Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ethane-1,2-diyl bis(pyridine-3-carboxylate)

Iván Brito, ${ }^{\text {a* }}$ Javier Vallejos, ${ }^{\text {a }}$ Matías López-Rodríguez ${ }^{\text {b }}$ and Alejandro Cárdenas ${ }^{\text {c }}$

${ }^{\text {a }}$ Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta - Chile, 'Instituto de Bio-Orgánica 'Antonio González', Universidad de La Laguna, Astrofísico Francisco Sánchez N ${ }^{\circ}$ 2, La Laguna, Tenerife, Spain, and ${ }^{\text {c }}$ Departamento de Física, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta - Chile Correspondence e-mail: ivanbritob@yahoo.com

Received 24 November 2009; accepted 3 December 2009
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.049 ; \omega R$ factor $=0.131$; data-to-parameter ratio $=9.6$.

The title compound, $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$, has twofold imposed crystallographic symmetry in the solid state. The asymmetric unit contains one half-molecule. An intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is formed between the carboxylate O group and one H atom of the aromatic ring such that a fivemembered ring is formed. The angle between the planes of symmetry-related aromatic rings is $44.71(19)^{\circ}$.

Related literature

For the synthesis of ditopic flexible linkers, see: Chatterjee et al. (2004). For the potential of coordination polymers based on this multitopic bridging ligand and metal centers as functional materials, see: Huang et al. (2007). For applications, see: Matsuda et al. (2005); Wu et al. (2005); Xiang et al. (2005). For bond-length data, see: Allen (2002).

Experimental

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$

$$
\begin{aligned}
& b=21.3404(7) \AA \\
& c=7.395(6) \AA \\
& V=642.9(6) \AA^{3} \\
& Z=2
\end{aligned}
$$

Mo $K \alpha$ radiation
$\mu=0.11 \mathrm{~mm}^{-1}$
Data collection
Nonius KappaCCD area-detector diffractometer
2298 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.131$
$S=1.27$
874 reflections
$T=293 \mathrm{~K}$
$0.19 \times 0.10 \times 0.08 \mathrm{~mm}$

874 independent reflections 694 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.030$

91 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.16 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.18 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 1$	0.93	2.40	$2.735(5)$	101

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank the Spanish Research Council (CSIC) for providing us with a free-of-charge license for the CSD system. JV thanks the Universidad de Antofagasta for PhD fellowships.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2303).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Chatterjee, B., Noveron, J. C., Resendiz, M. J. E., Liu, J., Yamamoto, T., Parker, D., Cinke, M., Nguyen, C. V., Arif, A. M. \& Stang, P. J. (2004). J. Am. Chem. Soc. 126, 10645-10656.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Huang, K., Xu, Z., Li, Y. \& Zheng, H. (2007). Cryst. Growth Des. 7, 2002-2004.
Matsuda, R., Kitaura, R., Kitagawa, S., Kubota, Y., Belosludov, R. V., Kobayashi, T. C., Sakamoto, H., Chiba, T., Takata, M., Kawazoe, Y. \& Mita, Y. (2005). Nature (London), 436, 238-241.

Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Wu, C. D., Hu, A., Zhang, L. \& Lin, W. (2005). J. Am. Chem. Soc. 127, 89408941.

Xiang, S., Wu, X., Zhang, J., Fu, R., Hu, S. \& Zhang, X. (2005). J. Am. Chem. Soc. 127, 16352-16353.

supporting information

Acta Cryst. (2010). E66, o114 [doi:10.1107/S1600536809052106]

Ethane-1,2-diyl bis(pyridine-3-carboxylate)

Iván Brito, Javier Vallejos, Matías López-Rodríguez and Alejandro Cárdenas

S1. Comment

In the past decade, crystalline nanoporous coordination polymers have been extensively studied for their potential applications in magnetism (Xiang, et al., 2005), catalysis (Wu, et al., 2005), and gas adsorption or separation (Matsuda, et al., 2005). Ethanediyl pyridinecarboxylate ligands have beeen used as flexible linkers to generate metallocyclic ensembles, which showed hysteretic adsorption properties (Chatterjee et al., 2004). We report here the crystal structure of the title compound which has twofold imposed crystallographic symmetry in the solid state. The asymmetric unit contains one-half of the molecule (Fig. 1). This compound crystallizes in a chiral space group, $P 2_{1} 2_{1} 2$ despite the absence of a chiral center. This chirality arises from the crystal packing. A twofold rotation axis passes through the midpoint of C7 and C 7 (i). An intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is formed between the carboxylate O group and one $\mathrm{H}-\mathrm{atom}$ of the aromatic ring such that a five-membered ring is formed. The angle between the planes of symmetry-related aromatic rings is 44.71 (19). A search in the Cambridge Structural Database (version 5.30; Allen, 2002) for the title compound yielded two structures namely catena-(bis($\mu_{2}-1,2$-ethanediyl bis(3-pyridinecarboxylate)- N, N^{\prime})- bis(isothiocyanato)cobalt(ii) trihydrate) and catena-(bis($\mu_{2}-1,2$-ethanediyl bis(3-pyridinecarboxylate)- N, N^{\prime})- bis(isothiocyanato)-cobalt(ii) tetrahydrofuran clathrate) (refcodes HEXKEB and HEXKIF, respectively) (Huang et al., 2007). The most obvious differences between these coordination polymers and the uncoordinated ligand reported here are the the angles between the planes of symmetry-related aromatic rings ($66.80(12)^{\circ}$ and $44.71(19)^{\circ}$, respectively) which is a consequence of the flexible organic components of the title compound.

S2. Experimental

Nicotinic acid ($15 \mathrm{~g}, 0.122 \mathrm{~mol}$) was stirred in $\mathrm{SOCl}_{2}(40 \mathrm{ml})$ in the presence of DMF $(0.6 \mathrm{ml})$ at $60^{\circ} \mathrm{C}$ for 12 h . Excess thionyl chloride was removed in vacuo. Dried ethylene glycol ($3.4 \mathrm{ml}, 0.061 \mathrm{~mol}$) was added. After the evolution of hydrogen chloride ended, the mixture was heated at $150{ }^{\circ} \mathrm{C}$ for 2 h . The mixture was dissolved in water, and $\mathrm{NH}_{4} \mathrm{OH}$ solution was added. After filtration, recrystallization in ethyl acetate gave colorless crystals. Yield 11.53 g (75%). Analysis calculated for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$: $\mathrm{C}: 61.76, \mathrm{H} 4.44, \mathrm{~N}: 10.29$; found: $\mathrm{C}: 61.25, \mathrm{H}: 4.58, \mathrm{~N}: 10.15 . \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: $(\mathrm{C}=\mathrm{O}) 1723 \mathrm{~s},(\mathrm{C}=\mathrm{C}) 1589 \mathrm{~m},(\mathrm{Ar} \mathrm{C}-\mathrm{C}, \mathrm{C}=\mathrm{N}) 1424 \mathrm{~s},(\mathrm{C}-\mathrm{O}) 1287 \mathrm{~m}$.

S3. Refinement

In the absence of anomalous scatterers, 488 Friedel pairs were merged.
H atoms were positioned geometrically at distances of $0.93(\mathrm{CH})$ and $0.97 \AA\left(\mathrm{CH}_{2}\right)$ from the parent C atoms and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.
50 reflections were not included in the data set as they were either partially obscured by the beam stop or were eliminated during data reduction. The material was difficult to obtain in a suitable crystalline form.

Figure 1
A view of the molecular structure with the atom-numbering scheme. Displacemenent ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Intramolecular hydrogen bonds are indicated by dotted lines. Unlabeled atoms are related to labeled atoms by the symmetry code ($-x, 1-y, z$).

Ethane-1,2-diyl bis(pyridine-3-carboxylate)

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$

$M_{r}=272.26$
Orthorhombic, $P 2_{1} 2_{1} 2$
Hall symbol: P 2 2ab
$a=4.0740$ (14) \AA
$b=21.3404$ (7) \AA
$c=7.395$ (6) \AA
$V=642.9(6) \AA^{3}$
$Z=2$

Data collection

Nonius KappaCCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ scans, and ω scans with κ offsets
2298 measured reflections
874 independent reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.131$
$S=1.27$
874 reflections
91 parameters
0 restraints
$F(000)=284$
$D_{\mathrm{x}}=1.406 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1704 reflections
$\theta=1.9-27.5^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prismatic, colourless
$0.19 \times 0.10 \times 0.08 \mathrm{~mm}$

694 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=27.6^{\circ}, \theta_{\text {min }}=1.9^{\circ}$
$h=-5 \rightarrow 0$
$k=-27 \rightarrow 27$
$l=-9 \rightarrow 9$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

```
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0408 P)^{2}+0.2469 P\right]\)
    where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}=0.002\)
```

$$
\begin{aligned}
& \Delta \rho_{\max }=0.16 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.18 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$-0.1685(7)$	$0.44509(9)$	$-0.0673(3)$	$0.0399(6)$
O2	$-0.1110(9)$	$0.34487(11)$	$-0.1477(3)$	$0.0619(9)$
N1	$-0.5385(10)$	$0.40255(14)$	$0.4274(4)$	$0.0574(10)$
C1	$-0.3638(9)$	$0.36912(14)$	$0.1334(4)$	$0.0330(8)$
C2	$-0.3991(10)$	$0.41380(16)$	$0.2682(5)$	$0.0458(10)$
H2	-0.3207	0.454	0.2458	0.055^{*}
C3	$-0.6491(10)$	$0.34439(17)$	$0.4541(5)$	$0.0497(10)$
H3	-0.7497	0.3355	0.564	0.06^{*}
C4	$-0.6241(11)$	$0.29697(17)$	$0.3305(4)$	$0.0462(10)$
H4	-0.7058	0.2573	0.3562	0.055^{*}
C5	$-0.4756(10)$	$0.30923(15)$	$0.1671(4)$	$0.0416(9)$
H5	-0.451	0.2778	0.0812	0.05^{*}
C6	$-0.2039(9)$	$0.38335(15)$	$-0.0413(4)$	$0.0365(8)$
C7	$0.0000(10)$	$0.46502(15)$	$-0.2299(4)$	$0.0408(9)$
H7A	-0.1124	0.4492	-0.3362	0.049^{*}
H7B	0.2233	0.4493	-0.2306	0.049^{*}

Atomic displacement parameters (\hat{A}^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0527(15)$	$0.0300(12)$	$0.0371(11)$	$-0.0025(11)$	$0.0110(13)$	$-0.0014(10)$
O2	$0.102(2)$	$0.0365(13)$	$0.0474(13)$	$0.0018(16)$	$0.0250(17)$	$-0.0097(12)$
N1	$0.077(2)$	$0.051(2)$	$0.0441(16)$	$-0.0096(19)$	$0.015(2)$	$-0.0089(15)$
C1	$0.038(2)$	$0.0291(15)$	$0.0321(15)$	$0.0021(15)$	$-0.0016(16)$	$-0.0008(12)$
C2	$0.058(3)$	$0.0334(18)$	$0.0457(19)$	$-0.0051(19)$	$0.008(2)$	$-0.0066(15)$
C3	$0.057(3)$	$0.054(2)$	$0.0380(18)$	$-0.009(2)$	$0.008(2)$	$0.0021(17)$
C4	$0.055(3)$	$0.0358(18)$	$0.0478(19)$	$-0.0023(18)$	$0.003(2)$	$0.0044(15)$
C5	$0.049(2)$	$0.0331(17)$	$0.0423(17)$	$-0.0009(18)$	$0.0011(19)$	$-0.0043(15)$
C6	$0.042(2)$	$0.0318(17)$	$0.0360(16)$	$0.0001(16)$	$-0.0020(17)$	$-0.0014(14)$
C7	$0.047(2)$	$0.0460(18)$	$0.0294(15)$	$-0.0102(19)$	$0.0023(18)$	$-0.0013(14)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

O1-C6	1.339 (4)	C3-C4	1.368 (5)
O1-C7	1.449 (4)	C3-H3	0.93
O2-C6	1.198 (4)	C4-C5	1.376 (5)
N1-C2	1.330 (5)	C4-H4	0.93
N1-C3	1.335 (5)	C5-H5	0.93
C1-C5	1.380 (4)	C7- C^{i}	1.493 (7)
C1-C2	1.387 (4)	C7-H7A	0.97
C1-C6	1.478 (4)	C7-H7B	0.97
C2-H2	0.93		
C6-O1-C7	117.3 (2)	C5-C4-H4	120.7
C2-N1-C3	116.3 (3)	C4-C5-C1	118.7 (3)
C5-C1-C2	118.2 (3)	C4-C5-H5	120.6
C5-C1-C6	119.6 (3)	C1-C5-H5	120.6
C2-C1-C6	122.2 (3)	O2-C6-O1	123.1 (3)
N1-C2-C1	123.8 (3)	O2-C6- C 1	124.9 (3)
N1-C2-H2	118.1	O1-C6- C 1	112.0 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	118.1	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C}^{\text {i }}$	107.1 (3)
N1-C3-C4	124.3 (3)	O1-C7-H7A	110.3
N1-C3-H3	117.8	$\mathrm{C} 7-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	110.3
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	117.8	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	110.3
C3-C4-C5	118.6 (3)	C7- ${ }^{\text {- }} 7$ - H 7 B	110.3
C3-C4-H4	120.7	H7A-C7-H7B	108.6
C3-N1-C2-C1	-0.2 (6)	C7-O1-C6-O2	-2.0 (5)
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	-0.9 (6)	$\mathrm{C} 7-\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 1$	177.0 (3)
C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	-179.3 (4)	$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 6-\mathrm{O} 2$	-13.3 (6)
C2-N1-C3-C4	0.7 (6)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{O} 2$	165.1 (4)
N1-C3-C4-C5	0.1 (7)	$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 6-\mathrm{O} 1$	167.8 (3)
C3-C4-C5-C1	-1.3 (6)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{O} 1$	-13.9 (5)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 4$	1.7 (6)	$\mathrm{C} 6-\mathrm{O} 1-\mathrm{C} 7-\mathrm{C}^{\text {i }}$	178.5 (4)
C6-C1-C5-C4	-179.9 (4)		

Symmetry code: (i) $-x,-y+1, z$.

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{O} 1$	0.93	2.40	$2.735(5)$	101

