Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(2E)-1-(3-Chlorophenyl)-3-phenylprop-2-en-1-one

Jerry P. Jasinski, ${ }^{\text {a* }}$ Ray J. Butcher, ${ }^{\text {b }}$ B. Narayana, ${ }^{\text {c }}$ K. Veena ${ }^{c}$ and H. S. Yathirajan ${ }^{\text {d }}$

${ }^{\text {a }}$ Department of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ${ }^{\text {b }}$ Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, ${ }^{\text {c }}$ Department of Studies in Chemistry, Mangalore University, Manalaganotri 574 199, India, and ${ }^{\text {d Department of Studies in }}$ Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India Correspondence e-mail: jjasinski@keene.edu

Received 5 December 2009; accepted 11 December 2009
Key indicators: single-crystal X-ray study; $T=110 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.036 ; w R$ factor $=0.099$; data-to-parameter ratio $=14.6$.

In the title compound, $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClO}$, the dihedral angle between the mean planes of the benzene ring and the chlorosubstituted benzene ring is $48.8(3)^{\circ}$. The dihedral angles between the mean plane of the prop-2-ene-1-one group and the mean planes of the 3-chlorophenyl and benzene rings are 27.0 (4) and $27.9(3)^{\circ}$, respectively. In the crystal, weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$-ring interactions occur.

Related literature

For background to chalcones, see: Chen et al. (1994); Marais et al. (2005); Poornesh et al. (2009); Ram et al. (2000); Sarojini et al. (2006); Shettigar et al. (2006, 2008); Troeberg et al. (2000). For related structures, see: Jasinski et al. (2007); Li \& Su (1994).

Experimental

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClO} \\
& M_{r}=242.69 \\
& \text { Triclinic, } P \overline{1} \\
& a=5.8388(7) \AA \\
& b=7.5975(11) \AA \\
& c=13.1300(16) \AA \\
& \alpha=83.182(11)^{\circ} \\
& \beta=89.422(10)^{\circ}
\end{aligned}
$$

$$
\gamma=86.662(11)^{\circ}
$$

Data collection

Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector
Absorption correction: multi-scan (CrysAlis RED; Oxford

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.099$
$S=1.02$
2243 reflections

Diffraction, 2007)
$T_{\text {min }}=0.541, T_{\text {max }}=1.000$
3661 measured reflections
2243 independent reflections 2148 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.017$

154 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.34 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.22 \mathrm{e}^{\AA^{-3}}$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{Cg} 2^{\mathrm{i}}$	0.95	2.90	3.5541 (16)	127
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{Cg} 2^{\text {ii }}$	0.95	2.90	3.5338 (17)	125
$\mathrm{C} 12-\mathrm{H} 12 A \cdots C g 1^{\text {iii }}$	0.95	2.92	3.6040 (17)	130

Symmetry codes: (i) $-x+1,-y+2,-z+2$; (ii) $-x+2,-y+1,-z+2$; (iii) $-x+2,-y+2,-z+2 . C g 1$ is the centroid of the C1-C6 ring and Cg 2 is the centroid of the C10-C15 ring.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97) (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

KV thanks the UGC for the sanction of a Junior Research Fellowship and for a SAP Chemical grant. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2596).

References

Chen, M., Theander, T. G., Christensen, S. B., Hviid, L., Zhai, L. \& Kharazmi, A. (1994). Antimicrob. Agents Chemother. 38, 1470-1475.

Jasinski, J. P., Butcher, R. J., Lakshmana, K., Narayana, B. \& Yathirajan, H. S. (2007). Acta Cryst. E63, 04715.

Li, Z. \& Su, G. (1994). Acta Cryst. C50, 126-127.
Marais, J. P. J., Ferreira, D. \& Slade, D. (2005). Phytochemistry, 66, 2145-2176.
Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
Poornesh, P., Shettigar, S., Umesh, G., Manjunatha, K. B., Prakash Kamath, K., Sarojini, B. K. \& Narayana, B. (2009). Opt. Mat. 31, 854-859.
Ram, V. J., Saxena, A. S., Srivastava, S. \& Chandra, S. (2000). Bioorg. Med. Chem. Lett. 10, 2159-2161.
Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. \& Lobo, K. J. (2006). J. Cryst. Growth, 295, 54-59.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shettigar, S., Chandrasekharan, K., Umesh, G., Sarojini, B. K. \& Narayana, B. (2006). Polymer, 47, 3565-3567.

Shettigar, S., Umesh, G., Chandrasekharan, K., Sarojini, B. K. \& Narayana, B. (2008). Opt. Mat. 30, 1297-1303.

Troeberg, L., Chen, X., Flaherty, T. M., Morty, R. E., Cheng, M., Springer, H. C., McKerrow, J. H., Kenyon, G. L., Lonsdale-Eccles, J. D., Coetzer, T. H. T. \& Cohen, F. E. (2000). Mol. Med. 6, 660-669.

supporting information

Acta Cryst. (2010). E66, o157 [doi:10.1107/S1600536809053458]

(2E)-1-(3-Chlorophenyl)-3-phenylprop-2-en-1-one

Jerry P. Jasinski, Ray J. Butcher, B. Narayana, K. Veena and H. S. Yathirajan

S1. Comment

Chalcones are known as the precursors of all flavonoid type natural products in biosynthesis (Marais et al., 2005). Chalcones exhibit various biological activities like insecticidal, antimicrobial, antichinoviral, antipicorniviral and bacteriostatic properties. Azachalcones, the derivatives of chalcones with an annular nitrogen atom in the phenyl ring, were reported to have a wide range of biological activities, such as antibacterial, antituberculostatic and antiinflammatory. An important feature of chalcones are their ability to act as activated unsaturated systems in conjugated addition of carbanions in presence of suitable basic catalysts. Many chalcones have been described for their high antimalarial activity, probably as a result of Michael addition of nucleophilic species to the double bond of the enone (Troeberg et al., 2000; Ram et al., 2000). Licochalcone A, isolated from Chinese liquorice roots, has been reported as being highly effective in chloroquine resistant Plasmodium falciparum strains in a $[3 \mathrm{H}]$ hypoxanthine uptake assay (Chen et al., 1994). Chalcones are also finding applications as organic non-linear optical materials (NLO) due to their good SHG conversion efficiencies (Sarojini et al., 2006). Recently, non-linear optical studies on a few chalcones and their derivatives were reported (Poornesh et al., 2009; Shettigar et al., 2006; 2008). In continuation with our studies of chalcones (Jasinski et al., 2007) and their derivatives and owing to the importance of these flavanoid analogs, the title chalcone, (I), was synthesized and its crystal structure reported herein.
The title compound, (I), is a chalcone with 3-chlorophenyl and benzene rings bonded at the opposite ends of a propenone group, the biologically active region (Fig.1). The dihedral angle between mean planes of the benzene and chloro substituted benzene rings is $48.8(3)^{\circ}$ as compared to 14.3 (7) ${ }^{\circ}$ in the 4 -chloro benzene analogue compound (Li \& $\mathrm{Su}, 1994)$. The angles between the mean plane of the prop-2-ene-1-one group and the mean planes of the 3 -chlorophenyl and benzene rings are 27.0 (4) ${ }^{\circ}$ and 27.9 (3) $)^{\circ}$, respectively, as compared to 19.4 (2) ${ }^{\circ}$ and 11.9 (9) ${ }^{\circ}$ in the aforementioned 4 -chloro benzene compound. While no classical hydrogen bonds are present, weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$-ring interactions are observed which contribute to the stability of crystal packing (Table 1).

S2. Experimental

$50 \% \mathrm{KOH}$ was added to a mixture of 3-chloro acetophenone (0.01 mol) and benzaldehyde (0.01 mol) in 25 ml of ethanol (Scheme 2). The mixture was stirred for an hour at room temperature and the precipitate was collected by filtration and purified by recrystallization from ethanol. The single-crystal was grown from ethyl acetate by slow evaporation method and yield of the compound was 72% (m.p.: $354-356 \mathrm{~K}$). Analytical data for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClO}$: Found (Calculated): C\%: 74.19 (74.23); H\%: 4.55 (4.57).

S3. Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with $\mathrm{C}-\mathrm{H}=0.95 \AA$, and with $U_{\mathrm{iso}}(\mathrm{H})=1.17-1.22 U_{\mathrm{eq}}(\mathrm{C})$.

Figure 1

Molecular structure of (I), showing the atom labeling scheme and 50% probability displacement ellipsoids.

(2E)-1-(3-Chlorophenyl)-3-phenylprop-2-en-1-one

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClO}$
$M_{r}=242.69$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=5.8388$ (7) \AA
$b=7.5975$ (11) \AA
$c=13.1300(16) \AA$
$\alpha=83.182(11)^{\circ}$
$\beta=89.422(10)^{\circ}$
$\gamma=86.662(11)^{\circ}$
$V=577.35(13) \AA^{3}$

Data collection

Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu)
detector
Radiation source: Enhance (Cu) X-ray Source
Graphite monochromator
Detector resolution: 10.5081 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.099$
$S=1.02$
2243 reflections
154 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$Z=2$
$F(000)=252$
$D_{\mathrm{x}}=1.396 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54184 \AA$
Cell parameters from 3077 reflections
$\theta=5.9-73.8^{\circ}$
$\mu=2.74 \mathrm{~mm}^{-1}$
$T=110 \mathrm{~K}$
Prism, colorless
$0.50 \times 0.32 \times 0.28 \mathrm{~mm}$
$T_{\min }=0.541, T_{\max }=1.000$
3661 measured reflections
2243 independent reflections
2148 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=73.8^{\circ}, \theta_{\text {min }}=5.9^{\circ}$
$h=-7 \rightarrow 5$
$k=-9 \rightarrow 9$
$l=-16 \rightarrow 15$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0647 P)^{2}+0.2987 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.34$ e \AA^{-3}
$\Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\mathrm{eq}}$
Cl	$0.32652(6)$	$0.68985(5)$	$0.56518(3)$	$0.02296(15)$
O	$0.27901(18)$	$0.72419(15)$	$0.96930(8)$	$0.0224(3)$
C1	$0.5736(2)$	$0.67070(18)$	$0.84979(11)$	$0.0160(3)$
C2	$0.4270(2)$	$0.69988(18)$	$0.76536(11)$	$0.0162(3)$
H2A	0.2759	0.7510	0.7719	0.019^{*}
C3	$0.5060(3)$	$0.65289(19)$	$0.67198(11)$	$0.0165(3)$
C4	$0.7258(3)$	$0.57602(19)$	$0.66031(12)$	$0.0189(3)$
H4A	0.7771	0.5448	0.5956	0.023^{*}
C5	$0.8677(3)$	$0.54612(19)$	$0.74507(12)$	$0.0193(3)$
H5A	1.0170	0.4916	0.7387	0.023^{*}
C6	$0.7950(2)$	$0.59463(19)$	$0.83940(12)$	$0.0177(3)$
H6A	0.8955	0.5762	0.8966	0.021^{*}
C7	$0.4848(3)$	$0.72066(19)$	$0.95085(11)$	$0.0175(3)$
C8	$0.6548(3)$	$0.7663(2)$	$1.02521(12)$	$0.0192(3)$
H8A	0.8081	0.7850	1.0035	0.023^{*}
C9	$0.5952(2)$	$0.78129(19)$	$1.12239(11)$	$0.0170(3)$
H9A	0.4423	0.7560	1.1418	0.020^{*}
C10	$0.7434(2)$	$0.83314(19)$	$1.20198(11)$	$0.0161(3)$
C11	$0.9534(3)$	$0.90987(19)$	$1.17865(11)$	$0.0180(3)$
H11A	1.0036	0.9293	1.1094	0.022^{*}
C12	$1.0875(3)$	$0.95730(19)$	$1.25607(12)$	$0.0194(3)$
H12A	1.2287	1.0103	1.2396	0.023^{*}
C13	$1.0172(3)$	$0.9280(2)$	$1.35792(12)$	$0.0217(3)$
H13A	1.1107	0.9600	1.4108	0.026^{*}
C14	$0.8103(3)$	$0.8519(2)$	$1.38218(12)$	$0.0221(3)$
H14A	0.7623	0.8313	1.4517	0.026^{*}
C15	$0.6734(3)$	$0.80576(19)$	$1.30478(12)$	$0.0185(3)$
H15A	0.5309	0.7552	1.3217	0.022^{*}
H2				

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C 1	$0.0222(2)$	$0.0308(2)$	$0.0164(2)$	$0.00195(15)$	$-0.00390(14)$	$-0.00610(14)$
O	$0.0149(5)$	$0.0340(6)$	$0.0190(5)$	$-0.0032(4)$	$0.0000(4)$	$-0.0044(4)$
C 1	$0.0171(7)$	$0.0139(6)$	$0.0173(7)$	$-0.0054(5)$	$0.0001(5)$	$-0.0010(5)$
C 2	$0.0140(7)$	$0.0149(7)$	$0.0198(7)$	$-0.0028(5)$	$0.0000(5)$	$-0.0019(5)$

C3	$0.0177(7)$	$0.0173(7)$	$0.0152(7)$	$-0.0036(5)$	$-0.0023(5)$	$-0.0031(5)$
C4	$0.0209(7)$	$0.0165(7)$	$0.0203(7)$	$-0.0034(5)$	$0.0034(6)$	$-0.0050(6)$
C5	$0.0145(7)$	$0.0156(7)$	$0.0277(8)$	$-0.0003(5)$	$0.0009(6)$	$-0.0030(6)$
C6	$0.0161(7)$	$0.0160(7)$	$0.0208(7)$	$-0.0032(5)$	$-0.0023(5)$	$-0.0001(5)$
C7	$0.0175(7)$	$0.0168(7)$	$0.0179(7)$	$-0.0030(5)$	$-0.0005(5)$	$-0.0002(5)$
C8	$0.0166(7)$	$0.0213(7)$	$0.0199(7)$	$-0.0033(6)$	$-0.0009(6)$	$-0.0023(6)$
C9	$0.0143(7)$	$0.0154(7)$	$0.0212(7)$	$-0.0003(5)$	$-0.0004(5)$	$-0.0021(5)$
C10	$0.0155(7)$	$0.0139(6)$	$0.0188(7)$	$0.0015(5)$	$-0.0010(5)$	$-0.0030(5)$
C11	$0.0173(7)$	$0.0175(7)$	$0.0189(7)$	$-0.0001(5)$	$0.0011(5)$	$-0.0024(5)$
C12	$0.0161(7)$	$0.0156(7)$	$0.0264(8)$	$-0.0011(5)$	$-0.0017(6)$	$-0.0020(6)$
C13	$0.0228(8)$	$0.0201(7)$	$0.0227(8)$	$0.0003(6)$	$-0.0064(6)$	$-0.0046(6)$
C14	$0.0268(8)$	$0.0221(8)$	$0.0171(7)$	$0.0001(6)$	$0.0010(6)$	$-0.0027(6)$
C15	$0.0172(7)$	$0.0166(7)$	$0.0220(8)$	$-0.0010(5)$	$0.0029(6)$	$-0.0032(6)$

Geometric parameters (A, ${ }^{\circ}$)

C1-C3	$1.7452(15)$	C8-H8A	0.9500
O-C7	$1.2226(19)$	C9-C10	$1.467(2)$
C1-C2	$1.396(2)$	C9-H9A	0.9500
C1-C6	$1.397(2)$	C10-C15	$1.402(2)$
C1-C7	$1.502(2)$	C10-C11	$1.404(2)$
C2-C3	$1.385(2)$	C11-C12	$1.383(2)$
C2-H2A	0.9500	C11-H11A	0.9500
C3-C4	$1.393(2)$	C12-C13	$1.391(2)$
C4-C5	$1.383(2)$	C12-H12A	0.9500
C4-H4A	0.9500	C13-C14	$1.387(2)$
C5-C6	$1.389(2)$	C13-H13A	0.9500
C5-H5A	0.9500	C14-C15	$1.389(2)$
C6-H6A	0.9500	C14-H14A	0.9500
C7-C8	$1.483(2)$	C15-H15A	0.9500
C8-C9	$1.335(2)$		
C2-C1-C6	$120.12(14)$	C7-C8-H8A	119.6
C2-C1-C7	$118.15(13)$	C8-C9-C10	$126.15(14)$
C6-C1-C7	$121.73(13)$	C8-C9-H9A	116.9
C3-C2-C1	$118.72(13)$	C10-C9-H9A	116.9
C3-C2-H2A	120.6	C15-C10-C11	$118.75(13)$
C1-C2-H2A	120.6	C15-C10-C9	$119.08(13)$
C2-C3-C4	$121.96(13)$	C11-C10-C9	$122.18(13)$
C2-C3-C1	$119.50(11)$	C12-C11-C10	$120.27(14)$
C4-C3-C1	$118.54(11)$	C12-C11-H11A	119.9
C5-C4-C3	$118.53(14)$	C10-C11-H11A	119.9
C5-C4-H4A	120.7	C11-C12-C13	$120.46(14)$
C3-C4-H4A	120.7	C11-C12-H12A	119.8
C4-C5-C6	$120.91(14)$	C13-C12-H12A	119.8
C4-C5-H5A	119.5	C14-C13-C12	$119.92(14)$
C6-C5-H5A	119.5	C14-C13-H13A	120.0
C5-C6-C1	$119.74(14)$	C12-C13-H13A	120.0

supporting information

$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	120.1
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	120.1
$\mathrm{O}-\mathrm{C} 7-\mathrm{C} 8$	$122.19(14)$
$\mathrm{O}-\mathrm{C} 7-\mathrm{C} 1$	$120.25(13)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 1$	$117.56(13)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$120.80(14)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	119.6
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.3(2)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-179.41(12)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.7(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 1$	$-179.48(10)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.1(2)$
$\mathrm{C}-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-179.76(11)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-1.2(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$1.6(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-0.8(2)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$178.26(12)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O}$	$26.0(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O}$	$-153.08(14)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$	$-153.42(13)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$	$27.50(19)$

$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$119.97(14)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{H} 14 \mathrm{~A}$	120.0
$\mathrm{C} 15-\mathrm{C} 14-\mathrm{H} 14 \mathrm{~A}$	120.0
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 10$	$120.63(14)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{H} 15 \mathrm{~A}$	119.7
$\mathrm{C} 10-\mathrm{C} 15-\mathrm{H} 15 \mathrm{~A}$	119.7
$\mathrm{O}-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$12.5(2)$
$\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-168.11(14)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-177.12(13)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 15$	$-166.17(15)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$14.0(2)$
$\mathrm{C} 15-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$0.0(2)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$179.79(13)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$0.6(2)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$-0.5(2)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$-0.2(2)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 10$	$0.9(2)$
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 15-\mathrm{C} 14$	$-0.7(2)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 15-\mathrm{C} 14$	$179.46(13)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)
Cg 1 is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ ring and Cg 2 is the centroid of the $\mathrm{C} 10-\mathrm{C} 15$ ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2 — \mathrm{H} 2 A \cdots C g 2^{\mathrm{i}}$	0.95	2.90	$3.5541(16)$	127
$\mathrm{C} 5 — \mathrm{H} 5 A \cdots C g 2^{\mathrm{ii}}$	0.95	2.90	$3.5338(17)$	125
$\mathrm{C} 12 — \mathrm{H} 12 A \cdots C g 1^{\mathrm{iii}}$	0.95	2.92	$3.6040(17)$	130

Symmetry codes: (i) $-x+1,-y+2,-z+2$; (ii) $-x+2,-y+1,-z+2$; (iii) $-x+2,-y+2,-z+2$.

