

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-(1H-Imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzonitrile methanol solvate

Wen-Lan Wang

College of Chemistry and Biology, Beihua University, Jilin City 132013, People's Republic of China

Correspondence e-mail: wenlan1964@yeah.net

Received 28 November 2009; accepted 29 November 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.072; wR factor = 0.179; data-to-parameter ratio = 14.0.

In the title compound, C₂₀H₁₁N₅·CH₃OH, the benzene ring is twisted by a small dihedral angle of 1.89 (11)° with respect to the imidazo[4,5-f][1,10]phenanthroline ring system. N- $H \cdots O$ and $O - H \cdots N$ hydrogen bonding is present in the crystal structure.

Related literature

For related structures, see: Sun et al. (2007); Yin (2008); Zhang et al. (2008).

organic compounds

2018 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.099$

Experimental

Crystal data

V = 1746.7 (4) Å ³
Z = 4
Mo $K\alpha$ radiation
$\mu = 0.09 \text{ mm}^{-1}$
T = 293 K
$0.30 \times 0.28 \times 0.26 \text{ mm}$

Data collection

Rigaku, SCXmini diffractometer 15971 measured reflections 3432 independent reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.072$ wR(F²) = 0.179 245 parameters H-atom parameters constrained S = 1.04 $\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$ 3432 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N3−H3 <i>B</i> ···O1	0.86	1.95	2.803 (3)	174
$O1-H1E\cdots N5^{i}$	0.98	1.89	2.857 (3)	168

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This work was supported by a start-up grant from Beihua University, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2700).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sun, M., Chen, G., Ling, B.-P. & Liu, Y.-X. (2007). Acta Cryst. E63, 01210o1211.

Yin, G.-Q. (2008). Acta Cryst. E64, o1236.

Zhang, W.-Z., Li, L. & Xiao, Y.-H. (2008). Acta Cryst. E64, 01331.

supporting information

Acta Cryst. (2010). E66, o55 [doi:10.1107/S1600536809051472]

3-(1*H*-Imidazo[4,5-*f*][1,10]phenanthrolin-2-yl)benzonitrile methanol solvate

Wen-Lan Wang

S1. Comment

1,10-Phenanthroline and its derivatives are commonly used as ligands in metal-organic coordination polymers (Sun *et al.*, 2007; Yin, 2008; Zhang *et al.*, 2008). The title compound was synthesized from 1,10-phenanthroline-5,6-dione.

The asymmetric unit of the title compound, $C_{20}H_{11}N_5$.CH₃OH, contains one organic molecule and one solvent methanol molecule (Fig.1). The molecules are connected by N—H···O and O—H···N hydrogen bonding to form a one-dimensional chain (Fig. 2). The organic molecule is essentially planar.

S2. Experimental

1,10-Phenanthroline-5,6-dione (1.5 mmol) and 3-cyanobenzaldehyde (1.5 mmol) were dissolved in CH_3COOH and CH_3COONH_4 (1:1) solution (30 ml). The mixture was refluxed for 1.5 h under argon, after cooling this mixture was diluted with water and neutralized with concentrated aqueous ammonia, immediately resulting a yellow precipitate, which was washed with water, acetone and diethyl ether respectively. Crystals of the title compound were obtained by recrystallization from dichloromethane-methanol solution.

S3. Refinement

Methanol H atom was located in a difference Fourier map and refined as riding in as-found relative position, the thermal parameter was refined. Other H atoms were placed in calculated positions with C—H = 0.93 Å (aromatic), 0.96 Å (methyl) and N—H = 0.86 Å, and refined using a riding model, with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H and $1.2U_{eq}(C,N)$ for the others.

Figure 1

The asymmetric unit of the title compound with atom labels. Displacement ellipsoids were drawn at the 30% probability level.

Figure 2

The packing viewed along the b axis. Hydrogen bonds are drawn as dashed lines

3-(1*H*-Imidazo[4,5-*f*][1,10]phenanthrolin-2-yl)benzonitrile methanol solvate

Crystal data	
$C_{20}H_{11}N_5 \cdot CH_4O$ $M = 353,38$	F(000) = 736 D = 1.344 Mg m ⁻³
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 2018 reflections
a = 7.115(1) Å	$\theta = 3.0 - 26.0^{\circ}$
b = 18.385 (2) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 13.5576 (12) Å	T = 293 K
$\beta = 99.956 \ (19)^{\circ}$	Block, colorless
V = 1746.7 (4) Å ³	$0.30 \times 0.28 \times 0.26 \text{ mm}$
Z = 4	

Data collection

Rigaku, SCXmini	3432 independent reflections
diffractometer	2018 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{int} = 0.099$
Graphite monochromator	$\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 3.0^{\circ}$
Detector resolution: 13.6612 pixels mm ⁻¹	$h = -8 \rightarrow 8$
ω scan	$k = -22 \rightarrow 22$
15971 measured reflections	$l = -16 \rightarrow 16$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.072$	Hydrogen site location: inferred from
$wR(F^2) = 0.179$	neighbouring sites
S = 1.04	H-atom parameters constrained
3432 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0784P)^2 + 0.0647P]$
245 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.18$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.19$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.6541 (5)	-0.05805 (18)	0.7761 (3)	0.0518 (8)	
C2	0.6702 (4)	-0.07430 (16)	0.6737 (2)	0.0430 (7)	
C3	0.6441 (4)	-0.14493 (17)	0.6377 (3)	0.0510 (8)	
H3A	0.6173	-0.1822	0.6795	0.061*	
C4	0.6581 (5)	-0.15944 (17)	0.5396 (3)	0.0538 (9)	
H4A	0.6398	-0.2066	0.5152	0.065*	
C5	0.6993 (4)	-0.10430 (17)	0.4769 (2)	0.0501 (8)	
H5A	0.7079	-0.1149	0.4107	0.060*	
C6	0.7281 (4)	-0.03325 (15)	0.5117 (2)	0.0386 (7)	
C7	0.7123 (4)	-0.01864 (16)	0.6113 (2)	0.0407 (7)	
H7A	0.7300	0.0285	0.6360	0.049*	
C8	0.7695 (4)	0.02402 (15)	0.4435 (2)	0.0391 (7)	
C9	0.8262 (4)	0.08115 (15)	0.3144 (2)	0.0388 (7)	
C10	0.8600 (4)	0.10077 (16)	0.2162 (2)	0.0391 (7)	
C11	0.8394 (4)	0.05275 (17)	0.1346 (2)	0.0490 (8)	
H11A	0.7998	0.0051	0.1413	0.059*	
C12	0.8787 (5)	0.07721 (19)	0.0448 (2)	0.0567 (9)	

H12A	0.8629	0.0470	-0.0110	0.068*
C13	0.9430 (5)	0.14836 (19)	0.0393 (2)	0.0596 (10)
H13A	0.9758	0.1633	-0.0210	0.072*
C14	0.9157 (4)	0.17313 (16)	0.2013 (2)	0.0411 (7)
C15	0.9232 (4)	0.22708 (16)	0.2820 (2)	0.0407 (7)
C16	0.9749 (5)	0.34573 (18)	0.3349 (3)	0.0622 (10)
H16A	1.0103	0.3930	0.3221	0.075*
C17	0.9213 (5)	0.33164 (18)	0.4271 (2)	0.0592 (9)
H17A	0.9197	0.3687	0.4737	0.071*
C18	0.8714 (5)	0.26248 (17)	0.4477 (2)	0.0511 (8)
H18A	0.8365	0.2515	0.5090	0.061*
C19	0.8732 (4)	0.20771 (15)	0.3752 (2)	0.0388 (7)
C20	0.8320 (4)	0.13278 (15)	0.3885 (2)	0.0371 (7)
C21	0.9291 (6)	0.1623 (3)	0.7300 (3)	0.1045 (16)
H21A	0.9003	0.1877	0.7875	0.157*
H21B	1.0353	0.1853	0.7075	0.157*
H21C	0.9610	0.1127	0.7478	0.157*
N1	0.6392 (5)	-0.04524 (19)	0.8570 (2)	0.0749 (9)
N2	0.7870 (3)	0.01301 (12)	0.34899 (16)	0.0406 (6)
N3	0.7950 (3)	0.09555 (12)	0.47126 (17)	0.0390 (6)
H3B	0.7891	0.1137	0.5291	0.047*
N4	0.9610 (4)	0.19635 (14)	0.11301 (19)	0.0550 (7)
N5	0.9787 (4)	0.29620 (13)	0.26399 (19)	0.0513 (7)
01	0.7700 (4)	0.16399 (13)	0.65327 (16)	0.0640 (7)
H1E	0.6578	0.1781	0.6823	0.14 (2)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.050(2)	0.061 (2)	0.044 (2)	-0.0024 (16)	0.0072 (16)	0.0113 (16)
C2	0.0349 (16)	0.050(2)	0.0432 (18)	0.0017 (13)	0.0034 (14)	0.0069 (14)
C3	0.051 (2)	0.0400 (19)	0.063 (2)	-0.0021 (14)	0.0118 (17)	0.0147 (16)
C4	0.055 (2)	0.0383 (19)	0.070 (2)	-0.0027 (14)	0.0155 (18)	-0.0017 (17)
C5	0.0488 (19)	0.050 (2)	0.052 (2)	-0.0018 (15)	0.0117 (16)	-0.0018 (16)
C6	0.0300 (16)	0.0410 (17)	0.0446 (17)	0.0024 (12)	0.0063 (13)	0.0044 (13)
C7	0.0409 (17)	0.0381 (17)	0.0426 (18)	-0.0026 (13)	0.0060 (14)	0.0031 (13)
C8	0.0345 (16)	0.0416 (17)	0.0414 (17)	0.0021 (12)	0.0074 (13)	0.0001 (13)
C9	0.0359 (16)	0.0419 (18)	0.0382 (16)	-0.0003 (12)	0.0051 (13)	0.0016 (13)
C10	0.0351 (16)	0.0460 (18)	0.0361 (16)	0.0024 (13)	0.0062 (13)	-0.0013 (13)
C11	0.053 (2)	0.0483 (19)	0.0457 (19)	0.0018 (15)	0.0095 (16)	-0.0034 (15)
C12	0.070 (2)	0.062 (2)	0.0386 (19)	0.0111 (17)	0.0105 (17)	-0.0064 (16)
C13	0.078 (3)	0.066 (2)	0.0375 (19)	0.0088 (19)	0.0183 (17)	0.0087 (17)
C14	0.0407 (17)	0.0470 (19)	0.0357 (16)	0.0054 (13)	0.0071 (13)	0.0038 (13)
C15	0.0378 (17)	0.0422 (18)	0.0422 (17)	0.0020 (13)	0.0077 (14)	0.0027 (13)
C16	0.087 (3)	0.0392 (19)	0.063 (2)	-0.0115 (17)	0.021 (2)	-0.0003 (17)
C17	0.079 (3)	0.049 (2)	0.052 (2)	-0.0060 (17)	0.0183 (18)	-0.0075 (16)
C18	0.064 (2)	0.049 (2)	0.0429 (18)	-0.0016 (16)	0.0161 (16)	-0.0037 (15)
C19	0.0389 (17)	0.0409 (18)	0.0377 (16)	0.0005 (12)	0.0099 (13)	-0.0005 (13)

supporting information

C20	0.0347 (16)	0.0436 (18)	0.0345 (16)	0.0030 (12)	0.0103 (13)	0.0041 (13)
C21	0.082 (3)	0.134 (4)	0.092 (3)	0.011 (3)	-0.002 (3)	-0.042 (3)
N1	0.071 (2)	0.100 (3)	0.053 (2)	-0.0063 (18)	0.0090 (17)	0.0078 (18)
N2	0.0423 (15)	0.0424 (15)	0.0386 (14)	-0.0004 (11)	0.0114 (11)	0.0001 (11)
N3	0.0434 (14)	0.0430 (15)	0.0322 (13)	0.0006 (11)	0.0110 (11)	-0.0003 (11)
N4 N5 O1	0.073 (2) 0.0651 (18) 0.0695 (17)	0.0573 (18) 0.0425 (16) 0.0778 (17)	0.0322 (15) 0.0366 (15) 0.0489 (16) 0.0474 (14)	0.0024 (14) -0.0064 (13) 0.0083 (13)	0.0160 (11) 0.0161 (14) 0.0171 (13) 0.0177 (13)	0.0035 (11) 0.0035 (13) -0.0016 (12) -0.0119 (12)

Geometric parameters (Å, °)

C1—N1	1.145 (4)	C12—H12A	0.9300	
C1—C2	1.444 (4)	C13—N4	1.323 (4)	
С2—С3	1.388 (4)	C13—H13A	0.9300	
С2—С7	1.393 (4)	C14—N4	1.361 (4)	
C3—C4	1.376 (4)	C14—C15	1.471 (4)	
С3—НЗА	0.9300	C15—N5	1.365 (4)	
C4—C5	1.387 (4)	C15—C19	1.416 (4)	
C4—H4A	0.9300	C16—N5	1.328 (4)	
С5—С6	1.392 (4)	C16—C17	1.393 (4)	
С5—Н5А	0.9300	C16—H16A	0.9300	
C6—C7	1.400 (4)	C17—C18	1.362 (4)	
С6—С8	1.465 (4)	C17—H17A	0.9300	
С7—Н7А	0.9300	C18—C19	1.409 (4)	
C8—N2	1.324 (3)	C18—H18A	0.9300	
C8—N3	1.371 (3)	C19—C20	1.426 (4)	
C9—C20	1.378 (4)	C20—N3	1.377 (3)	
C9—N2	1.383 (3)	C21—O1	1.400 (4)	
C9—C10	1.439 (4)	C21—H21A	0.9600	
C10-C11	1.403 (4)	C21—H21B	0.9600	
C10-C14	1.412 (4)	C21—H21C	0.9600	
C11—C12	1.371 (4)	N3—H3B	0.8600	
C11—H11A	0.9300	O1—H1E	0.9842	
C12—C13	1.392 (5)			
N1—C1—C2	179.2 (4)	C12—C13—H13A	117.4	
C3—C2—C7	120.2 (3)	N4—C14—C10	122.4 (3)	
C3—C2—C1	120.2 (3)	N4—C14—C15	117.3 (3)	
C7—C2—C1	119.5 (3)	C10-C14-C15	120.3 (3)	
C4—C3—C2	119.6 (3)	N5-C15-C19	121.3 (3)	
С4—С3—Н3А	120.2	N5-C15-C14	118.0 (3)	
С2—С3—НЗА	120.2	C19—C15—C14	120.8 (3)	
C3—C4—C5	120.6 (3)	N5-C16-C17	124.4 (3)	
C3—C4—H4A	119.7	N5-C16-H16A	117.8	
C5—C4—H4A	119.7	C17—C16—H16A	117.8	
C4—C5—C6	120.8 (3)	C18—C17—C16	118.6 (3)	
C4—C5—H5A	119.6	C18—C17—H17A	120.7	
С6—С5—Н5А	119.6	C16—C17—H17A	120.7	

C5—C6—C7	118.4 (3)	C17—C18—C19	119.3 (3)
C5—C6—C8	119.6 (3)	C17—C18—H18A	120.3
C7—C6—C8	122.0 (3)	C19—C18—H18A	120.3
C2—C7—C6	120.4 (3)	C18—C19—C15	118.5 (3)
С2—С7—Н7А	119.8	C18—C19—C20	125.1 (3)
С6—С7—Н7А	119.8	C15—C19—C20	116.4 (3)
N2—C8—N3	112.4 (2)	N3—C20—C9	105.4 (2)
N2—C8—C6	124.3 (3)	N3—C20—C19	131.0 (3)
N3—C8—C6	123.2 (3)	C9—C20—C19	123.6 (3)
C20—C9—N2	111.0 (3)	O1—C21—H21A	109.5
C20—C9—C10	120.9 (3)	O1—C21—H21B	109.5
N2—C9—C10	128.1 (3)	H21A—C21—H21B	109.5
C11—C10—C14	118.3 (3)	O1—C21—H21C	109.5
С11—С10—С9	124.1 (3)	H21A—C21—H21C	109.5
C14—C10—C9	117.6 (3)	H21B—C21—H21C	109.5
C12—C11—C10	119.0 (3)	C8—N2—C9	104.4 (2)
C12—C11—H11A	120.5	C8—N3—C20	106.8 (2)
C10-C11-H11A	120.5	C8—N3—H3B	126.6
C11—C12—C13	118.4 (3)	C20—N3—H3B	126.6
C11—C12—H12A	120.8	C13—N4—C14	116.7 (3)
C13—C12—H12A	120.8	C16—N5—C15	117.8 (3)
N4—C13—C12	125.2 (3)	C21—O1—H1E	108.4
N4—C13—H13A	117.4		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	D—H···A
N3—H3 <i>B</i> …O1	0.86	1.95	2.803 (3)	174
O1—H1E····N5 ⁱ	0.98	1.89	2.857 (3)	168

Symmetry code: (i) x-1/2, -y+1/2, z+1/2.