organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-Dimethylamino-1-(4-methylphenyl)prop-2-en-1-one

Juean Deng, Dongsheng Shen* and Zongzhou Zhou

College of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China Correspondence e-mail: sds8@163.com

Received 2 November 2009; accepted 17 November 2009

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.046; wR factor = 0.150; data-to-parameter ratio = 17.6.

In the title compound, $C_{12}H_{15}NO$, the C=C and C=O functional groups and the benzene ring are involved in an extended conjugated system. The molecules are essentially planar with a maximal deviation from planarity for the non-H atoms of 0.062 (2) Å.

Related literature

For the pharmaceutical activity of enaminones, see: Edafiogh *et al.* (2003); Eddington *et al.* (2003). For the use of enaminones as chelating ligands for main group metals and transition metals in coordination chemistry, see: Cindrić *et al.* (2004); Shi *et al.* (2008). For the chemical synthesis of enaminones, see: Kantevari *et al.* (2007); Ke *et al.* (2009). For the crystal structures of enaminones, see: Lemmerer *et al.* (2007); Bertolasi *et al.* (1999); Blake *et al.* (1996).

Experimental

Crystal data

 $C_{12}H_{15}NO$ $M_r = 189.25$ Monoclinic, $P2_1/c$ a = 8.7918 (17) Åb = 5.9506 (12) Åc = 20.789 (4) Å $\beta = 99.300 (3)^{\circ}$ $V = 1073.3 (4) \text{ Å}^{3}$ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2004) $T_{\rm min} = 0.994, T_{\rm max} = 0.998$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.150$ S = 1.022290 reflections $\mu = 0.07 \text{ mm}^{-1}$ T = 173 K $0.08 \times 0.06 \times 0.03 \text{ mm}$

5180 measured reflections 2290 independent reflections 1731 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.023$

130 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.27$ e Å⁻³ $\Delta \rho_{min} = -0.23$ e Å⁻³

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT-Plus* (Bruker, 2005); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the Natural Science Research Plan Project of Guangdong Province for financial surpport (05552838).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2013).

References

- Bertolasi, V., Gilli, P., Ferretti, V., Gilli, G., Vaughan, K. & Jollimore, J. V. (1999). Acta Cryst. B55, 994–1004.
- Blake, A. J., McNab, H., Monahan, L. C., Parsons, S. & Stevenson, E. (1996). Acta Cryst. C52, 2814–2818.
- Bruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cindrić, M., Vrdoljak, V. & Strukan, N. (2004). Inorg. Chim. Acta, 357, 931–938.
- Edafiogh, I. O., Ananthalakshmi, K. V. V. & Kombian, S. B. (2003). Bioorg. Med. Chem. 14, 5266–5272.
- Eddington, N. D., Cox, S. D. & Khurana, M. (2003). Eur. J. Med. Chem. 38, 49– 64.
- Kantevari, S., Chary, M. V. & Vuppalapati, S. V. N. (2007). Tetrahedron, 63, 13024–13031.
- Ke, Y. Y., Li, Y. J. & Jia, J. H. (2009). Tetrahedron Lett. 50, 1389-1391.
- Lemmerer, A., Michael, J. P., Pienaar, D. P. & Sannasy, D. (2007). *Acta Cryst.* E63, 098–099.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shi, Y. C., Cheng, H. J. & Zhang, S. H. (2008). Polyhedron, 27, 3331-3336.

supporting information

Acta Cryst. (2010). E66, o2 [doi:10.1107/S1600536809048879]

3-Dimethylamino-1-(4-methylphenyl)prop-2-en-1-one

Juean Deng, Dongsheng Shen and Zongzhou Zhou

S1. Comment

Enaminones and their metal complexes have been widely studied due to their applications in the fields of optical chemistry, medicinal chemistry and biotechnology. Those ligands are versatile synthetic intermediates that combine the ambident nucleophilicity of enamines with the ambident electrophilicity of enones and have been extensively used for the preparation of a variety of heterocyclic systems including some natural products and analogues. Moreover, in coordination chemistry, enaminones can be used as good chelating ligands for main group metals and transition metals (Cindrić *et al.*, 2004; Shi *et al.*,2008). We report here the synthesis and structure of the title compound. The molecular structure of the title compound is shown in Fig.1. The molecule crystallized as an E isomer with extended conjugation involving N, C=C, C=O, and the benzene ring. As a consequence the molecule is planar, the maximal deviation from planarity for the non-hydrogen atoms is 0.062 (2) Å.

S2. Experimental

A solution of 4-Methylacetophenone (13.2 g, 0.1 mol) in ethyl formate (14.8 g, 0.2 mol) was added dropwise to a stirred suspension of sodium ethoxide(6.8 g, 0.1 mol) in anhydrous diethyl ether (50 ml) at room temperature. After stirring for 4 h, 8.8 g Dimethylamine hydrochloride (0.11 mol) in 20 ml water was added dropwise to the stirred suspended matter, and it was stirred for another 2 h. Then, the organic phase was separated, and the solvent was removed on a rotary evaporator, the residual was recrystallized in hexane-acetone (10:1) in an afford of the title compound (15.2 g). Crystals were obtained by slow evaporation of a solution in diethyl ether at room temperature.

S3. Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.95-0.98 Å.

F(000) = 408

 $\theta = 3.1 - 28.6^{\circ}$

 $\mu = 0.07 \text{ mm}^{-1}$

Plate, colourless

 $0.08 \times 0.06 \times 0.03 \text{ mm}$

T = 173 K

 $D_{\rm x} = 1.171 {\rm ~Mg} {\rm ~m}^{-3}$

Melting point: 367 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1291 reflections

Figure 1

The structure of the title compound, with displacement ellipsoids at the 30% probability level.

3-Dimethylamino-1-(4-methylphenyl)prop-2-en-1-one

Crystal data

C₁₂H₁₅NO $M_r = 189.25$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.7918 (17) Å b = 5.9506 (12) Å c = 20.789 (4) Å $\beta = 99.300$ (3)° V = 1073.3 (4) Å³ Z = 4

Data collection

Bruker APEX CCD diffractometer	5180 measured reflections 2290 independent reflections
Radiation source: fine-focus sealed tube	1731 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.023$
ω and phi scans	$\theta_{\rm max} = 27.0^\circ, \theta_{\rm min} = 2.0^\circ$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(SADABS; Sheldrick, 2004)	$k = -7 \rightarrow 7$
$T_{\min} = 0.994, \ T_{\max} = 0.998$	$l = -11 \rightarrow 26$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.150$ S = 1.022290 reflections 130 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0918P)^2 + 0.1894P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.27$ e Å⁻³ $\Delta\rho_{min} = -0.23$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ Ζ x v 01 0.0490 (4) 0.19626 (13) 0.51500 (19) 0.07917 (6) N1 -0.15817(14)0.0530(2)0.05528 (6) 0.0327(3)C1 0.84154 (18) 0.1518(3)0.24118 (8) 0.0439(4)H1A -0.00020.2596 0.066* 0.8475 H1B 0.2619 0.8626 0.2765 0.066* H1C 0.9179 0.1680 0.2120 0.066* C2 0.68222 (16) 0.1912 (2) 0.20336(7) 0.0308(3)C3 0.64246 (17) 0.3950(3)0.17274(7)0.0346(4)0.042* H3A 0.7179 0.5101 0.1744 C4 0.49477 (17) 0.13971 (7) 0.0318 (3) 0.4341(2)H4A 0.4705 0.5753 0.1193 0.038* C5 0.38156 (16) 0.2684(2)0.13621 (6) 0.0271(3)C6 0.42232 (16) 0.0632(2)0.16573 (7) 0.0302(3)H6A 0.3478 -0.05350.1632 0.036* C7 0.57032 (17) 0.0256(3)0.19896 (7) 0.0328(4)H7A 0.5952 -0.11610.2190 0.039* C8 0.22148 (16) 0.3234(2)0.10167 (7) 0.0301(3)C9 0.10551 (16) 0.1520(2)0.09670(7) 0.0291 (3) H9A 0.1299 0.0087 0.035* 0.1157 C10 -0.03947(16)0.1940(2)0.06473 (7) 0.0296 (3) H10A -0.05780.3408 0.0472 0.036* -0.1441(2)0.07988 (9) C11 -0.1751(3)0.0442(4)H11A -0.0440-0.23680.0739 0.066* H11B -0.2268-0.26750.0560 0.066* H11C -0.1520-0.17520.1264 0.066* C12 -0.30880(17)0.1211(3)0.02142 (8) 0.0411(4)H12A -0.30260.2740 0.0045 0.062* 0.062* H12B -0.38330.1175 0.0518 H12C -0.34210.0178 -0.01480.062*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0387 (7)	0.0328 (6)	0.0712 (9)	-0.0016 (5)	-0.0038 (6)	0.0170 (6)
N1	0.0276 (6)	0.0359 (7)	0.0341 (7)	-0.0024 (5)	0.0035 (5)	-0.0010 (5)
C1	0.0330 (9)	0.0542 (10)	0.0421 (9)	0.0026 (7)	-0.0008 (7)	-0.0023 (8)

supporting information

C2	0.0276 (7)	0.0373 (8)	0.0274 (7)	0.0008 (6)	0.0047 (5)	-0.0040 (6)
C3	0.0325 (8)	0.0346 (8)	0.0367 (8)	-0.0090 (6)	0.0056 (6)	-0.0041 (6)
C4	0.0360 (8)	0.0261 (7)	0.0335 (8)	-0.0030 (6)	0.0065 (6)	0.0026 (6)
C5	0.0283 (7)	0.0286 (7)	0.0250 (7)	-0.0013 (5)	0.0062 (5)	-0.0018 (5)
C6	0.0299 (7)	0.0280 (7)	0.0326 (8)	-0.0030 (6)	0.0050 (6)	0.0013 (6)
C7	0.0356 (8)	0.0318 (8)	0.0309 (7)	0.0028 (6)	0.0048 (6)	0.0031 (6)
C8	0.0321 (8)	0.0280 (7)	0.0305 (7)	0.0006 (6)	0.0056 (6)	0.0015 (6)
C9	0.0286 (8)	0.0282 (7)	0.0307 (7)	0.0004 (6)	0.0055 (6)	0.0019 (6)
C10	0.0316 (8)	0.0288 (7)	0.0296 (7)	-0.0003 (6)	0.0083 (6)	-0.0007 (6)
C11	0.0457 (10)	0.0360 (9)	0.0512 (10)	-0.0103 (7)	0.0090 (8)	-0.0011 (7)
C12	0.0285 (8)	0.0562 (11)	0.0377 (8)	-0.0011 (7)	0.0031 (6)	-0.0056 (7)

Geometric parameters (Å, °)

01-C8	1.2388 (18)	C5—C8	1.509 (2)	
N1-C10	1.3288 (18)	C6—C7	1.389 (2)	
N1-C11	1.448 (2)	С6—Н6А	0.9500	
N1-C12	1.453 (2)	С7—Н7А	0.9500	
C1—C2	1.510(2)	C8—C9	1.434 (2)	
C1—H1A	0.9800	C9—C10	1.362 (2)	
C1—H1B	0.9800	С9—Н9А	0.9500	
C1—H1C	0.9800	C10—H10A	0.9500	
С2—С7	1.385 (2)	C11—H11A	0.9800	
С2—С3	1.388 (2)	C11—H11B	0.9800	
C3—C4	1.387 (2)	C11—H11C	0.9800	
С3—НЗА	0.9500	C12—H12A	0.9800	
C4—C5	1.395 (2)	C12—H12B	0.9800	
C4—H4A	0.9500	C12—H12C	0.9800	
С5—С6	1.387 (2)			
C10—N1—C11	121.29 (13)	C2—C7—C6	121.09 (13)	
C10—N1—C12	121.85 (13)	C2—C7—H7A	119.5	
C11—N1—C12	116.84 (13)	C6—C7—H7A	119.5	
C2—C1—H1A	109.5	O1—C8—C9	123.07 (13)	
C2—C1—H1B	109.5	O1—C8—C5	118.41 (13)	
H1A—C1—H1B	109.5	C9—C8—C5	118.52 (12)	
C2C1H1C	109.5	C10—C9—C8	120.19 (13)	
H1A—C1—H1C	109.5	С10—С9—Н9А	119.9	
H1B—C1—H1C	109.5	С8—С9—Н9А	119.9	
С7—С2—С3	117.91 (13)	N1—C10—C9	127.35 (14)	
C7—C2—C1	120.88 (14)	N1-C10-H10A	116.3	
C3—C2—C1	121.21 (14)	C9—C10—H10A	116.3	
C4—C3—C2	121.32 (13)	N1-C11-H11A	109.5	
С4—С3—Н3А	119.3	N1-C11-H11B	109.5	
С2—С3—НЗА	119.3	H11A—C11—H11B	109.5	
C3—C4—C5	120.69 (14)	N1-C11-H11C	109.5	
C3—C4—H4A	119.7	H11A—C11—H11C	109.5	
C5—C4—H4A	119.7	H11B—C11—H11C	109.5	

C6—C5—C4	117.92 (13) 123 77 (13)	N1—C12—H12A N1—C12—H12B	109.5
C4—C5—C8	118.31 (13)	H12A—C12—H12B	109.5
C5—C6—C7 C5—C6—H6A	121.06 (13) 119.5	N1—C12—H12C H12A—C12—H12C	109.5 109.5
С7—С6—Н6А	119.5	H12B—C12—H12C	109.5