

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,8-Bis(tosyloxy)-9,10-anthraquinone

Paweł Niedziałkowski, Damian Trzybiński, Artur Sikorski* and Tadeusz Ossowski

Faculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland

Correspondence e-mail: art@chem.univ.gda.pl

Received 23 November 2009; accepted 26 November 2009

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; R factor = 0.058; wR factor = 0.163; data-to-parameter ratio = 12.7.

In the crystal structure of the title compound, $C_{28}H_{20}O_8S_2$, adjacent anthracene skeletons are parallel or inclined at an angle of 20.6 (1)°. In the molecular structure, the mean plane of the anthracene skeleton makes dihedral angles of 49.6 (1) and 76.8 (1)° with the tosyl rings, and the two terminal benzene rings are oriented at an angle of 74.5 (1)° with respect to each other. The crystal structure is stabilized by intermolecular C-H···O and C-O··· π interactions.

Related literature

For general background to anthraquinones, see: Cheng & Zee-Cheng (1983); Dzierzbicka *et al.* (2006); Gatto *et al.* (1996); Hunger (2003); Krapcho *et al.* (1991); Nakanishi *et al.* (2005); Zielske (1987); Zon *et al.* (2003). For related structures, see: Sereda & Akhvlediani (2003); Slouf (2002); Zain & Ng (2005). For molecular interactions, see: Bianchi *et al.* (2004); Santos-Contreras *et al.* (2007); Spek (2009); Steiner (1999). For the synthesis, see: Ossowski *et al.* (2000).

Experimental

Crystal data $C_{28}H_{20}O_8S_2$ $M_r = 548.58$ Monoclinic, P_{21}/c a = 8.263 (2) Å b = 27.473 (5) Å c = 11.162 (2) Å $\beta = 100.36$ (3)°

 $V = 2492.6 (9) Å^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.27 \text{ mm}^{-1}$ T = 295 K 0.4 × 0.3 × 0.15 mm

Data collection

Oxford Diffraction Gemini R ULTRA Ruby CCD diffractometer 18048 measured reflections 4371 independent reflections 3374 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.050$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.058$	345 parameters
$wR(F^2) = 0.163$	H-atom parameters constrained
S = 1.15	$\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3}$
4371 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C24 - H24 \cdots O18^{i}$	0.93	2.54	3.332 (4)	143
$C33-H33\cdots O30^{n}$	0.93	2.56	3.241 (4)	130
C36—H36···O31 ⁱⁱⁱ	0.93	2.58	3.458 (4)	156

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) x, $-y + \frac{3}{2}$, $z - \frac{1}{2}$; (iii) x - 1, y, z.

Table	2			
C-O··	$\cdot \pi$	interactions	(Å,	^{>})

С	0	J	O···J	$C \cdot \cdot \cdot J$	C–O···J
C10	O27	$Cg1^{ m iv}$	3.688 (3)	3.481 (3)	70.71 (17)
C10	O27	$Cg2^{ m v}$	3.452 (3)	3.528 (3)	83.41 (18)

Symmetry codes: (iv) -x, -y + 1, -z + 1; (v) -x + 1, -y + 1, -z + 1. *Cg*1 and *Cg*2 are the centroids of the C1–C4/C11/C12 and C5–C8/C13/C14 rings respectively.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2008); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2008); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

This work was supported by the Polish State Committee for Scientific Research (grant Nos. R02 0010 06 and DS 8210–4-0177–9).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2694).

References

Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559-568.

- Cheng, C. C. & Zee-Cheng, R. K. Y. (1983). Prog. Med. Chem. 20, 83–118. Dzierzbicka, K., Sowiński, P. & Kołodziejczyk, A. M. (2006). J. Pept. Sci. 12,
- 670–678. Formuia I. I. (1007) *J. Appl. Crivet* **30** 565
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gatto, B., Zagotto, G., Sissi, C., Cera, C., Uriarte, E., Palu, G., Capranico, G. & Palumbo, M. (1996). *J. Med. Chem.* **39**, 3114–3122.
- Hunger, K. (2003). Industrial Dyes Chemistry, Properties, Applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
- Krapcho, A. P., Getahun, Z., Avery, K. L., Vargas, K. J., Hacker, M. P., Spinelli, S., Pezzoni, G. & Manzotti, C. (1991). J. Med. Chem. 34, 2373–2380.
- Nakanishi, F., Nagasawa, Y., Kabaya, Y., Sekimoto, H. & Shimomura, K. (2005). *Plant Phys. Biochem.* **43**, 921–928.
- Ossowski, T., Kira, J., Rogowska, D., Warmke, H. & Młodzianowski, J. (2000). J. Chem. Soc. Dalton Trans. pp. 689–696.

Oxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.

Santos-Contreras, R. J., Martínez-Martínez, F. J., García-Báez, E. V., Padilla-Martínez, I. I., Peraza, A. L. & Höpfl, H. (2007). Acta Cryst. C63, o239–o242. Sereda, G. A. & Akhvlediani, D. G. (2003). Tetrahedron Lett. 44, 9125–9126.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Slouf, M. (2002). J. Mol. Struct. 611, 139-146.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Steiner, T. (1999). Chem. Commun. pp. 313-314.

Zain, S. M. & Ng, S. W. (2005). Acta Cryst. E61, o2921-o2923.

Zielske, A. G. (1987). J. Org. Chem. 52, 1305-1309.

Zon, A., Palys, M., Stojek, Z., Sulowska, H. & Ossowski, T. (2003). Electroanalysis, **15**, 579–585.

supporting information

Acta Cryst. (2010). E66, o33-o34 [doi:10.1107/S1600536809051009]

1,8-Bis(tosyloxy)-9,10-anthraquinone

Paweł Niedziałkowski, Damian Trzybiński, Artur Sikorski and Tadeusz Ossowski

S1. Comment

Anthraquinones, its amino and hydroxy derivatives as the largest group of naturally occurring quinines are of great practical significance in pharmacology, biochemistry and dye chemistry (Hunger, 2003). Anthraquinones are widely widespread in nature, they are occur in bark, or roots of different plants, and display various pharmacological activities such as anti-oxidant, anti-microbial, anti-fungal and anti-viral (Nakanishi *et al.*, 2005). The anthraquinone ring system is often found in antitumor drugs, such as anthracyclines, mitoxantrone, ametantrone and anthrapyrazoles (Cheng & Zee-Cheng, 1983). Its planarity allows an intercalation between base pairs of DNA in the β conformation, while its redox properties are linked to the production of radical species in biological systems. The chemical and biological activity of anthraquinone compounds depends on the different substituents of the planar ring system (Krapcho *et al.*, 1991, Gatto *et al.*, 1996). Anthraquinones are also interesting compounds for the investigations in analytical and electroanalytical chemistry due to the fact that they contain several π electrons, the reducible *p*-quinone system and are electroactive (Zon *et al.*, 2003). The tosyl group is a very good leaving group, commonly used in organic synthesis in nucleophilic substitution reaction. This phenomenon is applicable to prepare the various aminoanthraquinone from (tosy1oxy)anthraquinone precursors (Zielske, 1987). The 1,8-Bis(tosyloxy)-9,10-anthraquinone is a very convenient and often used precursor to obtain the 1,8-diaminoanthraquinones derivatives (Dzierzbicka *et al.*, 2006).

In the molecule of the title compound (Fig. 1) the bond lengths and angles characterizing the geometry of the anthraquinone skeleton are typical for this group of compounds (Sereda & Akhvlediani, 2003; Slouf, 2002; Zain & Ng, 2005).

In the packing of molecules of the title compound, the anthracene skeletons, with an average deviations from planarity of 0.044 (1) Å, are parallel or inclined at an angle of 20.1 (1)°. The mean plane of the anthracene skeleton makes dihedral angles of 49.6 (1)° and 76.8 (1)°, with the tosyl phenyl rings. Those phenyl rings are oriented at the angle of 74.5 (1)° to each other.

The crystal structure is stabilized by C–H···O (Table 1, Fig. 2) and C–O··· π (Table 1, Fig. 3) intermolecular interactions. The C–H···O interactions are the hydrogen bond type (Steiner, 1999, Bianchi *et al.*, 2004). All interactions demonstrated were found by *PLATON* (Spek, 2009).

S2. Experimental

1,8-Bis(tosyloxy)-9,10-anthraquinone was synthesized according to the method reported in the literature (Ossowski *et al.*, 2000). To the stirring mixture of 5.0 g (20.8 mmol) 1,8-dihydroxy-9,10-anthraquinone and 5.22 g (27.4 mmol) of *p*-toluenesulfonyl chloride in 200 ml dichloromethane was dropwise added over 5 h 15 ml triethylamine in 100 ml dichloromethane. The progress of the reaction was monitored by TLC (SiO₂, dichloromethane-petroleum ether 1:1 ν/ν) until the completion of reaction. The reaction mixture was stirred 6 h at room temperature. The solution was washed with water (3 *x* 100 ml), the organic phase was dried over MgSO₄ and concentrated. The residue was purified by column chromatography on silica gel (dichloromethane-petroleum ether, 1:0.8 ν/ν) to afford the title compound as a yellow solid.

(3.64 g, 28%). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in methanol at room temperature (m.p. = 448–450 K; elemental analysis (% found/calculated: C 61.41/61.30, H 3.65/3.67, S 11.69/11.69)).

S3. Refinement

H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.

Figure 1

The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level, and H atoms are shown as small spheres of arbitrary radius. Cg_1 and Cg_2 are the centroids of the C1—C4/C11/C12 and C5—C8/C13/C14 rings respectively.

Figure 2

The arrangement of the molecules in the crystal structure viewed approximately along *c* axis. The C–H…O interactions are represented by dashed lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) -*x* + 1, -*y* + 1, -*x* + 2; (ii) *x*, -*y* + 3/2, *z* - 1/2; (iii) *x* - 1, *y*, *z*.]

Figure 3

The arrangement of the molecules in the crystal structure viewed approximately along *c* axis. The C–O··· π interactions are represented by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (iv) -*x*, -*y* + 1, -*z* + 1; (v) -*x* + 1, -*y* + 1, -*z* + 1.]

1,8-Bis(tosyloxy)-9,10-anthraquinone

Crystal data

C₂₈H₂₀O₈S₂ $M_r = 548.58$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.263 (2) Å b = 27.473 (5) Å c = 11.162 (2) Å $\beta = 100.36$ (3)° V = 2492.6 (9) Å³ Z = 4

Data collection

Oxford Diffraction Gemini R ULTRA Ruby CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 10.4002 pixels mm⁻¹ ω scans 18048 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.163$ S = 1.154371 reflections 345 parameters F(000) = 1136 $D_x = 1.462 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 10108 reflections $\theta = 3.2-29.2^{\circ}$ $\mu = 0.27 \text{ mm}^{-1}$ T = 295 KBlock, yellow $0.4 \times 0.3 \times 0.15 \text{ mm}$

4371 independent reflections 3374 reflections with $I > 2\sigma(I)$ $R_{int} = 0.050$ $\theta_{max} = 25.1^{\circ}, \ \theta_{min} = 3.2^{\circ}$ $h = -9 \rightarrow 9$ $k = -28 \rightarrow 32$ $l = -13 \rightarrow 11$

0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.002$
$w = 1/[\sigma^2(F_o^2) + (0.0997P)^2 + 0.3332P]$	$\Delta ho_{ m max} = 0.46 \ { m e} \ { m \AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.1135 (3)	0.52337 (10)	0.7763 (2)	0.0427 (6)	
C2	0.0657 (4)	0.47974 (11)	0.8207 (3)	0.0575 (8)	
H2	0.0301	0.4789	0.8951	0.069*	
C3	0.0707 (4)	0.43742 (11)	0.7550 (3)	0.0636 (9)	
H3	0.0365	0.4082	0.7843	0.076*	
C4	0.1262 (4)	0.43846 (11)	0.6463 (3)	0.0548 (8)	
H4	0.1311	0.4098	0.6027	0.066*	
C5	0.3761 (3)	0.52607 (12)	0.3386 (2)	0.0511 (7)	
H5	0.3765	0.4972	0.2949	0.061*	
C6	0.4458 (4)	0.56703 (12)	0.3008 (3)	0.0560 (8)	
H6	0.4921	0.5660	0.2308	0.067*	
C7	0.4480 (4)	0.60985 (11)	0.3654 (3)	0.0518 (7)	
H7	0.5004	0.6372	0.3415	0.062*	
C8	0.3724 (3)	0.61198 (10)	0.4653 (2)	0.0412 (6)	
C9	0.2008 (3)	0.57330 (9)	0.6073 (2)	0.0393 (6)	
C10	0.2362 (3)	0.48179 (10)	0.4841 (3)	0.0469 (7)	
C11	0.1676 (3)	0.52607 (9)	0.6648 (2)	0.0391 (6)	
C12	0.1754 (3)	0.48225 (9)	0.6010 (3)	0.0430 (6)	
C13	0.2964 (3)	0.57106 (9)	0.5061 (2)	0.0385 (6)	
C14	0.3048 (3)	0.52732 (10)	0.4419 (2)	0.0419 (6)	
015	0.0972 (2)	0.56551 (7)	0.84323 (17)	0.0486 (5)	
S16	0.22980 (10)	0.57749 (3)	0.96370 (6)	0.0532 (3)	
O17	0.1499 (3)	0.61401 (9)	1.0209 (2)	0.0762 (7)	
O18	0.2768 (3)	0.53273 (8)	1.02503 (19)	0.0653 (6)	
C19	0.3976 (3)	0.60173 (10)	0.9090 (2)	0.0449 (6)	
C20	0.3917 (4)	0.64943 (11)	0.8680 (3)	0.0541 (8)	
H20	0.3000	0.6687	0.8712	0.065*	
C21	0.5222 (4)	0.66780 (11)	0.8228 (3)	0.0540 (8)	
H21	0.5183	0.6998	0.7955	0.065*	
C22	0.6606 (4)	0.63985 (11)	0.8167 (3)	0.0546 (7)	
C23	0.6631 (4)	0.59232 (11)	0.8589 (3)	0.0644 (9)	
H23	0.7547	0.5730	0.8561	0.077*	
C24	0.5337 (4)	0.57324 (11)	0.9046 (3)	0.0582 (8)	
H24	0.5376	0.5413	0.9325	0.070*	
C25	0.8010 (5)	0.66019 (14)	0.7636 (4)	0.0856 (12)	
H25A	0.8561	0.6342	0.7297	0.128*	

0.8771	0.6762	0.8264	0.128*
0.7595	0.6832	0.7007	0.128*
0.1427 (3)	0.61106 (7)	0.63596 (19)	0.0530 (5)
0.2365 (3)	0.44406 (8)	0.4261 (2)	0.0714 (7)
0.3778 (2)	0.65378 (6)	0.53713 (16)	0.0471 (5)
0.34049 (9)	0.70699 (2)	0.48060 (7)	0.0481 (2)
0.3284 (3)	0.73551 (8)	0.5843 (2)	0.0638 (6)
0.4611 (3)	0.71850 (8)	0.4092 (2)	0.0643 (6)
0.1493 (3)	0.70184 (10)	0.3851 (3)	0.0444 (6)
0.1394 (4)	0.70045 (11)	0.2604 (3)	0.0556 (8)
0.2343	0.7015	0.2266	0.067*
-0.0135 (4)	0.69754 (12)	0.1866 (3)	0.0586 (8)
-0.0206	0.6962	0.1026	0.070*
-0.1561 (4)	0.69661 (10)	0.2349 (3)	0.0525 (7)
-0.1428 (4)	0.69827 (11)	0.3605 (3)	0.0533 (7)
-0.2380	0.6979	0.3941	0.064*
0.0083 (3)	0.70044 (10)	0.4368 (3)	0.0488 (7)
0.0156	0.7010	0.5209	0.059*
-0.3217 (5)	0.69311 (16)	0.1525 (4)	0.0821 (11)
-0.3199	0.7114	0.0795	0.123*
-0.4047	0.7061	0.1936	0.123*
-0.3458	0.6596	0.1320	0.123*
	0.8771 0.7595 0.1427 (3) 0.2365 (3) 0.3778 (2) 0.34049 (9) 0.3284 (3) 0.4611 (3) 0.1493 (3) 0.1394 (4) 0.2343 -0.0135 (4) -0.0206 -0.1561 (4) -0.1428 (4) -0.2380 0.0083 (3) 0.0156 -0.3217 (5) -0.3199 -0.4047 -0.3458	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0381 (14)	0.0445 (15)	0.0461 (15)	0.0029 (11)	0.0092 (11)	0.0010 (12)
C2	0.0600 (18)	0.0551 (18)	0.0611 (19)	-0.0041 (14)	0.0213 (15)	0.0089 (15)
C3	0.065 (2)	0.0446 (17)	0.083 (2)	-0.0099 (14)	0.0186 (18)	0.0101 (16)
C4	0.0511 (16)	0.0393 (15)	0.072 (2)	-0.0036 (12)	0.0054 (15)	-0.0027 (14)
C5	0.0485 (16)	0.0628 (19)	0.0408 (16)	0.0076 (13)	0.0051 (12)	-0.0107 (13)
C6	0.0539 (17)	0.077 (2)	0.0393 (16)	0.0067 (15)	0.0131 (13)	-0.0016 (14)
C7	0.0536 (16)	0.0576 (18)	0.0457 (16)	0.0011 (13)	0.0127 (13)	0.0055 (13)
C8	0.0388 (13)	0.0450 (15)	0.0383 (14)	0.0039 (11)	0.0029 (11)	0.0020 (11)
C9	0.0376 (13)	0.0422 (14)	0.0372 (14)	0.0016 (11)	0.0045 (11)	-0.0010 (11)
C10	0.0436 (14)	0.0440 (16)	0.0504 (16)	0.0015 (11)	0.0017 (12)	-0.0101 (13)
C11	0.0345 (13)	0.0406 (14)	0.0412 (14)	0.0019 (10)	0.0046 (10)	0.0015 (11)
C12	0.0365 (13)	0.0406 (15)	0.0504 (16)	0.0005 (11)	0.0041 (11)	-0.0014 (12)
C13	0.0364 (13)	0.0456 (14)	0.0321 (13)	0.0053 (11)	0.0029 (10)	0.0001 (11)
C14	0.0381 (13)	0.0480 (15)	0.0375 (14)	0.0056 (11)	0.0010 (11)	-0.0053 (12)
015	0.0510 (11)	0.0515 (11)	0.0462 (11)	0.0089 (8)	0.0163 (9)	0.0006 (8)
S16	0.0651 (5)	0.0582 (5)	0.0396 (4)	0.0068 (3)	0.0181 (3)	-0.0027 (3)
O17	0.0945 (18)	0.0811 (17)	0.0624 (14)	0.0122 (13)	0.0391 (13)	-0.0169 (12)
018	0.0802 (15)	0.0693 (14)	0.0469 (12)	0.0063 (11)	0.0126 (11)	0.0156 (10)
C19	0.0543 (16)	0.0428 (15)	0.0372 (14)	0.0068 (12)	0.0070 (12)	-0.0058 (11)
C20	0.0512 (17)	0.0468 (16)	0.0612 (19)	0.0107 (13)	0.0018 (14)	-0.0073 (14)
C21	0.0632 (19)	0.0402 (15)	0.0557 (18)	0.0016 (13)	0.0025 (15)	-0.0025 (13)
C22	0.0587 (18)	0.0450 (16)	0.0602 (18)	-0.0005 (13)	0.0111 (15)	-0.0095 (13)

C23	0.060 (2)	0.0445 (18)	0.092 (3)	0.0124 (14)	0.0231 (17)	-0.0039 (16)
C24	0.066 (2)	0.0404 (16)	0.070(2)	0.0106 (14)	0.0173 (16)	0.0004 (14)
C25	0.084 (3)	0.064 (2)	0.118 (3)	-0.0084 (19)	0.044 (2)	-0.004(2)
O26	0.0669 (13)	0.0389 (11)	0.0587 (12)	0.0081 (9)	0.0259 (10)	0.0001 (9)
O27	0.0901 (17)	0.0553 (13)	0.0714 (15)	-0.0082 (11)	0.0213 (13)	-0.0257 (12)
O28	0.0543 (11)	0.0439 (11)	0.0429 (11)	-0.0036 (8)	0.0085 (8)	0.0006 (8)
S29	0.0439 (4)	0.0417 (4)	0.0596 (5)	-0.0070 (3)	0.0114 (3)	0.0020 (3)
O30	0.0678 (14)	0.0496 (12)	0.0720 (14)	-0.0069 (10)	0.0070 (11)	-0.0169 (10)
O31	0.0490 (12)	0.0625 (14)	0.0855 (16)	-0.0099 (10)	0.0230 (11)	0.0141 (12)
C32	0.0452 (15)	0.0402 (14)	0.0500 (16)	0.0007 (11)	0.0143 (12)	0.0055 (12)
C33	0.0544 (17)	0.0613 (18)	0.0564 (18)	0.0063 (14)	0.0241 (14)	0.0098 (14)
C34	0.069 (2)	0.0629 (19)	0.0436 (16)	0.0113 (15)	0.0102 (15)	0.0056 (14)
C35	0.0535 (17)	0.0416 (15)	0.0605 (19)	0.0073 (12)	0.0050 (14)	0.0021 (13)
C36	0.0437 (16)	0.0584 (18)	0.0600 (19)	0.0032 (13)	0.0156 (14)	0.0024 (14)
C37	0.0483 (15)	0.0535 (17)	0.0469 (16)	-0.0007 (12)	0.0144 (12)	0.0011 (13)
C38	0.066 (2)	0.099 (3)	0.073 (2)	0.010 (2)	-0.0094 (18)	-0.001 (2)

Geometric parameters (Å, °)

C1—C2	1.382 (4)	C19—C20	1.386 (4)
C1—015	1.398 (3)	C20—C21	1.367 (5)
C1-C11	1.398 (4)	C20—H20	0.9300
C2—C3	1.379 (5)	C21—C22	1.389 (4)
С2—Н2	0.9300	C21—H21	0.9300
C3—C4	1.372 (5)	C22—C23	1.387 (4)
С3—Н3	0.9300	C22—C25	1.502 (5)
C4—C12	1.394 (4)	C23—C24	1.369 (5)
C4—H4	0.9300	C23—H23	0.9300
C5—C6	1.364 (5)	C24—H24	0.9300
C5—C14	1.387 (4)	C25—H25A	0.9600
С5—Н5	0.9300	C25—H25B	0.9600
С6—С7	1.379 (4)	C25—H25C	0.9600
С6—Н6	0.9300	O28—S29	1.6000 (19)
С7—С8	1.373 (4)	S29—O30	1.416 (2)
С7—Н7	0.9300	S29—O31	1.419 (2)
C8—O28	1.397 (3)	S29—C32	1.745 (3)
C8—C13	1.403 (4)	C32—C33	1.380 (4)
С9—О26	1.210 (3)	C32—C37	1.390 (4)
C9—C13	1.491 (4)	C33—C34	1.381 (4)
C9—C11	1.495 (4)	С33—Н33	0.9300
С10—О27	1.223 (3)	C34—C35	1.381 (5)
C10—C12	1.479 (4)	C34—H34	0.9300
C10-C14	1.485 (4)	C35—C36	1.387 (4)
C11—C12	1.406 (4)	C35—C38	1.508 (4)
C13—C14	1.407 (4)	C36—C37	1.380 (4)
O15—S16	1.608 (2)	С36—Н36	0.9300
S16—O17	1.415 (2)	С37—Н37	0.9300
S16—O18	1.427 (2)	C38—H38A	0.9600

S16—C19	1.745 (3)	C38—H38B	0.9600
C19—C24	1.378 (4)	C38—H38C	0.9600
C2-C1-O15	117.8 (3)	C21—C20—C19	119.2 (3)
C2—C1—C11	121.6 (3)	C21—C20—H20	120.4
O15—C1—C11	120.6 (2)	C19—C20—H20	120.4
C3—C2—C1	120.2 (3)	C20—C21—C22	121.7 (3)
C3—C2—H2	119.9	C20—C21—H21	119.2
C1—C2—H2	119.9	C22—C21—H21	119.2
C4—C3—C2	119.9 (3)	C23—C22—C21	117.7 (3)
С4—С3—Н3	120.0	C23—C22—C25	121.3 (3)
С2—С3—Н3	120.0	C21—C22—C25	121.0 (3)
C3—C4—C12	120.3 (3)	C24—C23—C22	121.5 (3)
C3—C4—H4	119.8	C24—C23—H23	119.3
C12—C4—H4	119.8	С22—С23—Н23	119.3
C6—C5—C14	120.2 (3)	C23—C24—C19	119.5 (3)
С6—С5—Н5	119.9	C23—C24—H24	120.2
С14—С5—Н5	119.9	C19—C24—H24	120.2
C5—C6—C7	120.6 (3)	С22—С25—Н25А	109.5
С5—С6—Н6	119.7	С22—С25—Н25В	109.5
С7—С6—Н6	119.7	H25A—C25—H25B	109.5
C8—C7—C6	119.7 (3)	С22—С25—Н25С	109.5
С8—С7—Н7	120.1	H25A—C25—H25C	109.5
С6—С7—Н7	120.1	H25B—C25—H25C	109.5
C7—C8—O28	121.9 (2)	C8—O28—S29	122.72 (16)
C7—C8—C13	121.7 (3)	O30—S29—O31	119.70 (14)
O28—C8—C13	116.2 (2)	O30—S29—O28	102.71 (12)
O26—C9—C13	121.7 (2)	O31—S29—O28	108.68 (12)
O26—C9—C11	121.2 (2)	O30—S29—C32	110.80 (14)
C13—C9—C11	116.9 (2)	O31—S29—C32	108.96 (14)
O27—C10—C12	120.5 (3)	O28—S29—C32	104.82 (11)
O27—C10—C14	120.6 (3)	C33—C32—C37	121.0 (3)
C12—C10—C14	118.8 (2)	C33—C32—S29	120.1 (2)
C1—C11—C12	117.2 (2)	C37—C32—S29	118.9 (2)
C1—C11—C9	122.8 (2)	C32—C33—C34	119.0 (3)
C12—C11—C9	119.8 (2)	С32—С33—Н33	120.5
C4—C12—C11	120.8 (3)	С34—С33—Н33	120.5
C4—C12—C10	118.7 (3)	C33—C34—C35	121.4 (3)
C11—C12—C10	120.5 (2)	С33—С34—Н34	119.3
C8—C13—C14	116.9 (2)	С35—С34—Н34	119.3
C8—C13—C9	122.8 (2)	C34—C35—C36	118.4 (3)
C14—C13—C9	120.2 (2)	C34—C35—C38	120.5 (3)
C5—C14—C13	120.8 (3)	C36—C35—C38	121.1 (3)
C5-C14-C10	119.1 (2)	C37—C36—C35	121.5 (3)
C13—C14—C10	120.1 (2)	С37—С36—Н36	119.2
C1-015-S16	120.01 (16)	С35—С36—Н36	119.2
O17—S16—O18	120.23 (15)	C36—C37—C32	118.6 (3)
O17—S16—O15	102.67 (14)	С36—С37—Н37	120.7

O18—S16—O15	108.09 (12)	С32—С37—Н37	120.7
O17—S16—C19	110.62 (15)	C35—C38—H38A	109.5
O18—S16—C19	109.39 (14)	C35—C38—H38B	109.5
O15—S16—C19	104.49 (12)	H38A—C38—H38B	109.5
C24—C19—C20	120.4 (3)	C35—C38—H38C	109.5
C24—C19—S16	120.0 (2)	H38A—C38—H38C	109.5
C20—C19—S16	119.6 (2)	H38B—C38—H38C	109.5
O15—C1—C2—C3	176.5 (3)	C12—C10—C14—C13	-6.3 (4)
C11—C1—C2—C3	0.1 (4)	C2-C1-O15-S16	77.9 (3)
C1—C2—C3—C4	1.3 (5)	C11—C1—O15—S16	-105.6(2)
C2—C3—C4—C12	-0.9(5)	C1—O15—S16—O17	-165.1 (2)
C14—C5—C6—C7	0.8 (4)	C1-015-S16-018	-37.1 (2)
C5—C6—C7—C8	-3.2 (4)	C1—O15—S16—C19	79.4 (2)
C6—C7—C8—O28	176.9 (2)	O17—S16—C19—C24	148.7 (2)
C6—C7—C8—C13	1.9 (4)	O18—S16—C19—C24	14.1 (3)
C2-C1-C11-C12	-1.6(4)	O15—S16—C19—C24	-101.4(2)
O15—C1—C11—C12	-177.9 (2)	O17—S16—C19—C20	-32.5 (3)
C2—C1—C11—C9	172.5 (2)	O18—S16—C19—C20	-167.1(2)
O15—C1—C11—C9	-3.9(4)	Q15—S16—C19—C20	77.3 (2)
O26—C9—C11—C1	-19.9 (4)	C24—C19—C20—C21	0.2 (4)
C13—C9—C11—C1	165.1 (2)	S16—C19—C20—C21	-178.6(2)
O26—C9—C11—C12	154.0 (3)	C19—C20—C21—C22	0.2 (5)
C13—C9—C11—C12	-21.0(3)	C20-C21-C22-C23	-0.4(5)
C3—C4—C12—C11	-0.7(4)	C20—C21—C22—C25	178.3 (3)
C3—C4—C12—C10	179.4 (3)	C21—C22—C23—C24	0.3 (5)
C1—C11—C12—C4	1.9 (4)	C25—C22—C23—C24	-178.4(4)
C9-C11-C12-C4	-172.4(2)	C22—C23—C24—C19	0.0 (5)
C1—C11—C12—C10	-178.1(2)	C20—C19—C24—C23	-0.3(5)
C9—C11—C12—C10	7.6 (4)	S16—C19—C24—C23	178.5 (3)
O27—C10—C12—C4	3.1 (4)	C7—C8—O28—S29	47.3 (3)
C14—C10—C12—C4	-173.8(2)	C13—C8—O28—S29	-137.4 (2)
O27—C10—C12—C11	-176.9(2)	C8—O28—S29—O30	169.05 (19)
C14—C10—C12—C11	6.3 (4)	C8—O28—S29—O31	-63.2 (2)
C7—C8—C13—C14	1.6 (4)	C8—O28—S29—C32	53.2 (2)
O28—C8—C13—C14	-173.7 (2)	O30—S29—C32—C33	144.9 (2)
C7—C8—C13—C9	-174.4 (2)	O31—S29—C32—C33	11.2 (3)
O28—C8—C13—C9	10.3 (3)	O28—S29—C32—C33	-105.0(2)
O26—C9—C13—C8	22.0 (4)	O30—S29—C32—C37	-33.5 (3)
C11—C9—C13—C8	-163.1 (2)	O31—S29—C32—C37	-167.2 (2)
O26—C9—C13—C14	-154.0 (2)	O28—S29—C32—C37	76.6 (2)
C11—C9—C13—C14	21.0 (3)	C37—C32—C33—C34	-0.1 (4)
C6—C5—C14—C13	2.8 (4)	S29—C32—C33—C34	-178.5 (2)
C6—C5—C14—C10	-177.4 (3)	C32—C33—C34—C35	0.8 (5)
C8—C13—C14—C5	-4.0 (3)	C33—C34—C35—C36	-0.5 (4)
C9—C13—C14—C5	172.2 (2)	C33—C34—C35—C38	-179.6 (3)
C8-C13-C14-C10	176.3 (2)	C34—C35—C36—C37	-0.5 (4)
C9—C13—C14—C10	-7.6 (3)	C38—C35—C36—C37	178.6 (3)
	× /		× /

O27—C10—C14—C5	-2.9 (4)	C35—C36—C37—C32	1.1 (4)
C12—C10—C14—C5	173.9 (2)	C33—C32—C37—C36	-0.8 (4)
O27-C10-C14-C13	176.9 (2)	S29—C32—C37—C36	177.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C24—H24…O18 ⁱ	0.93	2.54	3.332 (4)	143
C33—H33···O30 ⁱⁱ	0.93	2.56	3.241 (4)	130
C36—H36…O31 ⁱⁱⁱ	0.93	2.58	3.458 (4)	156

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+2; (ii) *x*, -*y*+3/2, *z*-1/2; (iii) *x*-1, *y*, *z*.