Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1,4-Di-n-heptyloxy-2,5-dinitrobenzene

Octavia A. Blackburn, Benjamin J. Coe,* Robert Futhey and Madeleine Helliwell

School of Chemistry, University of Manchester, Manchester M13 9PL, England
Correspondence e-mail: b.coe@manchester.ac.uk

Received 20 November 2009; accepted 27 November 2009

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.035 ; \omega R$ factor $=0.093$; data-to-parameter ratio $=16.5$.

The complete molecule of the title compound, $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6}$, is generated by crystallographic inversion symmetry. The two mutually trans nitro substituents are hence in fully eclipsed conformation and also twisted by 43.2 (2) ${ }^{\circ}$ with respect to the phenyl ring plane. The benzene-connected portions of the alkoxy substituents lie almost coplanar with the ring $[\mathrm{C}-\mathrm{O}-$ $\mathrm{C}-\mathrm{C}$ torsion angle $\left.=2.0(2)^{\circ}\right]$. In the crystal, weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions link the molecules.

Related literature

For general background to the synthesis, see: Baker et al. (2008); Fisher et al. (1975); Flader et al. (2000); Hammershøj et al. (2006); Kawai et al. (1959). For a related structure, see: Voss et al. (2003).

Experimental

Crystal data
$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6}$
$M_{r}=396.48$
Monoclinic, $P 2_{1} / c$
$a=13.988(2) \AA$
$b=7.9454(13) \AA$
$c=9.5344(15) \AA$
$\beta=99.786(3)^{\circ}$

Data collection
Bruker SMART CCD area-detector diffractometer
5776 measured reflections
2110 independent reflections 1733 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.035$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035 \quad 128$ parameters
$w R\left(F^{2}\right)=0.093 \quad \mathrm{H}$-atom parameters constrained
$S=1.03$
2110 reflections
$\Delta \rho_{\max }=0.24 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.19 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O}^{2}$	0.95	2.50	$3.4525(15)$	179
$\mathrm{C} 4-\mathrm{H} 4 B \cdots 1^{\mathrm{ii}}$	0.99	2.53	$3.2852(15)$	133
Symmetry codes: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $x, y+1, z$				

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors would like to thank Dr Michael G. Hutchings for inspiration, and Dystar UK Ltd and the University of Manchester for funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2242).

References

Baker, M. V., Brown, D. H., Heath, C. H., Skelton, B. W., White, A. H. \& Williams, C. C. (2008). J. Org. Chem. 73, 9340-9352.
Bruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Fisher, G. H., Moreno, H. R., Oatis, J. E. Jr \& Schultz, H. P. (1975). J. Med. Chem. 18, 746-752.
Flader, C., Liu, J.-W. \& Borch, R. F. (2000). J. Med. Chem. 43, 3157-3167.
Hammershøj, P., Reenberg, T. K., Pittelkow, M., Nielsen, C. B., Hammerich, O. \& Christensen, J. B. (2006). Eur. J. Org. Chem. pp. 2786-2794.
Kawai, S., Okawa, Y., Yada, Y., Hosoi, H., Murakoshi, T. \& Yajima, I. (1959). Nippon Kagaku Zasshi, 80, 551-555.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Voss, G., Gradzielski, M., Heinze, J., Reinke, H. \& Unverzagt, C. (2003). Helv. Chim. Acta, 86, 1982-2004.

supporting information

Acta Cryst. (2010). E66, o36 [doi:10.1107/S160053680905123X]

1,4-Di-n-heptyloxy-2,5-dinitrobenzene

Octavia A. Blackburn, Benjamin J. Coe, Robert Futhey and Madeleine Helliwell

S1. Comment

The title compound, (I), is the minor product formed from the nitration of 1,4-di(n-heptoxy)benzene and was synthesized as a precursor to derivatized "salen-like" ligands for co-ordination to transition metals. Although (I) is commercially available, apparently a synthetic method has not been reported previously. Our synthesis involves a standard nitration procedure (Hammershøj et al., 2006) and produces a mixture of the 2,3 and 2,5 structural isomers in a ca $2: 1$ ratio as indicated by the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude material. The isomeric ratio produced in such reactions is clearly quite variable. For example, nitration of 1,4-dimethoxybenzene by a very similar method, but with heating at 373 K for 1 h produced the 2,3 isomer in 90% yield after recrystallization (Hammershøj et al., 2006). Similar results were reported previously (Flader et al., 2000; Fisher et al., 1975), while nitration of 1,4-di(n-butoxy)benzene in a mixture of nitric and acetic acids gives the 2,3 and 2,5 isomers in a 4:1 ratio (Kawai et al., 1959; Baker et al., 2008).
Having structural confirmation for (I), the two isomers are also distinguished by significant differences in their ${ }^{1} \mathrm{H}$ NMR spectra, especially a high field shift of 0.36 p.p.m. for the singlet assigned to the two phenyl protons on moving from 2,5 to 2,3-isomer. This change can be attributed to an increased extent of shielding when these protons are located meta rather than ortho to the nitro substituents. The two isomers also show significantly different melting points and electronic absorption spectra. Compound (I) melts at a temperature ca 70 K higher than that observed for its 2,3-isomer, indicating that the forces holding together the crystal lattice are considerably stronger for (I). A similarly large difference in melting points has also been reported for the corresponding n-butoxy compounds (Kawai et al., 1959).

Both isomers show relatively intense near UV absorption bands that are responsible for their observed colours. These bands are attributable to $\pi \rightarrow \pi^{*}$ intramolecular charge-transfer (ICT) excitations from the HOMO primarily localized on the electron-rich heptoxy groups to the LUMO localized on the electron-deficient nitro units. The stronger yellow colour of (I) when compared with its 2,3-isomer is due to the ICT band maximum being lower in energy by $c a 940 \mathrm{~cm}^{-1}$, with an approximately doubled molar extinction coefficient, producing more extensive tailing of the absorption into the visible region. Clearly, both the HOMO-LUMO energy gap and the extent of overlap between these orbitals are affected significantly by isomerization.
Compound (I) readily forms large and high-quality, yellow block-shaped crystals upon slow evaporation of a nhexane/ethyl acetate solution. Its structure (Fig. 1) resembles that reported previously for the compound 2-(n-heptoxy)-5-methoxy-3,6-dinitrobenzaldehyde (Voss et al., 2003), with generally similar geometric parameters. In both compounds, the two mutually trans nitro substituents are twisted with respect to the phenyl ring plane. However, in (I) these groups are fully eclipsed, since they are related by inversion, each with a $\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$ torsion angle of 43.2 (2) ${ }^{\circ}$, while their mutual orientation is staggered in the previously published structure, with corresponding angles of 39.3 (5) and $87.5(4)^{\circ}$. Another difference between these two structures is the relative orientations of their alkoxy substituents. In (I), for the inversion-related alkoxy groups $\mathrm{C} 4-\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 3$, the torsion angles are very small $\left(2.0(2)^{\circ}\right)$, but in 2-(n-hept-oxy)-5-methoxy-3,6-dinitrobenzaldehyde, the $\mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{C}$ angles are quite different, being $1.0(5)^{\circ}$ for the methoxy
substituent, while the OCH_{2} unit of the heptoxy group is almost perpendicular to the phenyl ring, with a $\mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{C}$ torsion angle of $86.9(4)^{\circ}$.

S2. Experimental

Synthesis of 1,4-di(n-heptoxy)benzene. A solution of hydroquinone ($5.00 \mathrm{~g}, 0.045 \mathrm{~mol}$), 1-bromo-n-heptane (17.9 g , $0.100 \mathrm{~mol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(25.1 \mathrm{~g}, 0.182 \mathrm{~mol})$ in DMF $(100 \mathrm{ml})$ was heated at reflux for 3 h . The resulting brown solution was poured into cold water and the brown precipitate filtered off, washed with cold water and recrystallized from ethanol to give a colourless solid (yield $7.22 \mathrm{~g}, 52 \%$).
Synthesis of 1,4-di(n-heptoxy)-2,5-dinitrobenzene (I). 1,4-di(n-heptoxy)benzene ($200 \mathrm{mg}, 0.653 \mathrm{mmol}$) was added slowly to stirred, ice cooled nitric acid $(67 \%, 5 \mathrm{ml})$. The solution was stirred at 273 K for 1 h , at room temperature for 1 h and then at 313 K for 1 h . The reaction mixture was poured into iced water $(10 \mathrm{~g})$ and the product extracted into chloroform (10 ml). The yellow solution was dried over MgSO_{4} and evaporated to give a mixture of the 2,3-dinitro and 2,5-dinitro isomers as a yellow solid (yield $247 \mathrm{mg}, 95 \%$). The isomers were separated by silica gel column chromatography. Elution with n-hexane/ethyl acetate (99:1) gave (I) as a bright yellow solid (yield $71 \mathrm{mg}, 27 \%$). Diffraction-quality crystals were grown by slow evaporation of a n-hexane/ethyl acetate solution. Further elution of the column with nhexane/ethyl acetate (95:5) gave the 2,3-dinitro isomer as a pale yellow solid (yield $123 \mathrm{mg}, 48 \%$).

S3. Refinement

H atoms bonded to the C atoms were fixed geometrically and treated as riding with $\mathrm{C}-\mathrm{H}=0.95 \AA$ (aromatic), $0.98 \AA$ (methyl) and $0.99 \AA$ (methylene), with $U_{\text {iso }}(\mathrm{H})=1.2$ times those of the parent atoms for the aromatic and methylene H atoms and $U_{\text {iso }}(\mathrm{H})=1.5$ times those of the parent atoms for the methyl H atoms.

Figure 1

View of the compound (I) (50% probability displacement ellipsoids); [symmetry code: $\mathrm{A}=-x+1,-y,-z+2$].

Figure 2
Synthesis of compound (I) and its isomeric form.

1,4-Di-n-heptyloxy-2,5-dinitrobenzene

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6}$
$M_{r}=396.48$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=13.988$ (2) Å
$b=7.9454$ (13) \AA
$c=9.5344(15) \AA$
$\beta=99.786(3)^{\circ}$
$V=1044.3(3) \AA^{3}$
$Z=2$

$$
\begin{aligned}
& F(000)=428 \\
& D_{\mathrm{x}}=1.261 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 776 \text { reflections } \\
& \theta=3.0-26.2^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=100 \mathrm{~K} \\
& \text { Block, yellow } \\
& 0.40 \times 0.40 \times 0.25 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and ω scans
5776 measured reflections
2110 independent reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.093$
$S=1.03$
2110 reflections
128 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0502 P)^{2}+0.0454 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.24$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.19 \mathrm{e}^{-3}$

Special details

1733 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=26.3^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-15 \rightarrow 17$
$k=-9 \rightarrow 9$
$l=-8 \rightarrow 11$

Experimental. Characterization data for 1,4-di(n-heptoxy)benzene. Found: C 78.76, H 11.14\%. Calculated for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{2}$: C $78.38, \mathrm{H}, 11.18 \%$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 6.82\left(4 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 3.89\left(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{OCH}_{2}\right), 1.75(4 \mathrm{H}$, quintet, $\left.\mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{CH}_{2}\right), 1.50-1.18\left(16 \mathrm{H}, \mathrm{m}, 8 \mathrm{CH}_{2}\right), 0.89\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right)$.
Characterization data for 1,4-di(n-heptoxy)-2,5-dinitrobenzene (I). Melting point $=387-389$ K. Found: C $60.81, ~ H 8.29$, $\mathrm{N} 6.94 \%$. Calculated for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6}$: C 60.59 , H 8.14, N 7.07\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.51\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{2}\right), 4.08$ $\left(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{OCH}_{2}\right), 1.83\left(4 \mathrm{H}\right.$, quintet, $\left.\mathrm{J}=6.6 \mathrm{~Hz}_{2} 2 \mathrm{CH}_{2}\right), 1.50-1.25\left(16 \mathrm{H}, \mathrm{m}, 8 \mathrm{CH}_{2}\right), 0.89(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}$, $\left.2 \mathrm{CH}_{3}\right) .+$ Electrospray MS: $\mathrm{m} / \mathrm{z}=419.2[\mathrm{M}+\mathrm{Na}]^{+}, 815.8[2 \mathrm{M}+\mathrm{Na}]^{+} .\left(\lambda_{\max }=378 \mathrm{~nm}, \varepsilon=5000 \mathrm{M}^{-1} \mathrm{dm}^{3}\right.$ in dichloromethane). $v\left(\mathrm{NO}_{2}\right)=1531$ and $1352 \mathrm{~cm}^{-1}$.
Characterization data for 1,4-di(n-heptoxy)-2,3-dinitrobenzene. Melting point $=318-319 \mathrm{~K}$. Found: C 60.66, H 8.56, N 7.09%. Calculated for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6}$: C 60.59 , H 8.14 , $\mathrm{N} 7.07 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.15\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{2}\right), 4.05(4 \mathrm{H}$, $\left.\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{OCH}_{2}\right), 1.76\left(4 \mathrm{H}\right.$, quintet, $\left.\mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{CH}_{2}\right), 1.45-1.25\left(16 \mathrm{H}, \mathrm{m}, 8 \mathrm{CH}_{2}\right), 0.89\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right)$. $\left(\lambda_{\max }=365 \mathrm{~nm}, \varepsilon=2300 \mathrm{M}^{-1} \mathrm{dm}^{3}\right.$ in dichloromethane). $v\left(\mathrm{NO}_{2}\right)=1537$ and $1358 \mathrm{~cm}^{-1}$.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\mathrm{eq}}$
O1	$0.60328(6)$	$-0.29610(10)$	$0.79050(10)$	$0.0209(2)$
O2	$0.58901(6)$	$-0.06141(10)$	$0.67325(9)$	$0.0233(2)$
O3	$0.63728(6)$	$0.17278(10)$	$0.87825(9)$	$0.0194(2)$
N1	$0.58118(7)$	$-0.14678(12)$	$0.77792(11)$	$0.0158(2)$
C1	$0.54045(8)$	$-0.06789(14)$	$0.89396(12)$	$0.0146(3)$
C2	$0.56913(8)$	$0.09431(15)$	$0.94007(12)$	$0.0153(3)$
C3	$0.52640(8)$	$0.16163(14)$	$1.04846(13)$	$0.0156(3)$
H3	0.5431	0.2718	1.0830	0.019^{*}
C4	$0.66991(9)$	$0.33643(14)$	$0.93230(13)$	$0.0179(3)$
H4A	0.6913	0.3318	1.0367	0.022^{*}
H4B	0.6168	0.4198	0.9110	0.022^{*}
C5	$0.75354(8)$	$0.38479(15)$	$0.85918(13)$	$0.0187(3)$
H5A	0.7716	0.5033	0.8825	0.022^{*}
H5B	0.7324	0.3770	0.7549	0.022^{*}
C6	$0.84229(9)$	$0.27363(16)$	$0.90244(15)$	$0.0226(3)$
H6A	0.8267	0.1586	0.8657	0.027^{*}
H6B	0.8565	0.2669	1.0076	0.027^{*}
C7	$0.93312(9)$	$0.33431(16)$	$0.84913(14)$	$0.0217(3)$
H7A	0.9219	0.3296	0.7439	0.026^{*}
H7B	0.9457	0.4531	0.8779	0.026^{*}
C8	$1.02172(9)$	$0.22911(16)$	$0.90717(15)$	$0.0236(3)$
H8A	1.0301	0.2290	1.0124	0.028^{*}
H8B	1.0095	0.1116	0.8746	0.028^{*}
C9	$1.11579(9)$	$0.28829(18)$	$0.86375(15)$	$0.0263(3)$
H9A	1.1257	0.4087	0.8887	0.032^{*}
H9B	1.1104	0.2779	0.7592	0.032^{*}
C10	$1.20347(10)$	$0.18840(18)$	$0.93540(16)$	$0.0292(3)$
H10A	1.2101	0.2003	1.0389	0.044^{*}
H10B	1.2620	0.2312	0.9039	0.044^{*}
H10C	1.1947	0.0694	0.9095	0.044^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0233(5)$	$0.0140(5)$	$0.0262(5)$	$0.0037(3)$	$0.0066(4)$	$0.0002(4)$
O2	$0.0337(5)$	$0.0197(5)$	$0.0184(5)$	$-0.0009(4)$	$0.0104(4)$	$0.0022(4)$
O3	$0.0213(5)$	$0.0162(4)$	$0.0226(5)$	$-0.0066(3)$	$0.0095(4)$	$-0.0030(4)$
N1	$0.0154(5)$	$0.0146(5)$	$0.0175(5)$	$-0.0010(4)$	$0.0030(4)$	$-0.0002(4)$
C1	$0.0152(6)$	$0.0152(6)$	$0.0133(6)$	$0.0025(5)$	$0.0021(5)$	$0.0008(5)$
C2	$0.0139(6)$	$0.0155(6)$	$0.0161(6)$	$-0.0002(5)$	$0.0016(5)$	$0.0030(5)$

C3	$0.0165(6)$	$0.0125(6)$	$0.0167(6)$	$-0.0002(4)$	$-0.0002(5)$	$0.0005(5)$
C4	$0.0201(6)$	$0.0136(6)$	$0.0200(6)$	$-0.0031(5)$	$0.0032(5)$	$-0.0013(5)$
C5	$0.0196(6)$	$0.0166(6)$	$0.0200(6)$	$-0.0042(5)$	$0.0038(5)$	$0.0010(5)$
C6	$0.0214(7)$	$0.0212(7)$	$0.0263(7)$	$-0.0012(5)$	$0.0069(6)$	$0.0033(5)$
C7	$0.0209(7)$	$0.0252(7)$	$0.0191(7)$	$-0.0031(5)$	$0.0041(5)$	$0.0003(5)$
C8	$0.0219(7)$	$0.0253(7)$	$0.0244(7)$	$-0.0018(5)$	$0.0060(6)$	$-0.0024(6)$
C9	$0.0214(7)$	$0.0366(8)$	$0.0215(7)$	$-0.0039(6)$	$0.0050(6)$	$-0.0019(6)$
C10	$0.0220(7)$	$0.0349(8)$	$0.0319(8)$	$-0.0012(6)$	$0.0079(6)$	$-0.0063(6)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{O} 1-\mathrm{N} 1$	1.2268 (12)	C6-C7	1.5247 (16)
$\mathrm{O} 2-\mathrm{N} 1$	1.2269 (12)	C6-H6A	0.9900
$\mathrm{O} 3-\mathrm{C} 2$	1.3549 (13)	C6-H6B	0.9900
O3-C4	1.4438 (14)	C7-C8	1.5191 (18)
N1-C1	1.4682 (14)	C7-H7A	0.9900
$\mathrm{C} 1-\mathrm{C} 3{ }^{\text {i }}$	1.3803 (16)	C7-H7B	0.9900
C1-C2	1.3983 (16)	C8-C9	1.5196 (17)
C2-C3	1.3862 (16)	C8—H8A	0.9900
C3-C1 ${ }^{\text {i }}$	1.3804 (16)	C8-H8B	0.9900
C3-H3	0.9500	C9-C10	1.5218 (19)
C4-C5	1.5097 (16)	C9-H9A	0.9900
C4-H4A	0.9900	C9-H9B	0.9900
C4-H4B	0.9900	C10-H10A	0.9800
C5-C6	1.5223 (17)	C10-H10B	0.9800
C5-H5A	0.9900	C10-H10C	0.9800
C5-H5B	0.9900		
C2-O3-C4	117.53 (9)	C5-C6-H6B	108.7
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{O} 1$	123.94 (10)	C7-C6-H6B	108.7
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 1$	118.47 (9)	H6A-C6-H6B	107.6
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1$	117.57 (9)	C8-C7-C6	112.28 (10)
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 2$	123.36 (10)	C8-C7-H7A	109.1
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{N} 1$	116.43 (10)	C6-C7-H7A	109.1
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	120.21 (10)	C8-C7-H7B	109.1
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 3$	124.83 (11)	C6-C7-H7B	109.1
O3-C2-C1	118.22 (10)	H7A-C7-H7B	107.9
C3-C2-C1	116.94 (10)	C9-C8-C7	114.90 (11)
$\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 2$	119.70 (11)	C9-C8-H8A	108.5
$\mathrm{C} 1{ }^{\text {i }}$ - $\mathrm{C} 3-\mathrm{H} 3$	120.1	C7-C8-H8A	108.5
C2-C3-H3	120.1	C9-C8-H8B	108.5
O3-C4-C5	106.69 (9)	C7-C8-H8B	108.5
$\mathrm{O} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	110.4	H8A-C8-H8B	107.5
C5-C4-H4A	110.4	C8-C9-C10	112.67 (12)
O3-C4-H4B	110.4	C8-C9-H9A	109.1
C5-C4-H4B	110.4	C10-C9-H9A	109.1
H4A-C4-H4B	108.6	C8-C9-H9B	109.1
C4-C5-C6	112.80 (10)	C10-C9-H9B	109.1

$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	109.0
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	109.0
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	109.0
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	109.0
$\mathrm{H} 5 \mathrm{~A}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	107.8
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$114.44(10)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	108.7
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	108.7
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 3^{\mathrm{i}}$	
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 3$	$136.39(11)$
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-41.95(14)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-43.17(15)$
$\mathrm{C} 4-\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 3$	$138.49(11)$
$\mathrm{C} 4-\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 1$	$2.00(17)$
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 3$	$-176.73(10)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 3$	$178.27(11)$
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-2.21(16)$

H9A-C9-H9B	107.8
C9-C10-H10A	109.5
C9-C10-H10B	109.5
H10A-C10-H10B	109.5
C9-C10-H10C	109.5
H10A-C10-H10C	109.5
H10B-C10-H10C	109.5

$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3 \quad 178.96$ (10)
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C}^{\mathrm{i}} \quad-178.21(11)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C}^{\mathrm{i}} \quad 0.53$ (18)
$\mathrm{C} 2-\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 5 \quad 172.90$ (10)

O3-C4-C5-C6 -67.13 (13)
C4-C5-C6-C7 -171.07 (11)
C5-C6-C7-C8 174.35 (11)
C6-C7-C8-C9 -177.18 (11)
C7-C8-C9—C10 174.81 (11)

Symmetry code: (i) $-x+1,-y,-z+2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{O} 2^{\text {ii }}$	0.95	2.50	$3.4525(15)$	179
$\mathrm{C} 4 — \mathrm{H} 4 B \cdots \mathrm{O}^{\text {iii }}$	0.99	2.53	$3.2852(15)$	133

Symmetry codes: (ii) $x,-y+1 / 2, z+1 / 2$; (iii) $x, y+1, z$.

