organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,4,8,10,13-Pentamethyl-6-phenyl-13.14-dihvdro-12*H*- $6\lambda^5$ -dibenzo[*d.i*]-[1,3,7,2]dioxazaphosphecin-6-thione

M. Krishnaiah,^a* V.H.H. Surendra Babu,^a A. Uma Ravi Sankar,^b C. Naga Raju^c and Rajni Kant^d

^aDepartment of Physics, S.V. University, Tirupati 517 502, India, ^bJapan Association for the Advancement of Medical Equipment, Hongo Bunkyo-ku, Tokyo-113 0033, Japan, ^cDepartment of Chemistry, S.V. University, Tirupati 517 502, India, and ^dDepartment of Physics, University of Jammu, Jammu Tawi 180 006, India Correspondence e-mail: profkrishnaiah.m@gmail.com

Received 13 November 2009; accepted 4 December 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.161; data-to-parameter ratio = 25.6.

In the title compound, C₂₅H₂₈NO₂PS, the cyclodecene ring exhibits a crown conformation. The two dimethylbenzene rings which are fused symmetrically on either side of the tenmembered ring, make dihedral angles of 20.2 (1) and 18.0 (1) $^{\circ}$. The phenyl ring substituted at P is perpendicular to the heterocyclic ring, making a dihedral angle of $88.4(1)^\circ$. The crystal structure is stabilized by very weak intramolecular C- $H \cdots O$ hydrogen bonding.

Related literature

For applications of phosphorus containing macrocycles, see: Lehn (1988); Cram (1988). For their biological activity, see: Sankar et al. (2009). For P=S bond lengths in related structures, see: Dutasta et al. (1979).

Experimental

Crystal data

C ₂₅ H ₂₈ NO ₂ PS	$V = 2370.3 (4) \text{ Å}^3$
$M_r = 437.52$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 8.7117 (9) Å	$\mu = 0.23 \text{ mm}^{-1}$
b = 16.3225 (16) Å	$T = 293 { m K}$
c = 16.9021 (16) Å	$0.30 \times 0.24 \times 0.18 \text{ mm}$
$\beta = 99.525 \ (10)^{\circ}$	

Data collection

Oxford Diffraction Xcalibur diffractometer 21854 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ 271 parameters $wR(F^2) = 0.161$ H-atom parameters constrained S = 1.03 $\Delta \rho_{\rm max} = 0.35 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.29$ e Å⁻³ 7063 reflections

7063 independent reflections

 $R_{\rm int} = 0.033$

3672 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C23-H23A···O3	0.96	2.39	2.848 (3)	109

Data collection: CryAlis PRO (Oxford Diffraction, 2007); cell refinement: CryAlis PRO; data reduction: CryAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ZORTEPII (Zsolnai, 1997); software used to prepare material for publication: PARST (Nardelli, 1995).

MK thanks the University Grants Commission, New Delhi, for sanctioning the major research project for this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PB2015).

References

- Cram, D. J. (1988). Angew Chem. Int. Ed. Engl. 27, 1009-1020.
- Dutasta, J. P., Grand, A., Guimaraes, A. C. & Robert, J. B. (1979). Tetrahedron, 35, 197-207.
- Lehn, J. M. (1988). Angew Chem. Int. Ed. Engl. 27, 89-112.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd. Abingdon, England.
- Sankar, A. U. R., Kumar, B. S., Reddy, M. V. N., Reddy, S. S., Reddy, C. S. & Raju, C. N. (2009). Bulg. Chem. Commun. 41, 59-64.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zsolnai, L. (1997). ZORTEPII. University of Heidelberg, Germany.

supporting information

Acta Cryst. (2010). E66, o120 [doi:10.1107/S1600536809052180]

2,4,8,10,13-Pentamethyl-6-phenyl-13,14-dihydro-12*H*- $6\lambda^5$ -dibenzo[*d*,*i*] [1,3,7,2]dioxazaphosphecin-6-thione

M. Krishnaiah, V.H.H. Surendra Babu, A. Uma Ravi Sankar, C. Naga Raju and Rajni Kant

S1. Comment

Phosphorus containing macrocycles are interesting molecules with potential applications in supramolecular and synthetic organic chemistry. The molecules found numerous industrial (Lehn, 1988) and biological (Cram, 1988) applications and also function as good hosts in the host–guest chemistry. The present title compound possesses antimicrobial activity against gram positive *Staphylococcus aureus*, gram negative *Escherichia coli* and antifungal activity against *Aspergillus niger*, *Helminthosporium oryzae*. It also exhibits equal antimicrobial and antifungal activities when compared with that of standard Penicillin and Griseofulvin (Sankar *et al.*, 2009).

The P=S bond length, 1.913Å is in good agreement with the related structure (Dutasta *et al.*, 1979). The crown conformation makes P—N bond length[3.133 Å] smaller than the Van der Waal's radii[3.35 Å] in such a way, which is favourable for P—N coordination. It is interesting to mention that the geometrical parameters between the two fragments from P to N of the ten membered heterocyclic ring are equal within the experimental limitations. The sulfur substituted at P and the methyl substituted at N are almost orthogonally oriented to the mean plane of cyclodecene. The bond angles O(3)—P(1)=S(2) and O(4)—P(1)=S(2) are identical to each other and same is the case with the bond angles O(3)—P(1)—C(25), O(4)—P(1)—C(25) and C(14)—N(5)—C(15), C(16)—N(5)—C(15). The crystal structure is stabilized by intra molecular C—H···O hydrogen bonding. The packing of the molecules is along [110] plane (figure 2).

S2. Experimental

A solution of phenyl dichlorophosphine (300 mg, 2 mmol) in 25 ml of dry toluene was added dropwise over a period of 20 minutes to a stirred solution of bis(2,4-dimethyl-2-hydroxybenzyl)methylamine (600 mg, 2 mmol) and triethyl amine (404 mg, 4 mmol) in 25 ml of dry toluene at 0°C under N₂ atmosphere. After the addition, the temperature of the reaction mixture was raised to room temperature and stirred for 3 h, later the reaction mixture was stirred at 30°C for another 3 h. The triethylamine hydrochloride was removed by filtration. The intermediate obtained was dissolved in dry toluene (30 ml) and sulfur was added at room temperature. The reaction mixture was brought to reflux and kept with stirring for 2 h for the completion of reaction was indicated by TLC analysis. The solvent was removed in a rota-evaporator. The resulting crude product was crystallized by 2-propanol, rectangular shaped single crystals are obtained for diffraction studies.

S3. Refinement

All the H-atoms bound to carbon were positioned geometrically and refined using a riding model with d(C-H) = 0.93 Å, $U_{iso} = 1.2_{eq}$ (C) for aromatic, 0.97 Å, $U_{iso} = 1.2_{eq}$ (C) for CH₂ group and 0.96 Å, $U_{iso} = 1.5_{eq}$ (C) for CH₃ group

Figure 1

View of the molecule showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level.

Figure 2

Packing view of the molecules in the unit cell.

2,4,8,10,13-Pentamethyl-6-phenyl-13,14-dihydro-12*H*- $6\lambda^5$ - dibenzo[*d*,*i*][1,3,7,2]dioxazaphosphecin-6-thione

Crystal data
$C_{25}H_{28}NO_2PS$
$M_r = 437.52$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 8.7117 (9) Å
b = 16.3225 (16) Å
c = 16.9021 (16) Å
$\beta = 99.525 \ (10)^{\circ}$
$V = 2370.3 (4) Å^3$
Z = 4
F(000) = 928

 $D_x = 1.226 \text{ Mg m}^{-3}$ $D_m = 1.225 \text{ Mg m}^{-3}$ $D_m \text{ measured by not measured}$ Mo K\alpha radiation, \lambda = 0.71073 \rangle A Cell parameters from 7063 reflections \theta = 3.1-30.2^\circ \mu = 0.23 \text{ mm}^{-1} T = 293 \text{ K} Rectangular, brown 0.30 \times 0.24 \times 0.18 \text{ mm} Data collection

Oxford Diffraction Xcalibur diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω -2 θ scans 21854 measured reflections 7063 independent reflections <i>Refinement</i>	3672 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 30.2^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -8 \rightarrow 12$ $k = -23 \rightarrow 20$ $l = -23 \rightarrow 23$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.161$	neighbouring sites
S = 1.03	H-atom parameters constrained
7063 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0805P)^2]$
271 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.35$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.29$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
P1	0.17744 (6)	0.16344 (3)	0.18237 (3)	0.03883 (16)	
S2	0.02473 (7)	0.22402 (3)	0.22679 (4)	0.05506 (19)	
03	0.12396 (15)	0.11944 (8)	0.09791 (7)	0.0405 (3)	
C25	0.3425 (2)	0.22061 (12)	0.16102 (11)	0.0427 (5)	
O4	0.26513 (16)	0.09104 (8)	0.23448 (8)	0.0439 (3)	
N5	-0.0375 (2)	0.01189 (10)	0.19579 (9)	0.0424 (4)	
C24	-0.0253 (2)	0.12021 (12)	0.05097 (11)	0.0410 (5)	
C22	-0.0613 (3)	0.18239 (12)	-0.00492 (12)	0.0470 (5)	
C13	0.1521 (3)	-0.00145 (13)	0.31893 (12)	0.0452 (5)	
C17	-0.1224 (2)	0.05350 (12)	0.05584 (11)	0.0426 (5)	
C6	0.2449 (2)	0.06607 (13)	0.31197 (11)	0.0427 (5)	
C16	-0.0717 (3)	-0.01544 (12)	0.11289 (11)	0.0466 (5)	
H16A	-0.1533	-0.0565	0.1078	0.056*	
H16B	0.0204	-0.0409	0.0985	0.056*	
C18	-0.2601 (3)	0.05058 (14)	0.00225 (12)	0.0524 (5)	
H18	-0.3272	0.0067	0.0048	0.063*	
C14	0.0690 (3)	-0.04331 (13)	0.24529 (12)	0.0512 (5)	

H14A	0.1447	-0.0640	0.2142	0.061*
H14B	0.0111	-0.0897	0.2610	0.061*
C21	-0.2018 (3)	0.17554 (14)	-0.05738 (13)	0.0550 (6)
H21	-0.2290	0.2164	-0.0955	0.066*
C30	0.3574 (3)	0.30281 (13)	0.17657 (13)	0.0544 (6)
H30	0.2791	0.3311	0.1963	0.065*
C12	0.1470 (3)	-0.03023 (14)	0.39559 (13)	0.0525 (6)
H12	0.0850	-0.0754	0.4017	0.063*
C29	0.4898 (3)	0.34342 (16)	0.16272 (16)	0.0694 (7)
H29	0.4999	0.3992	0.1734	0.083*
C23	0.0493 (3)	0.25157 (14)	-0.01172 (15)	0.0670 (7)
H23A	0.1391	0.2463	0.0294	0.100*
H23B	-0.0015	0.3028	-0.0054	0.100*
H23C	0.0810	0.2499	-0.0635	0.100*
C7	0.3294 (3)	0.10556 (14)	0.37772 (13)	0.0561 (6)
C15	-0.1759 (3)	0.02847 (16)	0.22984 (13)	0.0607 (6)
H15A	-0.1467	0.0470	0.2842	0.091*
H15B	-0.2367	-0.0207	0.2291	0.091*
H15C	-0.2363	0.0701	0.1989	0.091*
C19	-0.3022 (3)	0.11051 (15)	-0.05507 (13)	0.0575 (6)
C26	0.4609 (3)	0.17977 (15)	0.13089 (15)	0.0617 (6)
H26	0.4525	0.1239	0.1200	0.074*
C10	0.2310 (3)	0.00598 (16)	0.46344 (13)	0.0598 (6)
C20	-0.4511 (3)	0.1035 (2)	-0.11439 (17)	0.0885 (9)
H20A	-0.5047	0.0543	-0.1040	0.133*
H20B	-0.4274	0.1016	-0.1678	0.133*
H20C	-0.5159	0.1501	-0.1092	0.133*
C9	0.3187 (3)	0.07330 (17)	0.45288 (13)	0.0641 (7)
H9	0.3739	0.0988	0.4980	0.077*
C8	0.4268 (4)	0.17912 (18)	0.36884 (17)	0.0832 (9)
H8A	0.4759	0.1975	0.4209	0.125*
H8B	0.3622	0.2220	0.3426	0.125*
H8C	0.5051	0.1652	0.3373	0.125*
C28	0.6049 (4)	0.30329 (19)	0.13385 (16)	0.0750 (8)
H28	0.6938	0.3313	0.1255	0.090*
C27	0.5903 (3)	0.22253 (18)	0.11724 (18)	0.0758 (8)
H27	0.6685	0.1954	0.0963	0.091*
C11	0.2268 (4)	-0.0284 (2)	0.54643 (14)	0.0864 (9)
H11A	0.1601	-0.0756	0.5421	0.130*
H11B	0.1877	0.0125	0.5787	0.130*
H11C	0.3301	-0.0440	0.5710	0.130*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0388 (3)	0.0353 (3)	0.0422 (3)	-0.0001 (2)	0.0060 (2)	-0.0017 (2)
S2	0.0534 (4)	0.0493 (3)	0.0648 (4)	0.0089 (3)	0.0168 (3)	-0.0070 (3)
03	0.0393 (8)	0.0403 (8)	0.0416 (7)	-0.0017 (6)	0.0058 (6)	-0.0024 (6)

supporting information

C25	0.0435 (12)	0.0398 (11)	0.0432 (10)	-0.0097 (9)	0.0021 (9)	-0.0006 (9)
O4	0.0452 (8)	0.0433 (8)	0.0429 (7)	0.0045 (6)	0.0060 (6)	0.0041 (6)
N5	0.0452 (10)	0.0415 (9)	0.0400 (9)	0.0009 (8)	0.0056 (8)	0.0041 (7)
C24	0.0408 (11)	0.0446 (11)	0.0373 (10)	-0.0019 (9)	0.0053 (9)	-0.0022 (9)
C22	0.0514 (13)	0.0424 (11)	0.0467 (11)	-0.0007 (10)	0.0066 (10)	0.0011 (9)
C13	0.0475 (12)	0.0426 (11)	0.0448 (11)	0.0105 (9)	0.0059 (10)	0.0064 (9)
C17	0.0472 (12)	0.0425 (11)	0.0381 (10)	-0.0061 (9)	0.0075 (9)	-0.0018 (9)
C6	0.0408 (11)	0.0456 (11)	0.0413 (10)	0.0051 (9)	0.0052 (9)	0.0046 (9)
C16	0.0541 (13)	0.0377 (11)	0.0466 (11)	-0.0121 (10)	0.0039 (10)	-0.0019 (9)
C18	0.0485 (13)	0.0562 (13)	0.0507 (12)	-0.0104 (11)	0.0030 (11)	-0.0025 (10)
C14	0.0596 (14)	0.0405 (12)	0.0518 (12)	-0.0019 (10)	0.0039 (11)	0.0062 (10)
C21	0.0571 (15)	0.0555 (14)	0.0485 (12)	0.0048 (11)	-0.0028 (11)	0.0085 (10)
C30	0.0634 (15)	0.0398 (12)	0.0576 (13)	-0.0106 (11)	0.0032 (11)	-0.0025 (10)
C12	0.0471 (13)	0.0586 (14)	0.0529 (13)	0.0067 (10)	0.0114 (11)	0.0123 (11)
C29	0.085 (2)	0.0476 (14)	0.0724 (16)	-0.0216 (14)	0.0036 (15)	0.0030 (12)
C23	0.0761 (18)	0.0540 (14)	0.0669 (15)	-0.0114 (13)	0.0004 (14)	0.0196 (12)
C7	0.0539 (14)	0.0583 (14)	0.0525 (12)	0.0011 (11)	-0.0021 (11)	0.0016 (11)
C15	0.0491 (14)	0.0803 (17)	0.0547 (13)	-0.0015 (12)	0.0143 (11)	0.0081 (12)
C19	0.0548 (14)	0.0613 (15)	0.0528 (13)	-0.0014 (12)	-0.0019 (11)	0.0010 (11)
C26	0.0509 (14)	0.0508 (14)	0.0871 (17)	-0.0071 (11)	0.0224 (13)	-0.0073 (12)
C10	0.0577 (15)	0.0775 (17)	0.0440 (12)	0.0175 (13)	0.0075 (11)	0.0116 (12)
C20	0.0703 (19)	0.094 (2)	0.088 (2)	-0.0080 (16)	-0.0243 (16)	0.0151 (17)
C9	0.0643 (16)	0.0811 (18)	0.0430 (12)	0.0054 (14)	-0.0025 (11)	-0.0043 (12)
C8	0.089 (2)	0.0820 (19)	0.0676 (16)	-0.0263 (16)	-0.0194 (15)	0.0023 (15)
C28	0.0702 (19)	0.081 (2)	0.0722 (17)	-0.0307 (16)	0.0064 (15)	0.0094 (15)
C27	0.0569 (17)	0.080 (2)	0.096 (2)	-0.0119 (14)	0.0299 (15)	-0.0035 (16)
C11	0.079 (2)	0.130 (3)	0.0516 (14)	0.0177 (19)	0.0149 (14)	0.0249 (16)

Geometric parameters (Å, °)

P1—O4	1.5916 (14)	C12—C10	1.387 (3)
P1—O3	1.5970 (13)	C12—H12	0.9300
P1—C25	1.800 (2)	C29—C28	1.355 (4)
P1—S2	1.9083 (7)	C29—H29	0.9300
O3—C24	1.407 (2)	C23—H23A	0.9600
С25—С30	1.369 (3)	С23—Н23В	0.9600
C25—C26	1.393 (3)	C23—H23C	0.9600
O4—C6	1.410 (2)	С7—С9	1.393 (3)
N5-C15	1.445 (3)	С7—С8	1.492 (4)
N5-C16	1.454 (2)	C15—H15A	0.9600
N5-C14	1.454 (3)	C15—H15B	0.9600
C24—C22	1.387 (3)	C15—H15C	0.9600
C24—C17	1.390 (3)	C19—C20	1.507 (3)
C22—C21	1.391 (3)	C26—C27	1.378 (3)
C22—C23	1.501 (3)	C26—H26	0.9300
С13—С6	1.383 (3)	C10—C9	1.367 (4)
C13—C12	1.386 (3)	C10—C11	1.517 (3)
C13—C14	1.498 (3)	C20—H20A	0.9600

C17—C18	1.379 (3)	C20—H20B	0.9600
C17—C16	1.500 (3)	C20—H20C	0.9600
С6—С7	1.386 (3)	С9—Н9	0.9300
C16—H16A	0.9700	C8—H8A	0.9600
C16—H16B	0.9700	C8—H8B	0.9600
C18—C19	1.383 (3)	C8—H8C	0.9600
C18—H18	0.9300	C28—C27	1.349 (4)
C14—H14A	0.9700	C28—H28	0.9300
C14—H14B	0 9700	C27—H27	0.9300
C_{21} C_{19}	1380(3)	C11—H11A	0.9600
C21_H21	0.9300	C11—H11B	0.9600
C_{21} C_{20} C_{20}	1 383 (3)		0.9000
C_{20} H_{20}	0.0300	en-mie	0.9000
C30—H30	0.9300		
O4—P1—O3	101.72 (7)	С28—С29—Н29	119.4
O4—P1—C25	99.77 (9)	С30—С29—Н29	119.4
O3—P1—C25	100.28 (8)	С22—С23—Н23А	109.5
04 - P1 - S2	117.97 (6)	C22—C23—H23B	109.5
03-P1-S2	117 74 (6)	H23A—C23—H23B	109.5
$C_{25} = P_{1} = S_{2}^{2}$	116 25 (7)	$C_{22} = C_{23} = H_{23}C$	109.5
$C_{24} = 03 = P_{1}$	127.29(12)	$H_{23} = C_{23} = H_{23} C_{23}$	109.5
C_{30} C_{25} C_{26}	127.29(12)	$H_{23B} = C_{23} = H_{23C}$	109.5
C_{30} C_{25} C_{20} C_{20}	121.54(17)	C6-C7-C9	107.5 116.7(2)
$C_{20} = C_{20} = 11$	121.34(17) 110 30 (16)	C6 C7 C8	110.7(2) 1210(2)
$C_{20} = C_{23} = 11$	119.30(10) 127.32(12)	$C_0 = C_7 = C_8$	121.9(2) 121.4(2)
$C_{0} = 0_{1} = 1_{1}$	127.32(12) 112.04(17)	$C_{2} = C_{1} = C_{0}$	121.4(2)
C15 = N5 = C14	112.94(17)	N5—C15—H15D	109.5
C13-N5-C14	112.45 (10)		109.5
C10 - N5 - C14	111.96 (16)	HISA—CIS—HISB	109.5
$C_{22} = C_{24} = C_{17}$	122.84 (19)		109.5
$C_{22} = C_{24} = 0_{3}$	118.35 (17)	HISA—CIS—HISC	109.5
C17—C24—O3	118.33 (17)	H15B—C15—H15C	109.5
C24—C22—C21	116.83 (19)	C21—C19—C18	117.9 (2)
C24—C22—C23	121.8 (2)	C21—C19—C20	121.3 (2)
C21—C22—C23	121.30 (19)	C18—C19—C20	120.8 (2)
C6—C13—C12	117.3 (2)	C27—C26—C25	119.7 (2)
C6—C13—C14	120.14 (18)	С27—С26—Н26	120.2
C12—C13—C14	122.4 (2)	C25—C26—H26	120.2
C18—C17—C24	117.39 (19)	C9—C10—C12	117.7 (2)
C18—C17—C16	121.85 (18)	C9—C10—C11	121.2 (2)
C24—C17—C16	120.57 (18)	C12—C10—C11	121.1 (2)
C13—C6—C7	122.87 (19)	C19—C20—H20A	109.5
C13—C6—O4	118.29 (18)	C19—C20—H20B	109.5
C7—C6—O4	118.58 (19)	H20A—C20—H20B	109.5
N5-C16-C17	112.40 (16)	С19—С20—Н20С	109.5
N5-C16-H16A	109.1	H20A—C20—H20C	109.5
C17—C16—H16A	109.1	H20B—C20—H20C	109.5
N5—C16—H16B	109.1	C10—C9—C7	123.1 (2)
C17—C16—H16B	109.1	С10—С9—Н9	118.4

H16A—C16—H16B	107.9	С7—С9—Н9	118.4
C17—C18—C19	122.4 (2)	С7—С8—Н8А	109.5
C17—C18—H18	118.8	C7—C8—H8B	109.5
C19—C18—H18	118.8	H8A—C8—H8B	109.5
N5—C14—C13	111.73 (17)	C7—C8—H8C	109.5
N5—C14—H14A	109.3	H8A—C8—H8C	109.5
C13—C14—H14A	109.3	H8B—C8—H8C	109.5
N5—C14—H14B	109.3	C27—C28—C29	119.8 (3)
C13—C14—H14B	109.3	C27—C28—H28	120.1
H14A—C14—H14B	107.9	С29—С28—Н28	120.1
C19—C21—C22	122.6 (2)	C28—C27—C26	120.8 (3)
C19—C21—H21	118.7	С28—С27—Н27	119.6
C22—C21—H21	118.7	С26—С27—Н27	119.6
C25—C30—C29	119.5 (2)	C10—C11—H11A	109.5
С25—С30—Н30	120.2	C10—C11—H11B	109.5
С29—С30—Н30	120.2	H11A—C11—H11B	109.5
C_{13} C_{12} C_{10}	122.3 (2)	C10—C11—H11C	109.5
C13—C12—H12	118.8	H11A—C11—H11C	109.5
C10-C12-H12	118.8	H11B—C11—H11C	109.5
C_{28} C_{29} C_{30}	121 1 (2)		109.0
020 027 030	121.11 (2)		
O4—P1—O3—C24	130.89 (15)	C24—C17—C18—C19	0.5 (3)
C25—P1—O3—C24	-126.77(16)	C16—C17—C18—C19	-174.6(2)
S2—P1—O3—C24	0.33 (17)	C15—N5—C14—C13	-74.0(2)
O4—P1—C25—C30	-127.47(18)	C16—N5—C14—C13	157.61 (17)
O3—P1—C25—C30	128.60 (18)	C6-C13-C14-N5	-59.9 (3)
S2—P1—C25—C30	0.5 (2)	C12—C13—C14—N5	123.5 (2)
O4—P1—C25—C26	50.00 (19)	C24—C22—C21—C19	0.0 (3)
O3—P1—C25—C26	-53.93 (19)	C23—C22—C21—C19	176.8 (2)
S2—P1—C25—C26	177.98 (16)	C26—C25—C30—C29	-0.5(3)
O3—P1—O4—C6	-131.31 (16)	P1-C25-C30-C29	176.95 (18)
C25—P1—O4—C6	125.93 (17)	C6-C13-C12-C10	-0.3 (3)
S2—P1—O4—C6	-0.90 (18)	C14—C13—C12—C10	176.4 (2)
P1-03-C24-C22	89.3 (2)	C25—C30—C29—C28	0.1 (4)
P1-03-C24-C17	-98.4 (2)	C13—C6—C7—C9	0.8 (3)
C17—C24—C22—C21	0.0 (3)	O4—C6—C7—C9	-173.3 (2)
O3—C24—C22—C21	171.87 (18)	C13—C6—C7—C8	-179.0(2)
C17—C24—C22—C23	-176.8(2)	O4—C6—C7—C8	6.9 (3)
03-C24-C22-C23	-4.9 (3)	C22-C21-C19-C18	0.3 (4)
C22-C24-C17-C18	-0.2(3)	C22—C21—C19—C20	-178.1(2)
03-C24-C17-C18	-172.11(17)	C17—C18—C19—C21	-0.6(3)
C_{22} C_{24} C_{17} C_{16}	174.92 (18)	C17 - C18 - C19 - C20	177.8 (2)
03-C24-C17-C16	3.0 (3)	C_{30} C_{25} C_{26} C_{27}	0.0(4)
C_{12} C_{13} C_{6} C_{7}	-0.8(3)	P1-C25-C26-C27	-177.6(2)
C14—C13—C6—C7	-177.5(2)	C13—C12—C10—C9	1.3 (3)
C12—C13—C6—O4	173.30 (18)	C13 - C12 - C10 - C11	-178.2(2)
C14—C13—C6—O4	-3.4(3)	C12 - C10 - C9 - C7	-1.3(4)
P1	99.7 (2)	$C_{11} - C_{10} - C_{9} - C_{7}$	178.1 (2)
			- / - / (-)

P1	-86.0 (2)	C6-C7-C9-C10	0.3 (4)
C15—N5—C16—C17	75.8 (2)	C8—C7—C9—C10	-179.9 (3)
C14—N5—C16—C17	-156.10 (18)	C30-C29-C28-C27	0.8 (4)
C18—C17—C16—N5	-125.8 (2)	C29—C28—C27—C26	-1.4 (4)
C24—C17—C16—N5	59.3 (3)	C25—C26—C27—C28	1.0 (4)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C23—H23A···O3	0.96	2.39	2.848 (3)	109