

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-{4-[4-(4-Fluorophenyl)-1-methyl-2-[(*R*)-methylsulfinyl]-1*H*-imidazol-5-yl]-2-pyridyl}acetamide dihydrate

Stefanie Bühler,^a Dieter Schollmeyer,^b Dominik Hauser,^a Wolfgang Albrecht^c and Stefan Laufer^a*

^aEberhard-Karls-University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, ^bUniversity Mainz, Institut of Organic Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany, and ^cc-a-i-r biosciences GmbH, Paul-Ehrlich-Str. 15, 72076 Tübingen, Germany

Correspondence e-mail: stefan.laufer@uni-tuebingen.de

Received 26 November 2009; accepted 2 December 2009

Key indicators: single-crystal X-ray study; T = 193 K; mean σ (C–C) = 0.004 Å; R factor = 0.046; wR factor = 0.099; data-to-parameter ratio = 18.1.

In the crystal structure of the title compound, C₁₈H₁₇FN₄O₂S--2H₂O, the organic molecules are linked by intermolecular O- $H \cdots O$, $O - H \cdots N$ and $N - H \cdots O$ hydrogen bonds with the water molecules, generating a three-dimensional network. The imidazole ring system forms a dihedral angle of 24.9 $(2)^{\circ}$ with the 4-fluorophenyl ring. The pyridine ring is oriented approximately perpendicular $[72.24 (8)^{\circ}]$ to the imidazole ring system.

Related literature

For general background and the biological activity of chiral sulfoxides and their potential use as therapeutic agents, see: Jia et al., (2004). Sulfoxide enantiomers can differ in their pharmacodynamic and/or pharmacokinetic properties, see: Lu (2007). For the preparation of tri- and tetrasubstituted 2thioimidazoles, see: Wagner et al. (2003); Laufer, Hauser, Domeyer et al. (2008); Laufer, Hauser & Liedtke (2008).

V = 1947.37 (12) Å³

 $0.50 \times 0.10 \times 0.10 \; \mathrm{mm}$

4628 independent reflections 2634 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation $\mu = 0.21 \text{ mm}^-$

Z = 4

T = 193 K

 $R_{\rm int} = 0.089$

Experimental

Crystal data

10703 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.099$	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$
S = 0.84	Absolute structure: Flack (1983),
4628 reflections	1949 Friedel pairs
256 parameters	Flack parameter: -0.08 (11)
H-atom parameters constrained	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$\begin{array}{c} N24 - H24 \cdots O15^{i} \\ O1L - H1L \cdots O26^{ii} \\ O1L - H2L \cdots O15 \\ O2L - H3L \cdots O1L \\ O2L - H4L \cdots N2 \end{array}$	0.91 0.94 0.85 0.84 0.84	2.08 1.90 2.00 1.90 2.51	2.983 (3) 2.825 (3) 2.775 (3) 2.743 (4) 3.193 (3)	177 169 151 177 138

Symmetry codes: (i) $-x + \frac{1}{2}, -y + 1, z - \frac{1}{2}$; (ii) $-x, y - \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

The authors thank the Federal Ministry of Education and Research, Germany, Merckle GmbH, Ulm, Germany, and the Fonds der Chemischen Industrie, Germany, for their generous support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2170).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Jia, X., Li, X., Xu, L., Li, Y., Shi, Q., Au-Yeung, T. T.-L., Yip, C. W., Yao, X. & Chan, A. S. C. (2004). Adv. Synth. Catal. 346, 723-726.
- Laufer, S. A., Hauser, D. R. J., Domever, D. M., Kinkel, K. & Liedtke, A. J. (2008). J. Med. Chem. 51, 4122-4149.

Laufer, S. A., Hauser, D. R. J. & Liedtke, A. J. (2008). Synthesis, 2, 253-266.

Lu, H. (2007). Exp. Opin. Drug Metab. Toxicol. 3, 149-158.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Wagner, G. K., Kotschenreuther, D., Zimmermann, W. & Laufer, S. A. (2003). J. Org. Chem. 68, 4527-4530.

supporting information

Acta Cryst. (2010). E66, o121 [doi:10.1107/S1600536809051873]

N-{4-[4-(4-Fluorophenyl)-1-methyl-2-[(*R*)-methylsulfinyl]-1*H*-imidazol-5-yl]-2-pyridyl}acetamide dihydrate

Stefanie Bühler, Dieter Schollmeyer, Dominik Hauser, Wolfgang Albrecht and Stefan Laufer

S1. Comment

Many chiral sulfoxides exhibit interesting biological activities and show promise as therapeutic agents (Jia et al., 2004). The title compound, N-(4-(4-(4-fluorophenyl)-1-methyl-2-((R)-methylsulfinyl)-1H-imidazol-5-yl) pyridin-2yl)acetamide, was prepared in the course of our studies on tri- and tetrasubstituted 2-thioimidazoles as p38 mitogenactivated protein (MAP) kinase inhibitors (Wagner et al., 2003, Laufer, Hauser, Domeyer et al., 2008); Laufer, Hauser & Liedtke, 2008). The oxidation of the sulfide N-(4-(4-(4-fluorophenyl)-1-methyl-2-(methylthio)-1H-imidazol-5yl)pyridin-2- yl)acetamide with sodium periodate as oxidant yields the corresponding sulfoxide N-(4-(4-(4-fluorophenyl)-1-methyl-2-(methylsulfinyl)-1H-imidazol-5-yl) pyridin-2-yl)acetamide. This compound has a centre of asymmetry in the sulfur atom meaning that two sulfoxide enantiomers exist, which can differ in pharmacodynamic and/or pharmacokinetic properties (Lu, 2007). The both enantiomers were separated by enantioselective preparative HPLC. To identify the absolute configurations of the enantiomers according to the Cahn-Ingold-Prelog-nomenclature X-ray analysis was used. In this article we present the X-ray data of the first eluted enantiomer I. The analysis of the crystal structure shows that the N24 amino- group of the acetamide moiety of the one imidazole-molecule interact with another imidazole ring system by the building of one intermolecular hydrogen bond N—H···O to the sulfoxide oxygen-atom O15, whereas the O15...H24 distance is 2.08 Å. Furthermore, the carbonyl-oxygen atom O26 of the acetamide-moiety of a third imidazole molecule is linked over two water molecules to the sulfoxide oxygen-atom O15 and to the nitrogen atom N2 of the imidazole core by the building of intermolecular O1L—H1L···O26 (1.90 Å), O1L—H2L···O15 (2.00 Å) and O2L— H4L...N2 (2.51 Å) hydrogen bonds. The imidazole ring system forms a dihedral angle of 24.9 (1)° to the 4-fluorophenyl ring. The pyridine ring is oriented approximately perpendicular (72.24 $(8)^{\circ}$) to the imidazole ring system. According to the Cahn-Ingold-Prelog-nomenclature the first eluted enantiomer I is (R)-configurated.

S2. Experimental

N-(4-(4-(4-fluorophenyl)-1-methyl-2-(methylthio)-1*H*-imidazol-5-yl)pyridin-2- yl)acetamide (3.56 g, 10 mmol) was dissolved in a mixture of THF (30 ml) and acetone (58 ml), and water (45 ml) was added. The mixture was stirred at T = 313 K, and an aqueous solution of sodium periodate (4.01 g, 18.4 mmol in 65 ml water) was added dropwise. The reaction mixture was heated at T = 338 K. The progress was again monitored until HPLC analysis (C8 Betasil, MeOH/ 0.01 *M* KH₂PO₄, pH = 2,3) indicated complete conversion. After cooling to rt, the organic solvents were removed under reduced pressure and a precipitate dropped down, which was filtered off and washed with water and isopropylether. The crude product was purified by recrystallization from ethylacetate to yield 3.02 g (81.2%) of the colorless racemic product *N*-(4-(4-(4-fluorophenyl)-1-methyl-2-(methylsulfinyl)-1*H*-imidazol-5-yl)pyridin-2-yl)acetamide. The both enantiomers were isolated by enantioselective preparative HPLC (Daicel CHIRALPAK AD, CH₂Cl₂ / MeOH/ TEA 98: 2: 0.1). Suitable crystals of the first eluted enantiomer I for X-ray were obtained by slow evaporation at T = 298 K of a solution

of ethanol.

S3. Refinement

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (*sp*³ C-atom). Hydrogen atoms attached to nitrogen and oxygen were located in diff. Fourier maps. All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the U_{eq} of the parent atom). The absolute structure was determined on the basis of 1949 Friedel pairs.

Figure 1

View of compound I. Displacement ellipsoids are drawn at the 50% probability level.

N-{4-[4-(4-Fluorophenyl)-1-methyl-2-[(R)-methylsulfinyl]- 1H-imidazol-5-yl]-2-pyridyl}acetamide dihydrate

Crystal data	
$C_{18}H_{17}FN_4O_2S\cdot 2H_2O$	F(000) = 856
$M_r = 408.45$	$D_{\rm x} = 1.393 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo <i>K</i> α radiation, $\lambda = 0.71069$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 1669 reflections
a = 5.8178 (2) Å	$\theta = 2.9 - 23.5^{\circ}$
b = 14.3233 (5) Å	$\mu = 0.21 \text{ mm}^{-1}$
c = 23.3694 (9) Å	T = 193 K
$V = 1947.37 (12) \text{ Å}^3$	Needle, colourless
Z = 4	$0.50 \times 0.10 \times 0.10 \text{ mm}$

Data collection

Bruker SMART APEXII diffractometer Radiation source: sealed Tube Graphite monochromator CCD scan 10703 measured reflections 4628 independent reflections	2634 reflections with $I > 2\sigma(I)$ $R_{int} = 0.089$ $\theta_{max} = 27.9^\circ, \ \theta_{min} = 1.7^\circ$ $h = -7 \rightarrow 7$ $k = -18 \rightarrow 15$ $l = -24 \rightarrow 30$
4028 independent reflections	
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.046$	H-atom parameters constrained
$wR(F^2) = 0.099$	$w = 1/[\sigma^2(F_o^2) + (0.0293P)^2]$
S = 0.84	where $P = (F_o^2 + 2F_c^2)/3$
4628 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
256 parameters	$\Delta ho_{ m max} = 0.27 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.30 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1949 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: -0.08 (11)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	y	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	-0.0028 (5)	0.38294 (18)	0.67677 (10)	0.0247 (6)	
N2	0.0086 (5)	0.38684 (16)	0.73573 (9)	0.0301 (6)	
C3	0.1670 (5)	0.44957 (18)	0.74681 (10)	0.0299 (7)	
N4	0.2625 (4)	0.48701 (15)	0.69850(7)	0.0276 (5)	
C5	0.1496 (5)	0.44518 (18)	0.65318 (10)	0.0244 (6)	
C6	-0.1622 (5)	0.31718 (18)	0.64897 (11)	0.0265 (7)	
C7	-0.1212 (6)	0.2827 (2)	0.59361 (11)	0.0334 (7)	
H7	0.0139	0.3008	0.5736	0.040*	
C8	-0.2761 (6)	0.2227 (2)	0.56802 (13)	0.0406 (8)	
H8	-0.2504	0.2003	0.5303	0.049*	
C9	-0.4667 (6)	0.1961 (2)	0.59797 (14)	0.0428 (9)	
C10	-0.5117 (6)	0.2250 (2)	0.65250 (13)	0.0391 (8)	
H10	-0.6438	0.2036	0.6725	0.047*	
C11	-0.3591 (5)	0.2864 (2)	0.67776 (12)	0.0326 (7)	
H11	-0.3885	0.3082	0.7154	0.039*	

F13	-0.6195 (4)	0.13680 (13)	0.57211 (9)	0.0687 (6)
S14	0.25518 (17)	0.48524 (5)	0.81652 (3)	0.0404 (2)
015	0.3625 (4)	0.40219 (16)	0.84497 (7)	0.0490 (6)
C16	-0.0249 (7)	0.4982 (3)	0.84489 (11)	0.0636 (12)
H16C	-0.0151	0.5104	0.8861	0.095*
H16B	-0.1127	0.4408	0.8383	0.095*
H16A	-0.1020	0.5506	0.8260	0.095*
C17	0.4374 (6)	0.5604 (2)	0.69480 (12)	0.0439 (9)
H17A	0.4180	0.6041	0.7267	0.066*
H17B	0.4205	0.5940	0.6585	0.066*
H17C	0.5906	0.5321	0.6967	0.066*
C18	0.2057 (5)	0.47072 (17)	0.59317 (9)	0.0244 (6)
C19	0.4114 (5)	0.44302 (19)	0.56902 (11)	0.0285 (7)
H19	0.5209	0.4092	0.5909	0.034*
C20	0.4555 (6)	0.4653 (2)	0.51252 (11)	0.0331 (7)
H20	0.5962	0.4448	0.4961	0.040*
N21	0.3106 (4)	0.51404 (17)	0.47977 (8)	0.0294 (6)
C22	0.1152 (5)	0.54307 (19)	0.50371 (11)	0.0262 (7)
C23	0.0530 (5)	0.52212 (19)	0.56027 (10)	0.0264 (6)
H23	-0.0896	0.5426	0.5756	0.032*
N24	-0.0213 (4)	0.59582 (16)	0.46634 (9)	0.0314 (6)
H24	0.0221	0.5970	0.4291	0.047*
C25	-0.1937 (6)	0.65639 (19)	0.47982 (12)	0.0327 (7)
O26	-0.2713 (4)	0.66543 (13)	0.52821 (8)	0.0405 (5)
C27	-0.2867 (7)	0.7123 (2)	0.43046 (12)	0.0530 (10)
H27A	-0.2501	0.7784	0.4361	0.080*
H27C	-0.4538	0.7044	0.4284	0.080*
H27B	-0.2166	0.6904	0.3948	0.080*
O1L	0.2647 (6)	0.21319 (16)	0.85452 (9)	0.0726 (8)
H1L	0.2717	0.2057	0.8945	0.109*
H2L	0.2448	0.2723	0.8557	0.109*
O2L	0.0400 (5)	0.16661 (18)	0.75536 (11)	0.0795 (9)
H3L	0.1051	0.1806	0.7863	0.119*
H4L	-0.0357	0.2127	0.7435	0.119*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0296 (16)	0.0238 (15)	0.0207 (13)	0.0027 (13)	-0.0021 (14)	0.0000 (11)
N2	0.0400 (16)	0.0291 (14)	0.0211 (11)	-0.0024 (12)	-0.0021 (12)	0.0038 (10)
C3	0.0408 (19)	0.0302 (15)	0.0186 (13)	-0.0020 (14)	-0.0058 (14)	0.0009 (11)
N4	0.0324 (13)	0.0299 (12)	0.0206 (10)	-0.0038 (13)	-0.0037 (12)	0.0004 (9)
C5	0.0266 (17)	0.0261 (14)	0.0206 (13)	0.0042 (13)	-0.0028 (13)	0.0002 (11)
C6	0.0312 (19)	0.0238 (14)	0.0245 (13)	0.0029 (13)	-0.0061 (14)	0.0038 (11)
C7	0.0332 (18)	0.0328 (17)	0.0341 (16)	0.0031 (16)	-0.0017 (15)	-0.0034 (13)
C8	0.044 (2)	0.0349 (17)	0.0434 (16)	0.0021 (19)	-0.0093 (19)	-0.0141 (14)
C9	0.036 (2)	0.0325 (19)	0.060(2)	-0.0051 (17)	-0.0175 (19)	-0.0050 (16)
C10	0.0320 (19)	0.0342 (18)	0.0512 (19)	-0.0045 (16)	-0.0054 (17)	0.0131 (15)

C11	0.0333 (18)	0.0325 (17)	0.0318 (15)	0.0013 (15)	-0.0020 (15)	0.0071 (13)
F13	0.0562 (14)	0.0548 (13)	0.0950 (15)	-0.0195 (12)	-0.0165 (14)	-0.0227 (12)
S14	0.0586 (5)	0.0411 (4)	0.0215 (3)	-0.0017 (5)	-0.0099 (4)	-0.0032 (3)
015	0.0636 (17)	0.0592 (15)	0.0243 (10)	0.0236 (14)	-0.0124 (11)	-0.0030 (10)
C16	0.072 (3)	0.091 (3)	0.0272 (15)	0.030 (3)	-0.0050 (18)	-0.0117 (18)
C17	0.048 (2)	0.046 (2)	0.0385 (17)	-0.0163 (17)	-0.0022 (17)	0.0006 (14)
C18	0.0316 (18)	0.0237 (14)	0.0180 (12)	-0.0032 (14)	-0.0011 (12)	-0.0002 (10)
C19	0.0288 (17)	0.0322 (17)	0.0243 (14)	0.0034 (14)	-0.0031 (14)	0.0050 (12)
C20	0.0310 (18)	0.040 (2)	0.0288 (15)	0.0034 (15)	0.0038 (14)	0.0011 (13)
N21	0.0311 (15)	0.0318 (13)	0.0254 (11)	0.0066 (12)	0.0012 (11)	0.0013 (10)
C22	0.0313 (18)	0.0258 (16)	0.0214 (13)	-0.0029 (14)	-0.0005 (13)	-0.0007 (11)
C23	0.0289 (17)	0.0288 (16)	0.0214 (13)	0.0013 (14)	0.0018 (12)	-0.0020 (12)
N24	0.0385 (16)	0.0373 (15)	0.0185 (11)	0.0101 (14)	0.0004 (12)	0.0032 (10)
C25	0.037 (2)	0.0295 (16)	0.0318 (15)	0.0049 (15)	-0.0035 (15)	-0.0010 (12)
O26	0.0463 (14)	0.0462 (12)	0.0289 (10)	0.0108 (13)	0.0015 (12)	-0.0037 (9)
C27	0.065 (3)	0.052 (2)	0.0415 (17)	0.026 (2)	-0.006 (2)	0.0082 (15)
O1L	0.105 (2)	0.0615 (16)	0.0516 (13)	0.0245 (19)	0.0045 (17)	-0.0070 (12)
O2L	0.086 (2)	0.0676 (18)	0.0850 (18)	-0.0002 (17)	-0.0200 (19)	0.0271 (15)

Geometric parameters (Å, °)

C1—C5	1.373 (4)	C17—H17A	0.9800
C1—N2	1.380 (3)	C17—H17B	0.9800
C1—C6	1.473 (4)	C17—H17C	0.9800
N2—C3	1.313 (4)	C18—C19	1.381 (4)
C3—N4	1.368 (3)	C18—C23	1.386 (4)
C3—S14	1.783 (3)	C19—C20	1.382 (3)
N4—C5	1.383 (3)	C19—H19	0.9500
N4—C17	1.465 (4)	C20—N21	1.336 (3)
C5—C18	1.485 (3)	C20—H20	0.9500
C6—C11	1.400 (4)	N21—C22	1.333 (3)
С6—С7	1.405 (4)	C22—N24	1.402 (3)
С7—С8	1.382 (4)	C22—C23	1.403 (3)
С7—Н7	0.9500	С23—Н23	0.9500
С8—С9	1.365 (5)	N24—C25	1.363 (4)
С8—Н8	0.9500	N24—H24	0.9072
C9—C10	1.365 (4)	C25—O26	1.224 (3)
C9—F13	1.370 (4)	C25—C27	1.505 (4)
C10-C11	1.382 (4)	C27—H27A	0.9800
C10—H10	0.9500	С27—Н27С	0.9800
C11—H11	0.9500	C27—H27B	0.9800
S14—O15	1.499 (2)	O1L—H1L	0.9410
S14—C16	1.769 (4)	O1L—H2L	0.8545
C16—H16C	0.9800	O2L—H3L	0.8400
C16—H16B	0.9800	O2L—H4L	0.8400
C16—H16A	0.9800		
C5—C1—N2	110.1 (2)	H16C—C16—H16A	109.5

C5—C1—C6	130.1 (2)	H16B—C16—H16A	109.5
N2—C1—C6	119.8 (2)	N4—C17—H17A	109.5
C3—N2—C1	105.0 (2)	N4—C17—H17B	109.5
N2—C3—N4	113.0 (2)	H17A—C17—H17B	109.5
N2—C3—S14	125.3 (2)	N4—C17—H17C	109.5
N4—C3—S14	121.7 (2)	H17A—C17—H17C	109.5
C3—N4—C5	105.6 (2)	H17B—C17—H17C	109.5
C3—N4—C17	127.7 (2)	C19—C18—C23	118.7 (2)
C5—N4—C17	126.5 (2)	C19—C18—C5	120.3 (2)
C1—C5—N4	106.3 (2)	C23—C18—C5	120.9 (2)
C1—C5—C18	132.9 (2)	C18—C19—C20	119.0 (3)
N4—C5—C18	120.8 (2)	С18—С19—Н19	120.5
C11—C6—C7	118.1 (3)	С20—С19—Н19	120.5
C11—C6—C1	120.3 (2)	N21—C20—C19	123.4 (3)
C7—C6—C1	121.6 (3)	N21—C20—H20	118.3
C8—C7—C6	120.4 (3)	С19—С20—Н20	118.3
С8—С7—Н7	119.8	C22—N21—C20	117.4 (2)
С6—С7—Н7	119.8	N21—C22—N24	112.9 (2)
C9—C8—C7	118.8 (3)	N21—C22—C23	123.3(3)
С9—С8—Н8	120.6	N24—C22—C23	123.8(3)
C7—C8—H8	120.6	C18—C23—C22	118.1 (3)
C10—C9—C8	123.4 (3)	C18—C23—H23	121.0
C10—C9—F13	118.4 (3)	C22—C23—H23	121.0
C8-C9-F13	118.3 (3)	C_{25} N24 C_{22}	128.0 (2)
C9-C10-C11	117.9 (3)	C25 - N24 - H24	114.5
C9—C10—H10	121.0	C_{22} N24 H24	116.8
С11—С10—Н10	121.0	O26—C25—N24	123.5 (2)
C10-C11-C6	121.4 (3)	026-C25-C27	121.3(3)
C10—C11—H11	119.3	N24—C25—C27	115.2 (3)
C6-C11-H11	119.3	С25—С27—Н27А	109.5
015—\$14—C16	107.50 (16)	C25—C27—H27C	109.5
O15—S14—C3	107.32 (12)	H27A—C27—H27C	109.5
C16—S14—C3	96.18 (15)	С25—С27—Н27В	109.5
S14—C16—H16C	109.5	H27A—C27—H27B	109.5
S14—C16—H16B	109.5	H27C—C27—H27B	109.5
H16C—C16—H16B	109.5	H1L - O1L - H2L	94.9
S14—C16—H16A	109.5	H3L - O2L - H4L	109.5
C5-C1-N2-C3	-0.7(3)	F13—C9—C10—C11	-178.6(3)
C6-C1-N2-C3	178.7 (3)	C9—C10—C11—C6	-1.1(4)
C1-N2-C3-N4	-0.4(3)	C7—C6—C11—C10	-0.9(4)
C1-N2-C3-S14	179.4 (2)	C1 - C6 - C11 - C10	179.8 (3)
N2-C3-N4-C5	1.4 (3)	N2-C3-S14-O15	64.5 (3)
S14—C3—N4—C5	-178.5 (2)	N4—C3—S14—O15	-115.7 (2)
N2—C3—N4—C17	177.9 (3)	N2-C3-S14-C16	-46.0(3)
S14—C3—N4—C17	-2.0(4)	N4-C3-S14-C16	133.8 (3)
N2-C1-C5-N4	1.5 (3)	C1-C5-C18-C19	-107.8(4)
C6-C1-C5-N4	-177.8(3)	N4-C5-C18-C19	71 7 (3)
	1/1.0 (3)		, (3)

	150.0 (2)		71.0 (4)
N2-C1-C5-C18	-178.9(3)	C1 - C5 - C18 - C23	71.8 (4)
C6-C1-C5-C18	1.8 (5)	N4—C5—C18—C23	-108.7 (3)
C3—N4—C5—C1	-1.7 (3)	C23-C18-C19-C20	-1.7 (4)
C17—N4—C5—C1	-178.2 (3)	C5-C18-C19-C20	177.9 (3)
C3—N4—C5—C18	178.7 (2)	C18-C19-C20-N21	1.2 (4)
C17—N4—C5—C18	2.1 (4)	C19—C20—N21—C22	0.8 (4)
C5-C1-C6-C11	-155.5 (3)	C20-N21-C22-N24	178.2 (2)
N2-C1-C6-C11	25.2 (4)	C20—N21—C22—C23	-2.3 (4)
C5-C1-C6-C7	25.2 (5)	C19—C18—C23—C22	0.3 (4)
N2—C1—C6—C7	-154.0 (3)	C5-C18-C23-C22	-179.3 (2)
C11—C6—C7—C8	2.1 (4)	N21-C22-C23-C18	1.8 (4)
C1—C6—C7—C8	-178.6 (3)	N24—C22—C23—C18	-178.8 (3)
C6—C7—C8—C9	-1.3 (4)	N21—C22—N24—C25	-160.2 (3)
C7—C8—C9—C10	-0.8 (5)	C23—C22—N24—C25	20.3 (4)
C7—C8—C9—F13	179.8 (3)	C22—N24—C25—O26	-8.5 (5)
C8—C9—C10—C11	2.0 (5)	C22—N24—C25—C27	172.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
N24—H24…O15 ⁱ	0.91	2.08	2.983 (3)	177
O1 <i>L</i> —H2 <i>L</i> ···O15	0.85	2.00	2.775 (3)	151
O1 <i>L</i> —H1 <i>L</i> ···O26 ⁱⁱ	0.94	1.90	2.825 (3)	169
O2 <i>L</i> —H3 <i>L</i> ···O1 <i>L</i>	0.84	1.90	2.743 (4)	177
O2 <i>L</i> —H4 <i>L</i> …N2	0.84	2.51	3.193 (3)	138

Symmetry codes: (i) -x+1/2, -y+1, z-1/2; (ii) -x, y-1/2, -z+3/2.