

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tris(4-tert-butylphenyl)phosphine oxide

Yin-Ge Hao,^a Jin-Cai Yao,^b Jun-Xian Li,^a Yu-Xin He^a and Yu-Qing Zhang^a*

^aKey Laboratory of Polymer Science and Nanotechnology, Henan University of Science and Technology, Luoyang 471003, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China Correspondence e-mail: zhangyq8@126.com

Received 21 November 2009; accepted 4 December 2009

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.042; wR factor = 0.117; data-to-parameter ratio = 15.4.

In the title compound, $C_{30}H_{39}OP$, the P=O bond length is 1.4866 (12) Å and the P-C bond lengths range from 1.804 (2) to 1.808 (13) Å. The molecle is located on a crystallographic mirror plane. The methyl groups of one *tert*-butyl group are disordered over two sites in a 0.776 (4):0.224 (4) ratio.

Related literature

For applications of phosphine ligands in palladium-catalysed syntheses, see: Buchwald *et al.* (2006); Surry & Buchwald (2008); Xu *et al.* (2009). For related structures, see: Baures & Silverton (1990); Shawkataly *et al.* (2009). For the synthesis, see: Issleib & Brack (1954).

Experimental

Crystal data

 $C_{30}H_{39}OP$ $V = 2597.3 (4) Å^3$
 $M_r = 446.58$ Z = 4

 Orthorhombic, *Pnma* Mo K α radiation

 a = 11.7986 (10) Å $\mu = 0.13 \text{ mm}^{-1}$

 b = 20.9246 (18) Å T = 294 K

 c = 10.5204 (9) Å 0.45 $\times 0.43 \times 0.42$

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.946, T_{max} = 0.949$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.117$ S = 1.032485 reflections 161 parameters $0.45 \times 0.43 \times 0.42 \text{ mm}$ 17327 measured reflections

2485 independent reflections 2143 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$

 $\begin{array}{l} 18 \mbox{ restraints} \\ \mbox{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.38 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{min} = -0.30 \mbox{ e } \mbox{ Å}^{-3} \end{array}$

Data collection: *SMART* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

We are grateful to the Fund for Distinguished Talents of Henan Province (No. 074200510019) for financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2225).

References

- Baures, P. W. & Silverton, J. V. (1990). Acta Cryst. C46, 715-717.
- Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Buchwald, S. L., Mauger, C., Mignani, G. & Scholz, U. (2006). Adv. Synth. Catal. 348, 23–39.
- Issleib, V. K. & Brack, A. (1954). Z. Anorg. Allg. Chem. 277, 258-270.
- Shawkataly, O. bin, Pankhi, M. A. A., Mohamed-Ibrahim, M. I., Hamdan, M. R. & Fun, H.-K. (2009). Acta Cryst. E65, o1080.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Surry, D. S. & Buchwald, S. L. (2008). Angew. Chem. Int. Ed. 47, 6338–6361.
- Xu, C., Wang, Z. Q., Fu, W. J., Lou, X. H., Li, Y. F., Cen, F. F., Ma, H. J. & Ji, B. M. (2009). Organometallics, 28, 1909–1916.

supporting information

Acta Cryst. (2010). E66, o211 [doi:10.1107/S1600536809052155]

Tris(4-tert-butylphenyl)phosphine oxide

Yin-Ge Hao, Jin-Cai Yao, Jun-Xian Li, Yu-Xin He and Yu-Qing Zhang

S1. Comment

Arylphosphines are the most frequently used as ligands in transition metal catalysis (Buchwald *et al.*, 2006; Surry & Buchwald 2008; Xu *et al.*, 2009). While preparing tris(4-*tert*-butylphenyl) phosphines, we have obtained the title compound as a side product.

The title compound, $C_{30}H_{39}OP$, has a P=O bond length of 1.4866 (12) Å. The P—C bond lengths range from 1.804 (2) to 1.808 (13) Å. It is located on a crystallographic mirror plane. All the bond distances and angles in the structure are within normal ranges, similar to those found in the related compounds (Baures & Silverton 1990; Shawkataly *et al.*, 2009). The methyl groups of one *tert*-butyl group are disordered over two sites in a 0.776 (4):0.224 (4) ratio.

S2. Experimental

The title compound was obtained as a side product from the reaction of PCl_3 and $4-C(CH_3)_3-C_6H_4$ —MgBr as described in the literature (Issleib & Brack 1954) and recrystallized from ethanol at room temperature to give the desired crystals suitable for single-crystal X-ray diffraction.

S3. Refinement

The methyl groups of one *tert*-butyl group are disordered over two sites, occupancies were refined and converged to 0.776 (4):0.224 (4). The rigid-group mode was used in refinement for the disordered components, and atomic displacement parameters were constrained for disordered components. H atoms attached to C atoms of the title compound were placed in geometrically idealized positions and treated as riding with C—H distances constrained to 0.93–0.96 Å, and with $U_{iso}(H)=1.2-1.5U_{eq}(C)$.

Figure 1

The molecular structure of the title compound with displacement ellipsoids at the 30% probability level (Symmetry code A: x, -y + 1/2, z).

Tris(4-tert-butylphenyl)phosphine oxide

Crystal data	
$C_{30}H_{39}OP$ $M_r = 446.58$ Orthorhombic, <i>Pnma</i> $a = 11.7986 (10) \text{ Å}$ $b = 20.9246 (18) \text{ Å}$ $c = 10.5204 (9) \text{ Å}$ $V = 2597.3 (4) \text{ Å}^3$ $Z = 4$ $V(200) = 0.60$	$D_x = 1.142 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5668 reflections $\theta = 2.6-28.1^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$ T = 294 K Block, colourless $0.45 \times 0.43 \times 0.42 \text{ mm}$
F(000) = 968 Data collection	
Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.946, T_{\max} = 0.949$	17327 measured reflections 2485 independent reflections 2143 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 25.5^\circ$, $\theta_{min} = 2.6^\circ$ $h = -14 \rightarrow 14$ $k = -25 \rightarrow 25$ $l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from
$wR(F^2) = 0.117$	neighbouring sites
S = 1.03	H-atom parameters constrained
2485 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0575P)^2 + 1.3437P]$
161 parameters	where $P = (F_o^2 + 2F_c^2)/3$
18 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.38 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.77025 (14)	0.31883 (8)	0.30317 (15)	0.0298 (4)	
C2	0.66436 (14)	0.33374 (8)	0.35431 (16)	0.0340 (4)	
H2	0.6014	0.3093	0.3328	0.041*	
C3	0.65284 (15)	0.38473 (8)	0.43698 (17)	0.0370 (4)	
H3	0.5814	0.3944	0.4689	0.044*	
C4	0.74507 (15)	0.42213 (8)	0.47393 (16)	0.0342 (4)	
C5	0.84902 (15)	0.40734 (9)	0.42064 (17)	0.0400 (4)	
H5	0.9119	0.4319	0.4419	0.048*	
C6	0.86199 (14)	0.35678 (9)	0.33627 (17)	0.0381 (4)	
H6	0.9329	0.3483	0.3016	0.046*	
C7	0.72901 (17)	0.47686 (9)	0.56942 (18)	0.0422 (4)	
C8	0.8417 (2)	0.50323 (12)	0.6179 (2)	0.0656 (7)	
H8A	0.8839	0.4696	0.6579	0.098*	
H8B	0.8276	0.5366	0.6784	0.098*	
H8C	0.8844	0.5201	0.5478	0.098*	
C9	0.6599 (2)	0.45282 (11)	0.6836 (2)	0.0654 (7)	
H9A	0.5866	0.4390	0.6553	0.098*	
H9B	0.6513	0.4868	0.7443	0.098*	
H9C	0.6988	0.4176	0.7228	0.098*	
C10	0.6641 (2)	0.53167 (10)	0.5049 (2)	0.0592 (6)	
H10A	0.7100	0.5498	0.4387	0.089*	
H10B	0.6467	0.5640	0.5667	0.089*	
H10C	0.5950	0.5155	0.4691	0.089*	

C11	0.6881 (2)	0.2500	0.0829 (2)	0.0299 (5)	
C12	0.64869 (17)	0.30649 (9)	0.03060 (18)	0.0432 (5)	
H12	0.6743	0.3453	0.0627	0.052*	
C13	0.57171 (17)	0.30618 (9)	-0.06884 (18)	0.0453 (5)	
H13	0.5472	0.3450	-0.1021	0.054*	
C14	0.5301 (2)	0.2500	-0.1204 (2)	0.0342 (5)	
C15	0.4417 (2)	0.2500	-0.2271 (2)	0.0433 (6)	
C16	0.3243 (4)	0.2500	-0.1637 (5)	0.0934 (17)	0.776 (4)
H16A	0.3112	0.2906	-0.1240	0.140*	0.776 (4)
H16B	0.2671	0.2500	-0.2269	0.140*	0.776 (4)
C17	0.4487 (4)	0.3089 (2)	-0.3094 (4)	0.1069 (16)	0.776 (4)
H17A	0.3956	0.3054	-0.3782	0.160*	0.776 (4)
H17B	0.5240	0.3129	-0.3429	0.160*	0.776 (4)
H17C	0.4309	0.3460	-0.2594	0.160*	0.776 (4)
C18	0.5182 (14)	0.2500	-0.3521 (17)	0.0934 (17)	0.224 (4)
H18A	0.4698	0.2500	-0.4229	0.140*	0.224 (4)
H18B	0.5516	0.2086	-0.3543	0.140*	0.224 (4)
C19	0.3708 (5)	0.3102 (7)	-0.2313 (5)	0.1069 (16)	0.224 (4)
H19A	0.3178	0.3074	-0.3003	0.160*	0.224 (4)
H19B	0.4193	0.3465	-0.2436	0.160*	0.224 (4)
H19C	0.3303	0.3148	-0.1526	0.160*	0.224 (4)
O1	0.91419 (9)	0.2500 (7)	0.15255 (12)	0.0397 (4)	
P1	0.79669 (5)	0.2500 (7)	0.20357 (5)	0.02885 (19)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
C1	0.0308 (8)	0.0304 (8)	0.0281 (8)	-0.0013 (7)	-0.0028 (6)	0.0019 (7)
C2	0.0283 (8)	0.0345 (9)	0.0393 (9)	-0.0042 (7)	-0.0036 (7)	-0.0025 (7)
C3	0.0323 (9)	0.0385 (9)	0.0401 (9)	0.0005 (7)	0.0026 (7)	-0.0037 (8)
C4	0.0393 (9)	0.0304 (9)	0.0327 (9)	-0.0023 (7)	-0.0031 (7)	0.0006 (7)
C5	0.0341 (9)	0.0405 (10)	0.0455 (10)	-0.0099 (8)	-0.0034 (8)	-0.0057 (8)
C6	0.0299 (9)	0.0429 (10)	0.0414 (9)	-0.0036 (7)	0.0022 (7)	-0.0047 (8)
C7	0.0487 (11)	0.0362 (9)	0.0418 (10)	-0.0038 (8)	0.0006 (8)	-0.0080(8)
C8	0.0646 (15)	0.0595 (14)	0.0728 (15)	-0.0078 (12)	-0.0120 (12)	-0.0304 (12)
C9	0.0945 (19)	0.0592 (14)	0.0425 (11)	-0.0148 (13)	0.0137 (12)	-0.0147 (10)
C10	0.0685 (14)	0.0424 (12)	0.0665 (14)	0.0090 (10)	0.0018 (12)	-0.0086 (11)
C11	0.0328 (12)	0.0310 (12)	0.0260 (11)	0.000	0.0004 (9)	0.000
C12	0.0580 (12)	0.0298 (9)	0.0418 (10)	-0.0022 (8)	-0.0149 (9)	-0.0015 (7)
C13	0.0597 (12)	0.0328 (10)	0.0434 (10)	0.0061 (9)	-0.0153 (9)	0.0027 (8)
C14	0.0334 (13)	0.0424 (13)	0.0270 (11)	0.000	0.0005 (10)	0.000
C15	0.0486 (16)	0.0461 (15)	0.0352 (14)	0.000	-0.0122 (12)	0.000
C16	0.055 (3)	0.157 (5)	0.068 (3)	0.000	-0.026 (2)	0.000
C17	0.121 (3)	0.117 (3)	0.083 (3)	-0.045 (3)	-0.065 (2)	0.053 (2)
C18	0.055 (3)	0.157 (5)	0.068 (3)	0.000	-0.026 (2)	0.000
C19	0.121 (3)	0.117 (3)	0.083 (3)	-0.045 (3)	-0.065 (2)	0.053 (2)
01	0.0300 (9)	0.0473 (10)	0.0419 (10)	0.000	0.0059 (7)	0.000
P1	0.0270 (3)	0.0314 (3)	0.0282 (3)	0.000	0.0000(2)	0.000

Geometric parameters (Å, °)

C1—C6	1.387 (2)	C11—P1	1.804 (2)
C1—C2	1.396 (2)	C12—C13	1.385 (3)
C1—P1	1.808 (13)	C12—H12	0.9300
C2—C3	1.383 (2)	C13—C14	1.384 (2)
С2—Н2	0.9300	С13—Н13	0.9300
C3—C4	1.396 (2)	C14—C13 ⁱ	1.384 (2)
С3—Н3	0.9300	C14—C15	1.533 (3)
C4—C5	1.384 (3)	C15—C17 ⁱ	1.509 (4)
C4—C7	1.535 (2)	C15—C17	1.509 (4)
C5—C6	1.389 (2)	C15—C19 ⁱ	1.512 (13)
С5—Н5	0.9300	C15—C19	1.512 (13)
С6—Н6	0.9300	C15—C16	1.537 (6)
С7—С8	1.527 (3)	C15—C18	1.596 (19)
С7—С9	1.537 (3)	C16—H16A	0.9600
C7—C10	1.537 (3)	C16—H16B	0.9471
C8—H8A	0.9600	C17—H17A	0.9600
C8—H8B	0.9600	C17—H17B	0.9600
C8—H8C	0.9600	C17—H17C	0.9600
С9—Н9А	0.9600	C18—H18A	0.9378
С9—Н9В	0.9600	C18—H18B	0.9517
С9—Н9С	0.9600	C19—H19A	0.9600
C10—H10A	0.9600	C19—H19B	0.9600
C10—H10B	0.9600	С19—Н19С	0.9600
C10—H10C	0.9600	O1—P1	1.4866 (12)
C11—C12 ⁱ	1.384 (2)	P1—C1 ⁱ	1.808 (13)
C11—C12	1.384 (2)		
C6—C1—C2	118.28 (15)	C14—C13—H13	118.9
C6—C1—P1	117.83 (17)	C12—C13—H13	118.9
C2—C1—P1	123.78 (18)	C13-C14-C13 ⁱ	116.2 (2)
C3—C2—C1	120.19 (15)	C13—C14—C15	121.88 (11)
С3—С2—Н2	119.9	C13 ⁱ —C14—C15	121.88 (11)
С1—С2—Н2	119.9	C17 ⁱ —C15—C17	109.6 (4)
C2—C3—C4	122.08 (16)	$C17^{i}$ — $C15$ — $C19^{i}$	48.2 (3)
С2—С3—Н3	119.0	C17—C15—C19 ⁱ	133.9 (3)
С4—С3—Н3	119.0	C17 ⁱ —C15—C19	133.9 (3)
C5—C4—C3	116.92 (16)	C17—C15—C19	48.2 (3)
C5—C4—C7	122.78 (16)	C19 ⁱ —C15—C19	112.7 (7)
C3—C4—C7	120.30 (16)	C17 ⁱ —C15—C14	112.50 (18)
C4—C5—C6	121.79 (16)	C17—C15—C14	112.50 (18)
С4—С5—Н5	119.1	C19 ⁱ —C15—C14	113.5 (2)
С6—С5—Н5	119.1	C19—C15—C14	113.5 (2)
C1—C6—C5	120.69 (16)	C17 ⁱ —C15—C16	107.4 (3)
С1—С6—Н6	119.7	C17—C15—C16	107.4 (3)
С5—С6—Н6	119.7	C19 ⁱ —C15—C16	60.9 (4)
C8—C7—C4	112.37 (16)	C19—C15—C16	60.9 (4)

С8—С7—С9	108.61 (18)	C14—C15—C16	107.2 (2)
C4—C7—C9	109.45 (15)	C17 ⁱ —C15—C18	59.7 (3)
C8—C7—C10	108.16 (17)	C17—C15—C18	59.7 (3)
C4—C7—C10	109.22 (15)	C19 ⁱ —C15—C18	106.8 (4)
C9—C7—C10	108.98 (19)	C19—C15—C18	106.8 (4)
C7—C8—H8A	109.5	C14—C15—C18	102.6 (6)
C7—C8—H8B	109.5	C16—C15—C18	150.1 (6)
H8A—C8—H8B	109.5	C15—C16—H16A	109.5
C7—C8—H8C	109.5	C15—C16—H16B	109.7
H8A—C8—H8C	109.5	H16A—C16—H16B	101.0
H8B-C8-H8C	109.5	C15-C17-H17A	109.5
C7—C9—H9A	109.5	C15—C17—H17B	109.5
C7—C9—H9B	109.5	C_{15} C_{17} H_{17}	109.5
H9A - C9 - H9B	109.5	C_{15} C_{18} H_{18A}	109.5
C7 - C9 - H9C	109.5	C_{15} C_{18} H_{18B}	104.7
$H_{0}A = C_{0} = H_{0}C$	109.5	H_{184} C_{18} H_{18B}	103.5
HOR CO HOC	109.5	$C_{15} C_{10} H_{16A}$	90.7
C7 - C10 - H10A	109.5	C15-C19-H19A	109 5
C7 C10 H10R	109.5	C_{15} C_{10} H_{10R}	109.5
$H_{10A} = C_{10} = H_{10B}$	109.5	$H_{10A} = C_{10} = H_{10B}$	109.5
C7 $C10$ $H10C$	109.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
	109.5		109.5
H10R C10 H10C	109.5	H10P C10 H10C	109.5
$\begin{array}{c} \text{HI0B} \\ $	109.5	H19B - C19 - H19C	109.3
C12 - C11 - C12	117.3(2) 121.2(5)	$O_1 = P_1 = C_1$	111.72(19) 114.10(0)
$C_{12} = C_{11} = F_1$	121.2(5)	OI - FI - OII	114.10(9)
C12 - C11 - F1	121.2(3)	CI = PI = CII	100.0(3)
C11 - C12 - C13	121.07 (17)	OI - PI - CI	111.72(10)
C12 - C12 - H12	119.5	CI = PI = CI	105.59(10)
C13 - C12 - H12	119.5	CII—PI—CI	100.0 (3)
014-013-012	122.14 (17)		
C6—C1—C2—C3	-0.8 (2)	C13—C14—C15—C17	28.3 (4)
P1-C1-C2-C3	175.4 (4)	C13 ⁱ —C14—C15—C17	-152.7 (3)
C1—C2—C3—C4	-1.1 (3)	C13—C14—C15—C19 ⁱ	-154.7 (4)
C2—C3—C4—C5	2.1 (3)	C13 ⁱ —C14—C15—C19 ⁱ	24.3 (5)
C2—C3—C4—C7	-177.92 (16)	C13—C14—C15—C19	-24.3 (5)
C3—C4—C5—C6	-1.4 (3)	C13 ⁱ —C14—C15—C19	154.7 (4)
C7—C4—C5—C6	178.71 (16)	C13—C14—C15—C16	-89.5 (2)
C2-C1-C6-C5	1.5 (3)	C13 ⁱ —C14—C15—C16	89.5 (2)
P1-C1-C6-C5	-174.9 (3)	C13—C14—C15—C18	90.5 (2)
C4—C5—C6—C1	-0.5 (3)	C13 ⁱ —C14—C15—C18	-90.5 (2)
C5—C4—C7—C8	-11.6 (3)	C6—C1—P1—O1	-9.6 (3)
C3—C4—C7—C8	168.51 (18)	C2-C1-P1-O1	174.21 (16)
C5—C4—C7—C9	-132.3 (2)	C6—C1—P1—C11	-134.9 (3)
C3—C4—C7—C9	47.8 (2)	C2—C1—P1—C11	48.9 (6)
C5—C4—C7—C10	108.5 (2)	C6-C1-P1-C1 ⁱ	112.0 (2)
C3—C4—C7—C10	-71.5 (2)	C2-C1-P1-C1 ⁱ	-64.1 (2)
C12 ⁱ —C11—C12—C13	0.9 (4)	C12 ⁱ —C11—P1—O1	86.9 (3)
	× /		~ /

P1-C11-C12-C13	174.97 (17)	C12—C11—P1—O1	-86.9 (3)
C11—C12—C13—C14	0.3 (3)	C12 ⁱ —C11—P1—C1	-149.3 (4)
C12-C13-C14-C13 ⁱ	-1.4 (4)	C12—C11—P1—C1	36.9 (4)
C12-C13-C14-C15	177.7 (2)	$C12^{i}$ — $C11$ — $P1$ — $C1^{i}$	-36.9 (4)
C13-C14-C15-C17 ⁱ	152.7 (3)	C12-C11-P1-C1 ⁱ	149.3 (4)
$C13^{i}$ — $C14$ — $C15$ — $C17^{i}$	-28.3 (4)		

Symmetry code: (i) x, -y+1/2, z.