organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-(2,4-Dichlorophenyl)-2-oxo-1oxaspiro[4.5]dec-3-en-4-yl acetate

Jin-hao Zhao,^a Yong Zhou,^b Jing-Li Cheng,^a Chuan-Ming Yu^b and Guo-Nian Zhu^a*

^aInstitute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, People's Republic of China, and ^bCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China

Correspondence e-mail: zhugn@zj.com

Received 30 November 2009; accepted 15 December 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.098; data-to-parameter ratio = 18.3.

In the title compound, C₁₇H₁₆Cl₂O₄, the cyclohexyl ring displays a chair conformation [the four C atoms are planar with a mean deviation of 0.001 (2) Å and the two C atoms at the flap positions deviate by 0.625 (2) and -0.680 (2) Å from the plane]. The furan ring is planar with a mean deviation of 0.004 (2) Å and forms a dihedral angle of 46.73 (2)° with the benzene ring.

Related literature

For tetronic acid, see: Fischer et al. (1993); Benson et al. (2000). For the chemistry of tetronic acid pesticides, see: BAYER Aktiengesellschaft (1995). For the synthesis and basic structure of the spirodiclofen derivative, see: Zhao et al. (2009); Zhou et al. (2009).

Experimental

Crystal data

β

C17H16Cl2O4	
$M_r = 355.20$	
Monoclinic, $P2_1/c$	
a = 14.0705 (5) Å	
<i>b</i> = 12.9731 (4) Å	
c = 9.2400 (3) Å	
$\beta = 90.8920(10)^{\circ}$	

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.834, T_{\max} = 0.893$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.098$ S = 1.003835 reflections

 $V = 1686.45 (10) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.40 \text{ mm}^{-1}$ T = 296 K $0.47 \times 0.45 \times 0.29 \text{ mm}$

16146 measured reflections 3835 independent reflections 2866 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.025$

210 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.23$ e Å⁻³

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

The authors thank the National Natural Science Foundation of China (No. 30700532) and the Science and Technology Project of Zhejiang Province (No. 2009C21014) for financial support. The authors are grateful to Professor Jianming Gu for the crystal structure analysis.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2227).

References

- BAYER Aktiengesellschaft (1995). WO patent No. 9 504 719A1.
- Benson, D. A., Lipman, D. J., Ostell, J., Rapp, B. A., Wheeler, D. L. & Genbank, N. (2000). Acids Res. 28, 15-18.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Fischer, R. M., Bretschneider, T. S. & Kruger, B.-W. (1993). US patent No. 5 262 383
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Zhao, J. H., Zhou, Y., Xu, X. H., Cheng, J. L. & Zhu, G. N. (2009). Chin. J. Struct. Chem. 28, 837-840.
- Zhou, Y., Cheng, J.-L., Zhu, G.-N. & Zhao, J.-H. (2009). Acta Cryst. E65, o2992.

supporting information

Acta Cryst. (2010). E66, o208 [doi:10.1107/S1600536809053951]

3-(2,4-Dichlorophenyl)-2-oxo-1-oxaspiro[4.5]dec-3-en-4-yl acetate

Jin-hao Zhao, Yong Zhou, Jing-Li Cheng, Chuan-Ming Yu and Guo-Nian Zhu

S1. Comment

The chemistry of tetronic acid compounds has being receiving increasing attention in recent years, and references cited therein (Fischer *et al.*,1993; Benson *et al.*, 2000). Bayer company have developed three tetronic acids pesticides-spirodiclofen, spiromesifen and spirotetramat(BAYER Aktiengesellschaft, 1995). The cyclohexyl chair is linked by the spiro carbon atom to the five membered furan ring and the dichlorophenyl group to form the basic structure of the spirodiclofen derivative (Zhao *et al.*, 2009) resulting in the title compound (I), (Fig. 1) by addition of the acetate group. The furan ring is planar with a mean deviation of 0.004 (2) Å. The dihedral angle between benzene and furan rings is 46.73 (2) °. The cyclohexyl ring displays a chair conformation with the deviations of C9 and C12 being 0.625 (2) and -0.680 (2) Å, respectively. Similar distortions were observed in the structure of a spirodiclofen derivative. (Zhou *et al.*, (2009)). As expected, C7=C15, C8=O1 and C16=O4 are typically double bonds with bond distances of 1.336 (2), 1.201 (2) and 1.183 (2) Å, respectively. In the crystal, the molecules are linked through weak intermolecular contacts of C17—H17B···O1, forming chains running along the *c* axis.

S2. Experimental

4-hydroxyl-3-(2,4-dichlorophenyl)-1-oxaspiro[4,5]dec- 3-en-2-one(10 mmol 3.12 g) was added to acetic anhydride (35 ml) and the mixture was stirred at reflux for 5 h. Then water (70 ml) was added and the solution was extracted with dichloromethane. The organic layer was dried over Na₂SO₄. After filtered and concentrated, the organic residue was purified by silica gel column chromatography, eluted with ethyl acetate-petroleum(1:30, ν/ν) to give a white solid, which was then recrystallized from 95% ethanol to give colourless blocks.

S3. Refinement

H atoms were included in calculated positions and refined using a rinding model, with C—H distances constrained to 0.96 Å for methyl H atoms, 0.93Å for aryl H atoms and 0.97 for the cyclopentane, with O—H distances constrained to 0.820 Å, and with $U_{iso}(H) = 1.2Ueq(C,O)$.

Figure 1

The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

3-(2,4-Dichlorophenyl)-2-oxo-1-oxaspiro[4.5]dec-3-en-4-yl acetate

Crystal data

C₁₇H₁₆Cl₂O₄ $M_r = 355.20$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 14.0705 (5) Å b = 12.9731 (4) Å c = 9.2400 (3) Å $\beta = 90.892$ (1)° V = 1686.45 (10) Å³ Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer Radiation source: rotating anode Graphite monochromator Detector resolution: 10.00 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\min} = 0.834$, $T_{\max} = 0.893$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.098$ S = 1.003835 reflections 210 parameters F(000) = 736 $D_x = 1.399 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 11608 reflections $\theta = 3.1-27.4^{\circ}$ $\mu = 0.40 \text{ mm}^{-1}$ T = 296 KChunk, colorless $0.47 \times 0.45 \times 0.29 \text{ mm}$

16146 measured reflections 3835 independent reflections 2866 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 27.4^\circ, \theta_{min} = 3.1^\circ$ $h = -17 \rightarrow 18$ $k = -16 \rightarrow 16$ $l = -11 \rightarrow 11$

0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.040P)^2 + 0.650P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.22$ e Å⁻³

Special details

 $\Delta \rho_{\min} = -0.23 \text{ e} \text{ Å}^{-3}$ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0064 (10)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl2	0.54892 (4)	0.47091 (4)	0.18788 (5)	0.06065 (17)	
Cl1	0.38311 (4)	0.75742 (4)	0.51693 (6)	0.06588 (18)	
O2	0.84926 (8)	0.39184 (10)	0.46610 (12)	0.0476 (3)	
01	0.75521 (9)	0.45025 (11)	0.64035 (13)	0.0536 (3)	
C4	0.64126 (12)	0.56385 (12)	0.41374 (17)	0.0392 (3)	
O3	0.76541 (10)	0.49671 (10)	0.13019 (13)	0.0549 (3)	
C16	0.74521 (13)	0.59698 (16)	0.08843 (19)	0.0490 (4)	
C7	0.72584 (12)	0.49944 (13)	0.39001 (17)	0.0401 (4)	
C6	0.56414 (13)	0.69385 (14)	0.5600 (2)	0.0500 (4)	
H6	0.5665	0.7404	0.6365	0.060*	
C15	0.77593 (13)	0.47332 (13)	0.27392 (18)	0.0437 (4)	
C3	0.55724 (12)	0.55682 (13)	0.33197 (17)	0.0417 (4)	
C1	0.48284 (12)	0.68374 (13)	0.4763 (2)	0.0462 (4)	
C9	0.85752 (12)	0.40299 (14)	0.30992 (18)	0.0445 (4)	
C2	0.47789 (12)	0.61566 (14)	0.36203 (18)	0.0460 (4)	
H2	0.4225	0.6094	0.3064	0.055*	
O4	0.74584 (11)	0.66581 (11)	0.17247 (15)	0.0626 (4)	
C5	0.64214 (13)	0.63370 (14)	0.52862 (19)	0.0467 (4)	
H5	0.6969	0.6399	0.5857	0.056*	
C8	0.77430 (12)	0.44761 (13)	0.51412 (18)	0.0424 (4)	
C14	0.84764 (13)	0.29681 (15)	0.2402 (2)	0.0522 (4)	
H14A	0.7892	0.2649	0.2718	0.063*	
H14B	0.8438	0.3044	0.1358	0.063*	
C13	0.93139 (16)	0.22725 (18)	0.2799 (3)	0.0715 (6)	
H13A	0.9306	0.2126	0.3829	0.086*	
H13B	0.9252	0.1624	0.2284	0.086*	
C10	0.95350 (14)	0.45228 (17)	0.2795 (2)	0.0620 (5)	
H10A	0.9596	0.5155	0.3348	0.074*	
H10B	0.9564	0.4699	0.1776	0.074*	
C11	1.03604 (15)	0.3808 (2)	0.3184 (3)	0.0772 (7)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H11A	1.0954	0.4127	0.2907	0.093*	
H11B	1.0382	0.3700	0.4223	0.093*	
C17	0.72453 (19)	0.6010 (2)	-0.0704 (2)	0.0764 (7)	
H17A	0.6580	0.5890	-0.0877	0.092*	
H17B	0.7608	0.5488	-0.1184	0.092*	
H17C	0.7415	0.6676	-0.1071	0.092*	
C12	1.02541 (16)	0.2775 (2)	0.2422 (3)	0.0867 (8)	
H12A	1.0774	0.2326	0.2710	0.104*	
H12B	1.0282	0.2876	0.1383	0.104*	

Atomic displacement parameters $(Å^2)$

	U ¹¹	U ²²	U ³³	U ¹²	U ¹³	U ²³
C12	0.0609 (3)	0.0749 (3)	0.0461 (3)	-0.0062 (2)	-0.0021 (2)	-0.0182 (2)
Cl1	0.0520 (3)	0.0588 (3)	0.0873 (4)	0.0111 (2)	0.0151 (2)	-0.0012 (3)
O2	0.0461 (6)	0.0517 (7)	0.0450 (6)	0.0078 (6)	-0.0016 (5)	-0.0027 (5)
01	0.0572 (8)	0.0654 (8)	0.0381 (6)	0.0063 (6)	-0.0007 (5)	-0.0010 (6)
C4	0.0433 (8)	0.0371 (8)	0.0374 (8)	-0.0017 (7)	0.0032 (7)	0.0010 (6)
O3	0.0725 (9)	0.0540 (7)	0.0385 (6)	0.0110 (7)	0.0104 (6)	-0.0009(5)
C16	0.0452 (9)	0.0568 (11)	0.0450 (9)	0.0032 (8)	0.0047 (7)	0.0058 (9)
C7	0.0452 (9)	0.0375 (8)	0.0374 (8)	-0.0028 (7)	0.0015 (7)	-0.0027 (7)
C6	0.0523 (10)	0.0443 (9)	0.0535 (10)	-0.0017 (8)	0.0075 (8)	-0.0110 (8)
C15	0.0502 (9)	0.0409 (9)	0.0401 (8)	0.0013 (7)	0.0035 (7)	-0.0017 (7)
C3	0.0483 (9)	0.0428 (9)	0.0341 (8)	-0.0050 (7)	0.0027 (7)	0.0017 (7)
C1	0.0441 (9)	0.0409 (9)	0.0540 (10)	0.0017 (7)	0.0110 (8)	0.0058 (8)
C9	0.0434 (9)	0.0462 (9)	0.0439 (9)	0.0007 (7)	0.0021 (7)	-0.0073 (7)
C2	0.0423 (9)	0.0514 (10)	0.0444 (9)	-0.0025 (8)	0.0017 (7)	0.0078 (8)
O4	0.0823 (10)	0.0506 (8)	0.0545 (8)	0.0025 (7)	-0.0065 (7)	0.0040 (7)
C5	0.0449 (9)	0.0472 (10)	0.0478 (9)	-0.0006 (8)	-0.0014 (7)	-0.0085 (8)
C8	0.0417 (8)	0.0409 (9)	0.0445 (9)	-0.0021 (7)	-0.0019 (7)	-0.0037 (7)
C14	0.0444 (9)	0.0498 (10)	0.0621 (11)	0.0047 (8)	-0.0058 (8)	-0.0140 (9)
C13	0.0658 (13)	0.0610 (13)	0.0869 (16)	0.0216 (11)	-0.0206 (12)	-0.0258 (12)
C10	0.0538 (11)	0.0662 (13)	0.0662 (12)	-0.0137 (10)	0.0109 (10)	-0.0151 (10)
C11	0.0405 (10)	0.1057 (19)	0.0856 (16)	-0.0067 (11)	0.0009 (10)	-0.0284 (14)
C17	0.0956 (17)	0.0911 (17)	0.0426 (10)	0.0107 (14)	0.0081 (11)	0.0080 (11)
C12	0.0493 (12)	0.112 (2)	0.0985 (18)	0.0272 (13)	-0.0115 (12)	-0.0418 (16)

Geometric parameters (Å, °)

Cl2—C3	1.7388 (17)	C9—C14	1.526 (2)	
Cl1—C1	1.7437 (17)	С2—Н2	0.9300	
O2—C8	1.359 (2)	С5—Н5	0.9300	
О2—С9	1.457 (2)	C14—C13	1.525 (3)	
O1—C8	1.201 (2)	C14—H14A	0.9700	
C4—C5	1.395 (2)	C14—H14B	0.9700	
C4—C3	1.396 (2)	C13—C12	1.520 (4)	
C4—C7	1.473 (2)	C13—H13A	0.9700	
O3—C15	1.368 (2)	C13—H13B	0.9700	

O3—C16	1.385 (2)	C10—C11	1.525 (3)
C16—O4	1.183 (2)	C10—H10A	0.9700
C16—C17	1.492 (3)	C10—H10B	0.9700
C7—C15	1.336 (2)	C11—C12	1.520 (3)
C7—C8	1.486 (2)	C11—H11A	0.9700
C6—C1	1.377 (3)	С11—Н11В	0.9700
C6—C5	1.381 (2)	C17—H17A	0.9600
С6—Н6	0.9300	C17—H17B	0.9600
C_{15}	1 500 (2)	C17 - H17C	0.9600
$C_3 - C_2$	1.300(2) 1.384(2)	C12—H12A	0.9700
$C_1 - C_2$	1.307(2)	C12_H12R	0.9700
$C_1 = C_2$	1.577(3)	C12—1112D	0.9700
09-010	1.324 (3)		
C8—O2—C9	110.17 (12)	O2—C8—C7	109.76 (14)
C5—C4—C3	116.84 (15)	C13—C14—C9	111.57 (15)
C5—C4—C7	118.94 (14)	C13—C14—H14A	109.3
C3—C4—C7	124.16 (15)	C9—C14—H14A	109.3
C15—O3—C16	119.83 (14)	C13—C14—H14B	109.3
04	121.77 (16)	C9-C14-H14B	109.3
04-C16-C17	128 21 (19)	H14A—C14—H14B	108.0
03-C16-C17	110.02(18)	C12-C13-C14	1113(2)
$C_{15} - C_{7} - C_{4}$	134 48 (15)	C12—C13—H13A	109.4
$C_{15} = C_{7} = C_{8}$	105 27 (15)	C12 C13 H13A	109.4
$C_{13} = C_{7} = C_{8}$	109.27(13) 120.25(14)	C_{12} C_{13} H_{13B}	109.4
$C_{+}C_{$	120.23(14) 118.03(16)	C12 - C13 - H13B	109.4
$C_1 = C_0 = C_3$	120.5	$H_{12A} = C_{12} = H_{12D}$	109.4
	120.5	ПІЗА—СІЗ—ПІЗВ	108.0
C_{3}	120.3	C_{9}	112.02 (18)
$C_{1} = C_{1} = C_{2}$	132.27 (16)	C_{9} C_{10} H_{10A}	109.2
02 015 02	112.81 (15)	CII—CIO—HIOA	109.2
03-015-09	114.90 (14)	C9—C10—H10B	109.2
C2—C3—C4	122.29 (15)	C11—C10—H10B	109.2
C2—C3—Cl2	117.53 (13)	H10A—C10—H10B	107.9
C4—C3—Cl2	120.18 (13)	C12—C11—C10	110.95 (17)
C6—C1—C2	121.56 (16)	C12—C11—H11A	109.4
C6—C1—Cl1	119.41 (14)	C10—C11—H11A	109.4
C2—C1—Cl1	119.02 (14)	C12—C11—H11B	109.4
O2—C9—C15	101.97 (13)	C10—C11—H11B	109.4
O2—C9—C10	108.00 (14)	H11A—C11—H11B	108.0
C15—C9—C10	112.41 (16)	C16—C17—H17A	109.5
O2—C9—C14	108.69 (15)	C16—C17—H17B	109.5
C15—C9—C14	113.02 (14)	H17A—C17—H17B	109.5
C10—C9—C14	112.08 (15)	С16—С17—Н17С	109.5
C1—C2—C3	118.43 (16)	H17A—C17—H17C	109.5
C1—C2—H2	120.8	H17B—C17—H17C	109.5
С3—С2—Н2	120.8	C11—C12—C13	110.58 (18)
C6—C5—C4	121.95 (16)	C11—C12—H12A	109.5
С6—С5—Н5	119.0	C13—C12—H12A	109.5
С4—С5—Н5	119.0	C11—C12—H12B	109.5

01—C8—02 01—C8—C7	121.23 (15)	C13—C12—H12B	109.5
01-03-07	129.01 (10)	1112A—C12—1112B	108.1
C15—O3—C16—O4	7.6 (3)	C7—C15—C9—C14	115.89 (18)
C15—O3—C16—C17	-172.61 (17)	O3—C15—C9—C14	-62.8 (2)
C5—C4—C7—C15	-134.5 (2)	C6—C1—C2—C3	-0.2 (3)
C3—C4—C7—C15	48.4 (3)	Cl1—C1—C2—C3	-179.30 (13)
C5—C4—C7—C8	44.9 (2)	C4—C3—C2—C1	0.4 (3)
C3—C4—C7—C8	-132.16 (17)	Cl2—C3—C2—C1	179.61 (13)
C4—C7—C15—O3	-1.1 (3)	C1—C6—C5—C4	0.7 (3)
C8—C7—C15—O3	179.42 (18)	C3—C4—C5—C6	-0.5 (3)
C4—C7—C15—C9	-179.47 (17)	C7—C4—C5—C6	-177.72 (16)
C8—C7—C15—C9	1.07 (19)	C9—O2—C8—O1	-179.13 (16)
C16—O3—C15—C7	44.5 (3)	C9—O2—C8—C7	0.84 (18)
C16—O3—C15—C9	-137.13 (16)	C15—C7—C8—O1	178.78 (18)
C5—C4—C3—C2	-0.1 (2)	C4—C7—C8—O1	-0.8 (3)
C7—C4—C3—C2	177.04 (15)	C15—C7—C8—O2	-1.19 (19)
C5—C4—C3—Cl2	-179.29 (13)	C4—C7—C8—O2	179.26 (14)
C7—C4—C3—Cl2	-2.2 (2)	O2—C9—C14—C13	-67.2 (2)
C5—C6—C1—C2	-0.3 (3)	C15—C9—C14—C13	-179.60 (18)
C5—C6—C1—Cl1	178.78 (14)	C10-C9-C14-C13	52.1 (2)
C8—O2—C9—C15	-0.20 (17)	C9-C14-C13-C12	-55.0 (2)
C8—O2—C9—C10	118.41 (16)	O2—C9—C10—C11	67.5 (2)
C8—O2—C9—C14	-119.78 (15)	C15—C9—C10—C11	179.18 (16)
C7—C15—C9—O2	-0.60 (19)	C14-C9-C10-C11	-52.2 (2)
O3—C15—C9—O2	-179.25 (14)	C9-C10-C11-C12	54.8 (3)
C7—C15—C9—C10	-116.02 (17)	C10-C11-C12-C13	-57.3 (3)
O3—C15—C9—C10	65.3 (2)	C14—C13—C12—C11	57.6 (3)