12	177.11 (12)

C2—C3—C4—C5	0.65 (17)	C15—C10—C11—Cl3	-178.37 (10)
C2—C3—C4—Cl2	-179.79 (8)	C9—C10—C11—Cl3	3.10 (16)
C3—C4—C5—C6	-0.72 (18)	C10-C11-C12-C13	-0.2 (2)
Cl2—C4—C5—C6	179.73 (9)	Cl3—C11—C12—C13	179.57 (10)
C2-C1-C6-C5	0.18 (18)	C11—C12—C13—C14	-1.24 (19)
C7—C1—C6—C5	-177.10 (11)	C11—C12—C13—Cl4	179.17 (10)
C4—C5—C6—C1	0.28 (19)	C12—C13—C14—C15	1.4 (2)
C9—O1—C7—C8	166.43 (10)	Cl4—C13—C14—C15	-178.97 (10)
C9—O1—C7—C1	-72.37 (12)	C13—C14—C15—C10	-0.2 (2)
C6-C1-C7-O1	-24.78 (15)	C11—C10—C15—C14	-1.21 (18)
C2-C1-C7-O1	158.07 (10)	C9—C10—C15—C14	177.29 (12)
C6—C1—C7—C8	93.92 (14)		

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
C12—H12 A ···Cg1 ⁱ	0.95	2.97	3.8888 (15)	162

Symmetry code: (i) x, y-1, z+1.