## Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Poly[[tetraaquadi $-\mu_{3}$-oxalato- $\mu_{2}$-oxalatodiprasedymium(III)] dihydrate]

Jian-Hong Chen, Hua-Cai Fang, Hong-Yang Jia, Shan-Shan Li and Yue-Peng Cai*

School of Chemistry and Environment, South China Normal University, Guangzhou 510631, People's Republic of China
Correspondence e-mail: ypcai8@yahoo.com

Received 9 November 2009; accepted 12 December 2009
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; $R$ factor $=0.016 ; w R$ factor $=0.035$; data-to-parameter ratio $=10.7$.

In the title compound, $\left\{\left[\mathrm{Pr}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, the three-dimensional network structure has the $\mathrm{Pr}^{\mathrm{III}}$ ion coordinated by nine O atoms in a distorted tricapped trigonal-prismatic geometry. The coordinated and uncoordinated water molecules interact with the carboxylate O atoms to consolidate the network via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

## Related literature

For general background, see: Benson et al. (2000).


## Experimental

## Crystal data

$$
\begin{array}{ll}
{\left[\mathrm{Pr}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}} & c=10.1818(5) \AA \\
M_{r}=653.98 & \beta=99.053(1)^{\circ} \\
\text { Monoclinic, } P 2_{\downarrow} / c & V=822.95(7) \AA^{3} \\
a=9.8834(5) \AA & Z=2 \\
b=8.2811(4) \AA & \text { Mo } K \alpha \text { radiation }
\end{array}
$$

$$
\begin{array}{ll}
\mu=5.95 \mathrm{~mm}^{-1} & 0.26 \times 0.22 \times 0.16 \mathrm{~mm} \\
T=298 \mathrm{~K} \\
& \\
\text { Data collection } & \\
\text { Bruker SMART diffractometer } & 4111 \text { measured reflections } \\
\text { Absorption correction: multi-scan } & 1487 \text { independent reflections } \\
\quad(S A D A B S ; \text { Sheldrick, 1996) } & 1397 \text { reflections with } I>2 \sigma(I) \\
\quad T_{\min }=0.307, T_{\max }=0.450 & R_{\mathrm{int}}=0.023
\end{array}
$$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.016$
$w R\left(F^{2}\right)=0.035$
$S=1.07$
1487 reflections
139 parameters
9 restraints

H atoms treated by a mixture of
independent and constrained refinement
$\Delta \rho_{\text {max }}=0.44 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.54 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Hydrogen-bond geometry ( $\AA,{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 9^{\text {i }}$ | 0.85 (1) | 1.89 (1) | 2.732 (3) | 171 (3) |
| $\mathrm{O} 7-\mathrm{H} 7 B \cdots \mathrm{O} 1^{\text {ii }}$ | 0.85 (1) | 1.94 (2) | 2.732 (3) | 155 (4) |
| $\mathrm{O} 8-\mathrm{H} 8 A \cdots \mathrm{O} 2^{\text {iii }}$ | 0.84 (1) | 2.06 (1) | 2.900 (3) | 175 (4) |
| $\mathrm{O} 8-\mathrm{H} 8 A \cdots \mathrm{O} 3^{\text {iv }}$ | 0.84 (1) | 2.59 (4) | 3.026 (3) | 114 (3) |
| $\mathrm{O} 8-\mathrm{H} 8 B \cdots \mathrm{C} 9^{\text {v }}$ | 0.84 (1) | 2.12 (2) | 2.949 (4) | 167 (6) |
| $\mathrm{O} 9-\mathrm{H} 9 \mathrm{~B} \cdots \mathrm{O}^{\mathrm{vi}}$ | 0.83 (1) | 1.99 (1) | 2.820 (3) | 178 (4) |
| O9-H9A . ${ }^{\text {O }}$ 8 | 0.84 (1) | 2.05 (1) | 2.881 (4) | 173 (4) |

Symmetry codes: (i) $x, y-1, z$; (ii) $-x,-y,-z+1$; (iii) $-x,-y+1,-z+1$; (iv) $x,-y+\frac{1}{2}, z+\frac{1}{2} ;(\mathrm{v})-x+1,-y+1,-z+1$; (vi) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The work was supported by the National Natural Science Foundation of China (No. 20772037) and the NSF of Guangdong Province, China (grant Nos. 9251063101000006 and 06025033).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2682).

## References

Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., Rapp, B. A. \& Wheeler, D. L. (2000). Genbank. Nucl. Acids Res. 28, 15-18.
Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

## supporting information

Acta Cryst. (2010). E66, m82 [doi:10.1107/S1600536809053598]

Poly[[tetraaquadi- $\mu_{3}$-oxalato- $\mu_{2}$-oxalato-diprasedymium(III)] dihydrate]<br>Jian-Hong Chen, Hua-Cai Fang, Hong-Yang Jia, Shan-Shan Li and Yue-Peng Cai

## S1. Comment

Though complexes including oxalato and praseodymium(III) have been extensively investigated, the crystal structure of praseodymium oxalate with one-dimensional, two-dimensional and three-dimensional topologies and different solvent molecules have constantly being reported recently. In this paper, we would like to report the synthesis and crystal structure of a three-dimensional network complex including oxalato and praseodymium(III) with one lattice water molecule per unsymmetrical unit. The hydrothermal reaction of $\mathrm{Pr}_{6} \mathrm{O}_{11}$ and oxalic acid in $\mathrm{H}_{2} \mathrm{O}$ afforded the $\mathrm{Pr}^{\text {III }}$ title polymeric complex, $\left[\left(\operatorname{Pr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{1.5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right) \cdot \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}$. The $\mathrm{Pr}^{\text {III }}$ ion is coordinated by nine O atoms from two water molecules and four carboxylate groups of oxalate ligands in an irregular coordination geometry (Figure 1). Two oxalate groups of the oxalate anions bridge two symmetry-related $\mathrm{Pr}^{\text {III }}$ atoms, giving rise to a layer-like structure extending along [100] (Figure 2). These parallel layers are further connected via chelating coordination of oxalate anions into a threedimensional network (Figure 3) along [010] plane. Moreover, the coordinated/non-coordinated water molecules interact with the carboxylate oxygen atoms from the layers via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1), which contributes to the additional stability of the structure.

## S2. Experimental

A suspension of praseodymium oxide ( $205 \mathrm{mg}, 0.20 \mathrm{mmol}$ ) in in water $(20 \mathrm{ml})$ was slowly added to a solution of oxalic $\operatorname{acid}(0.10 \mathrm{mmol})$ in water $(10 \mathrm{ml})$. The resultant mixture was sealed in a $50 \mathrm{~cm}^{3}$ stainless steel reactor with Teflon liner and kept under autogenous pressure at $100^{\circ}$ for 78 h , and then cooled to room temperature at a rate of $0.5^{\circ}$. $\mathrm{min}^{-1}$. Colorless block crystals of the compound suited for single-crystal X-ray diffraction analyses formed with a yield of approximate $65 \%$. The assigned structure was substantiated by elemental analysis; calculated for $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{9} \mathrm{Pr}$ : $\mathrm{C} 11.01, \mathrm{H}$ $1.83 \%$; found: C 10.96, H 1.95\%.

## S3. Refinement

The structure was solved using direct methods followed by Fourier synthesis. Non-H atoms were refined anisotropically.
The water H atoms were located in a difference Fourier map, and were refined with distance restraints of $\mathrm{O}-\mathrm{H}=$ $0.84(0.01)$ and $\mathrm{H}_{\cdots} \mathrm{H} 1.428(0.002) \mid \% \mathrm{~A}$, but their $U_{\text {iso }}$ values were set equal to $1.5 U_{\text {eq }}$ (parent atom O ).


Figure 1
The structure of the title compound (I) with $30 \%$ probability ellipsoids. Symmetry code $\mathrm{a}: 1-x,-y, 1-z ; \mathrm{b}:-x,-1 / 2+y, 0.5$ $-z$; c: $-x,-y, 1-z$; d: $x, 0.5-y, 1 / 2+z$.


Figure 2
A view of one-dimensional chain constructed by hydrogen bonding interactions. Symmetry code a: $x-1, y, z$.

## Poly[[tetraaquadi- $\mu_{3}$-oxalato- $\mu_{2}$-oxalato-diprasedymium(III)] dihydrate]

## Crystal data

$\left[\mathrm{Pr}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=653.98$
Monoclinic, $P 2_{1} / c$
$a=9.8834$ (5) Á
$b=8.2811$ (4) $\AA$
$c=10.1818$ (5) $\AA$
$\beta=99.053$ (1) ${ }^{\circ}$
$V=822.95(7) \AA^{3}$
$Z=2$

## Data collection

## Bruker SMART

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.307, T_{\text {max }}=0.450$
$F(000)=620$
$D_{\mathrm{x}}=2.639 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3328 reflections
$\theta=3.2-28.6^{\circ}$
$\mu=5.95 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Block, yellow
$0.26 \times 0.22 \times 0.16 \mathrm{~mm}$

4111 measured reflections
1487 independent reflections
1397 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=25.3^{\circ}, \theta_{\text {min }}=2.1^{\circ}$
$h=-11 \rightarrow 11$
$k=-9 \rightarrow 9$
$l=-12 \rightarrow 7$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.016$
$w R\left(F^{2}\right)=0.035$
$S=1.07$
1487 reflections
139 parameters
9 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

> Hydrogen site location: inferred from neighbouring sites
> H atoms treated by a mixture of independent $\quad$ and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0087 P)^{2}+0.7364 P\right]$ $\quad$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.007$
> $\Delta \rho_{\max }=0.44 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.54 \mathrm{e} \AA^{-3}$
> Extinction correction: $S H E L X L 97($ Sheldrick, $\quad 2008), \mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
> Extinction coefficient: $0.0127(4)$

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$-factors(gt) etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $A^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }}{ }^{*} / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| Pr1 | $0.185002(15)$ | $0.098389(18)$ | $0.437068(15)$ | $0.01483(9)$ |
| O1 | $0.0042(2)$ | $0.3167(2)$ | $0.4302(2)$ | $0.0210(5)$ |
| O2 | $-0.1229(2)$ | $0.4945(3)$ | $0.2991(2)$ | $0.0249(5)$ |
| O3 | $0.1838(2)$ | $0.3092(3)$ | $0.2610(2)$ | $0.0229(5)$ |
| O4 | $0.0564(2)$ | $0.4802(3)$ | $0.12614(19)$ | $0.0196(5)$ |
| O5 | $0.4011(2)$ | $0.0665(3)$ | $0.3529(2)$ | $0.0275(5)$ |
| O6 | $0.6199(2)$ | $-0.0090(3)$ | $0.3924(2)$ | $0.0287(5)$ |
| O7 | $0.1928(2)$ | $-0.2047(3)$ | $0.4324(3)$ | $0.0357(6)$ |
| H7A | $0.255(3)$ | $-0.260(3)$ | $0.406(4)$ | $0.054^{*}$ |
| H7B | $0.153(3)$ | $-0.250(4)$ | $0.490(3)$ | $0.054^{*}$ |
| O8 | $0.3072(3)$ | $0.3550(3)$ | $0.5421(2)$ | $0.0296(5)$ |
| H8A | $0.252(3)$ | $0.393(4)$ | $0.589(3)$ | $0.044^{*}$ |
| O9 | $0.3963(3)$ | $0.5983(3)$ | $0.3724(3)$ | $0.0353(6)$ |
| H9B | $0.393(4)$ | $0.566(5)$ | $0.2945(16)$ | $0.053^{*}$ |
| C1 | $-0.0222(3)$ | $0.4050(3)$ | $0.3291(3)$ | $0.0172(6)$ |
| C2 | $0.0829(3)$ | $0.3968(3)$ | $0.2319(3)$ | $0.0162(6)$ |
| C3 | $0.5054(3)$ | $0.0165(4)$ | $0.4261(3)$ | $0.0200(7)$ |
| H8B | $0.3907(13)$ | $0.358(8)$ | $0.576(4)$ | $0.13(3)^{*}$ |
| H9A | $0.370(7)$ | $0.534(5)$ | $0.427(3)$ | $0.13(3)^{*}$ |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Pr1 | $0.01116(11)$ | $0.01772(12)$ | $0.01591(11)$ | $0.00145(6)$ | $0.00305(7)$ | $0.00222(6)$ |
| O1 | $0.0236(11)$ | $0.0229(11)$ | $0.0185(11)$ | $0.0044(9)$ | $0.0094(9)$ | $0.0063(9)$ |
| O2 | $0.0248(12)$ | $0.0312(12)$ | $0.0191(11)$ | $0.0126(10)$ | $0.0051(10)$ | $0.0018(9)$ |
| O3 | $0.0186(11)$ | $0.0244(11)$ | $0.0274(12)$ | $0.0049(9)$ | $0.0090(10)$ | $0.0067(10)$ |
| O4 | $0.0179(11)$ | $0.0261(11)$ | $0.0149(11)$ | $0.0013(9)$ | $0.0033(9)$ | $0.0049(9)$ |
| O5 | $0.0183(12)$ | $0.0451(14)$ | $0.0198(12)$ | $0.0077(10)$ | $0.0052(10)$ | $0.0090(10)$ |
| O6 | $0.0195(12)$ | $0.0478(14)$ | $0.0204(12)$ | $0.0121(10)$ | $0.0078(10)$ | $0.0095(11)$ |
| O7 | $0.0351(14)$ | $0.0252(13)$ | $0.0533(17)$ | $0.0080(11)$ | $0.0273(13)$ | $0.0110(11)$ |
| O8 | $0.0303(14)$ | $0.0317(13)$ | $0.0272(13)$ | $-0.0058(11)$ | $0.0057(11)$ | $-0.0034(10)$ |
| O9 | $0.0397(15)$ | $0.0410(15)$ | $0.0274(14)$ | $0.0031(12)$ | $0.0118(13)$ | $-0.0034(12)$ |
| C1 | $0.0182(16)$ | $0.0162(14)$ | $0.0170(15)$ | $-0.0001(12)$ | $0.0023(13)$ | $-0.0043(12)$ |
| C2 | $0.0188(16)$ | $0.0156(14)$ | $0.0141(15)$ | $-0.0066(12)$ | $0.0022(12)$ | $-0.0034(12)$ |
| C3 | $0.0170(16)$ | $0.0257(16)$ | $0.0183(16)$ | $0.0030(13)$ | $0.0064(13)$ | $0.0042(13)$ |
|  |  |  |  |  |  |  |

Geometric parameters ( $\AA$, ${ }^{\circ}$ )

| Pr1-O5 | 2.438 (2) | O4- $\mathrm{Pr}^{1}{ }^{\text {v }}$ | 2.552 (2) |
| :---: | :---: | :---: | :---: |
| Pr1-O6 ${ }^{\text {i }}$ | 2.495 (2) | $\mathrm{O} 4-\mathrm{Pr} 1^{\text {iv }}$ | 2.566 (2) |
| Pr1-O3 | 2.501 (2) | O5-C3 | 1.244 (4) |
| Pr1-07 | 2.512 (2) | O6-C3 | 1.251 (4) |
| Pr1-O1 | 2.535 (2) | O6-Pr1 ${ }^{\text {i }}$ | 2.495 (2) |
| $\mathrm{Pr} 1-\mathrm{O} 2{ }^{\text {ii }}$ | 2.537 (2) | O7-H7A | 0.847 (10) |
| Pr1-O4 $4^{\text {iii }}$ | 2.552 (2) | O7-H7B | 0.845 (10) |
| Pr1-O4i ${ }^{\text {ii }}$ | 2.566 (2) | O8-H8A | 0.842 (10) |
| Pr1-O8 | 2.590 (2) | O8-H8B | 0.844 (10) |
| O1-C1 | 1.257 (4) | O9-H9B | 0.832 (10) |
| $\mathrm{O} 2-\mathrm{C} 1$ | 1.240 (4) | O9-H9A | 0.839 (10) |
| $\mathrm{O} 2-\mathrm{Pr} 1^{\mathrm{iv}}$ | 2.537 (2) | C1-C2 | 1.545 (4) |
| $\mathrm{O} 3-\mathrm{C} 2$ | 1.231 (4) | $\mathrm{C} 3-\mathrm{C} 3^{\text {i }}$ | 1.549 (6) |
| $\mathrm{O} 4-\mathrm{C} 2$ | 1.271 (4) |  |  |
| O5-Prl- $\mathrm{O6}^{\text {i }}$ | 65.72 (7) | $\mathrm{O} 3-\mathrm{Pr} 1-\mathrm{O} 8$ | 70.89 (8) |
| O5-Pr1-O3 | 74.28 (7) | O7-Pr1-O8 | 144.46 (8) |
| O6 ${ }^{\text {i }}$ - $\mathrm{Pr} 1-\mathrm{O} 3$ | 128.45 (7) | O1-Pr1-08 | 72.97 (8) |
| O5-Pr1-O7 | 81.61 (7) | $\mathrm{O} 2 \mathrm{ii}-\mathrm{Pr} 1-\mathrm{O} 8$ | 134.18 (7) |
| O6--Pr1-07 | 72.19 (8) | O4iii-Pr1-O8 | 98.79 (7) |
| O3-Pr1-O7 | 132.90 (8) | O4i--Pr1-O8 | 140.47 (7) |
| O5-Pr1-O1 | 136.09 (7) | C1-O1-Pr1 | 119.53 (18) |
| O6 ${ }^{\text {i }}$ - $\mathrm{Pr} 1-\mathrm{O} 1$ | 134.01 (7) | $\mathrm{C} 1-\mathrm{O} 2-\mathrm{Pr} 1^{\text {iv }}$ | 120.07 (19) |
| O3-Pr1-O1 | 63.82 (6) | $\mathrm{C} 2-\mathrm{O} 3-\mathrm{Pr} 1$ | 119.75 (18) |
| O7-Pr1-O1 | 137.35 (7) | $\mathrm{C} 2-\mathrm{O} 4-\mathrm{Pr} 1^{\text {v }}$ | 116.09 (18) |
| O5-Pr1-O2 $2^{\text {ii }}$ | 74.00 (7) | C2-O4-Pr1 ${ }^{\text {iv }}$ | 118.63 (18) |
| O6- $\mathrm{Pr} 1-\mathrm{O} 2^{\text {ii }}$ | 127.17 (7) | Pr1 ${ }^{\mathrm{v}}$ - $\mathrm{O} 4-\mathrm{Pr} 1^{1 \mathrm{iv}}$ | 117.51 (8) |
| $\mathrm{O} 3-\mathrm{Pr} 1-\mathrm{O} 2{ }^{\text {ii }}$ | 65.42 (7) | C3-O5-Pr1 | 120.94 (18) |
| O7-Pr1-O2 $2^{\text {ii }}$ | 69.33 (8) | $\mathrm{C} 3-\mathrm{O} 6-\mathrm{Pr} 1^{1}$ | 119.5 (2) |

supporting information

| O1-Pr1-O2 ${ }^{\text {ii }}$ | 98.71 (7) |
| :---: | :---: |
| O5-Pr1-O4 $4^{\text {iii }}$ | 143.64 (7) |
| O6- ${ }^{\text {i }}$ - $\mathrm{Pr} 1-\mathrm{O} 4^{\text {iii }}$ | 79.71 (7) |
| O3-Pr1-O4 $4^{\text {iii }}$ | 140.53 (7) |
| O7-Pr1-O4 $4^{\text {iii }}$ | 77.27 (7) |
| O1-Pr1-O4 $4^{\text {iii }}$ | 76.71 (6) |
| $\mathrm{O} 2^{\text {iii }} \mathrm{Pr} 1-\mathrm{O} 4^{\text {iii }}$ | 123.63 (6) |
| O5-Pr1-O4 $4^{\text {ii }}$ | 134.60 (7) |
| O6 ${ }^{\text {i }}$ Pr1- $\mathrm{O} 4{ }^{\text {ii }}$ | 130.37 (7) |
| O3-Pr1-O4 $4^{\text {ii }}$ | 100.79 (7) |
| O7-Pr1-O4 $4^{\text {ii }}$ | 69.15 (7) |
| $\mathrm{O} 1-\mathrm{Pr} 1-\mathrm{O} 4{ }^{\text {ii }}$ | 68.99 (7) |
| $\mathrm{O} 2^{\text {ii }}-\mathrm{Pr} 1-\mathrm{O} 4{ }^{\text {ii }}$ | 63.66 (6) |
| $\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Pr} 1-\mathrm{O} 4{ }^{\text {ii }}$ | 62.49 (8) |
| O5-Pr1-O8 | 81.77 (8) |
| O6 ${ }^{\text {i }}$ - Pr1-O8 | 72.37 (8) |


| $\mathrm{Pr} 1-\mathrm{O} 7-\mathrm{H} 7 \mathrm{~A}$ | $125(2)$ |
| :--- | :--- |
| $\mathrm{Pr} 1-\mathrm{O} 7-\mathrm{H} 7 \mathrm{~B}$ | $114(2)$ |
| $\mathrm{H} 7 \mathrm{~A}-\mathrm{O} 7-\mathrm{H} 7 \mathrm{~B}$ | $115.0(15)$ |
| $\mathrm{Pr} 1-\mathrm{O}-\mathrm{H} 8 \mathrm{~A}$ | $104(2)$ |
| $\mathrm{Pr} 1-\mathrm{O} 8-\mathrm{H} 8 \mathrm{~B}$ | $124(4)$ |
| $\mathrm{H} 8 \mathrm{~A}-\mathrm{O} 8-\mathrm{H} 8 \mathrm{~B}$ | $115.7(15)$ |
| $\mathrm{H} 9 \mathrm{~B}-\mathrm{O} 9-\mathrm{H} 9 \mathrm{~A}$ | $117.4(16)$ |
| $\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$ | $127.3(3)$ |
| $\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$ | $117.6(3)$ |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$ | $115.1(3)$ |
| $\mathrm{O} 3-\mathrm{C} 2-\mathrm{O} 4$ | $125.1(3)$ |
| $\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 1$ | $118.2(3)$ |
| $\mathrm{O} 4-\mathrm{C} 2-\mathrm{C} 1$ | $116.7(3)$ |
| $\mathrm{O} 5-\mathrm{C} 3-\mathrm{O} 6$ | $126.3(3)$ |
| $\mathrm{O} 5-\mathrm{C} 3-\mathrm{C} 3$ |  |
| $\mathrm{O} 6-\mathrm{C} 3-\mathrm{C} 3$ | $117.6(3)$ |

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x, y-1 / 2,-z+1 / 2$; (iii) $x,-y+1 / 2, z+1 / 2$; (iv) $-x, y+1 / 2,-z+1 / 2$; (v) $x,-y+1 / 2, z-1 / 2$.

Hydrogen-bond geometry ( $A,{ }^{\circ}$ )

| $D-\mathrm{H} \cdots A$ | D-H | $\mathrm{H} \cdots \mathrm{A}$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| O7-H7A $\cdots$ O9 ${ }^{\text {vi }}$ | 0.85 (1) | 1.89 (1) | 2.732 (3) | 171 (3) |
| $\mathrm{O} 7-\mathrm{H} 7 B^{\cdots} \mathrm{O} 1^{\text {vii }}$ | 0.85 (1) | 1.94 (2) | 2.732 (3) | 155 (4) |
| $\mathrm{O} 8-\mathrm{H} 8 A \cdots \mathrm{O} 2^{\text {viii }}$ | 0.84 (1) | 2.06 (1) | 2.900 (3) | 175 (4) |
| O8- $\mathrm{H} 8 A \cdots \mathrm{O} 3^{\text {iii }}$ | 0.84 (1) | 2.59 (4) | 3.026 (3) | 114 (3) |
| O8- $\mathrm{H} 8 B \cdots \mathrm{O} 9^{\text {ix }}$ | 0.84 (1) | 2.12 (2) | 2.949 (4) | 167 (6) |
| O9—H9B $\cdots \mathrm{O}^{\mathrm{x}}$ | 0.83 (1) | 1.99 (1) | 2.820 (3) | 178 (4) |
| O9- $49 A \cdots \mathrm{O} 8$ | 0.84 (1) | 2.05 (1) | 2.881 (4) | 173 (4) |

Symmetry codes: (iii) $x,-y+1 / 2, z+1 / 2$; (vi) $x, y-1, z$; (vii) $-x,-y,-z+1$; (viii) $-x,-y+1,-z+1$; (ix) $-x+1,-y+1,-z+1$; (x) $-x+1, y+1 / 2,-z+1 / 2$.

