Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-[2-(Trimethylsilyl)ethyl]isoindoline-1,3dione

Ilia A. Guzei,* Lara C. Spencer and Uzma I. Zakai
Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, Wisconsin 53706, USA
Correspondence e-mail: iguzei@chem.wisc.edu

Received 24 November 2009; accepted 15 December 2009

Key indicators: single-crystal X-ray study; $T=300 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.044 ; w R$ factor $=0.151$; data-to-parameter ratio $=17.2$.

In the course of our studies of silicon-containing anticancer compounds, the title compound, $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{Si}$, was synthesized. The geometrical parameters including the geometry about the Si atom are typical. The molecules form dimers via a weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction described by the graph set $R_{2}^{2}(10)$. The dimers are assembled in rows stacked in the crystallographic b-axis direction via $\pi-\pi$ interactions with a 3.332 (3) A separation between the rows.

Related literature

For literature related to drug design see: Bains \& Tacke (2003); Bikzhanova et al. (2007); Franz (2007); Franz et al. (2007); Gately \& West (2007); Guzei,, Spencer, Zakai \& Lynch (2010); Guzei, Spencer \& Zakai (2010); Lee et al. (1993, 1996); Sen \& Roach (1995); Showell \& Mills (2003); Tacke \& Zilch (1986); Tsuge et al. (1985); Yoon et al. (1991, 1992, 1997). For a description of the Cambridge Structural Database, see: Allen (2002). Bond distances and angles were confirmed to be typical by a Mogul structural check (Bruno et al., 2002). For graph-set notation, see: Grell et al. (1999).

Experimental

Crystal data
$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{Si}$
$M_{r}=247.37$
Monoclinic, $P 2_{1} / n$
$a=11.562$ (5) A
$b=6.411$ (2) A
$c=19.445$ (8) \AA
$\beta=95.176$ (14) ${ }^{\circ}$
$V=1435.5(10) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.16 \mathrm{~mm}^{-1}$
$T=300 \mathrm{~K}$
$0.89 \times 0.40 \times 0.30 \mathrm{~mm}$

Data collection

Bruker SMART X2S diffractometer
9164 measured reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\text {min }}=0.875, T_{\text {max }}=0.955$
01 independent reflections
1750 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.151$
157 parameters
H -atom parameters constrained
$S=0.99$
2701 reflections
$\Delta \rho_{\text {max }}=0.15$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.16 \mathrm{e}^{\AA^{-3}}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.57	$3.443(4)$	156

Symmetry code: (i) $-x+1,-y+2,-z+1$.
Data collection: APEX2 and GIS (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL, OLEX2 (Dolomanov et al., 2009) and FCF_filter (Guzei, 2007); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, modiCIFer (Guzei, 2007) and publCIF (Westrip, 2010).

We thank Dr N. J. Hill (UW-Madison) for acquiring the data and Professor R. West (UW-Madison) for his support. We gratefully acknowledge Bruker sponsorship of this publication and also acknowledge grants NIH 1 S10 RRO 8389-01 and NSF CHE-9629688 for providing NMR spectrometers, and grant NSF CHE-9304546 for providing the mass spectrometer for this work

[^0]
References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bains, W. \& Tacke, R. (2003). Curr. Opin. Drug Discov. Devel. 6, 526-543.
Bikzhanova, G. A., Toulokhonova, I. S., Gately, S. \& West, R. (2007). Silicon Chem. 3, 209-217.
Bruker (2009). APEX2, GIS, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Franz, A. K. T. (2007). Curr. Opin. Drug Discov. Devel. 10, 654-671.
Franz, A. K., Dreyfuss, P. D. \& Schreiber, S. L. (2007). J. Am. Chem. Soc. 129, 1020-1021.
Gately, S. \& West, R. (2007). Drug Dev. Res. 68, 156-163.

organic compounds

Grell, J., Bernstein, J. \& Tinhofer, G. (1999). Acta Cryst. B55, 1030-1043.
Guzei, I. A. (2007). In-house Crystallographic Programs: FCF_filter, INSerter and modiCIFer. Molecular Structure Laboratory, University of WisconsinMadison, Madison, Wisconsin, USA.
Guzei, I. A., Spencer, L. C. \& Zakai, U. I. (2010). Acta Cryst. E66, o219-o220.
Guzei, I. A., Spencer, L. C., Zakai, U. I. \& Lynch, D. C. (2010). Acta Cryst. E66, o221-o222.
Lee, Y. J., Lee, C. P., Jeon, Y. T., Mariano, P. S., Yoon, U. C., Kim, D. U., Kim, J. C. \& Lee, J. G. (1993). Tetrahedron Lett. 34, 5855-5858.

Lee, Y. J., Ling, R., Mariano, P. S., Yoon, U. C., Kim, D. U. \& Oh, S. W. (1996). J. Org. Chem. 61, 3304-3314.
Sen, S. E. \& Roach, S. L. (1995). Synthesis, pp. 756-758.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Showell, G. A. \& Mills, J. S. (2003). Drug Discov. Today, 8, 551-556.
Tacke, R. \& Zilch, H. (1986). Endeavour, 10, 191-197.
Tsuge, O., Tanaka, J. \& Kanemasa, S. (1985). Bull. Chem. Soc. Jpn, 58, 19911999.

Westrip, S. P. (2010). publCIF. In preparation.
Yoon, U. C., Cho, S. J., Oh, J. H., Lee, J. G., Kang, K. T. \& Mariano, P. S. (1991). Bull. Korean Chem. Soc. 12, 241-243.
Yoon, U. C., Kim, J. W., Ryu, J. Y., Cho, S. J., Oh, S. W. \& Mariano, P. S. (1997). J. Photochem. Photobiol. A Chem. 106, 145-154.

Yoon, U. C., Oh, J. H., Lee, S. J., Kim, D. U., Lee, J. G., Kang, K. T. \& Mariano, P. S. (1992). Bull. Korean Chem. Soc. 13, 166-172.

supporting information

Acta Cryst. (2010). E66, o223-o224 [doi:10.1107/S1600536809054105]

2-[2-(Trimethylsilyl)ethyl]isoindoline-1,3-dione

Ilia A. Guzei, Lara C. Spencer and Uzma I. Zakai

S1. Comment

Sila phthalimides are important intermediates in photochemistry (Lee et al., 1993, 1996; Yoon et al., 1997, 1992, 1991) and organic synthesis (Bikzhanova et al., 2007; Tsuge et al., 1985). We have used methods of organosilicon chemistry (Franz, 2007; Franz et al., 2007; Gately \& West, 2007; Tacke \& Zilch, 1986; Showell \& Mills, 2003) to prepare an array of substituted sila amines (Bikzhanova et al., 2007) and to fine-tune the properties of pharmocological drugs (Bains \& Tacke, 2003). Sila phthalimides can be obtained from the respective chlorosilanes (Tsuge et al., 1985) or from alcohols by means of the Misunubu reaction (Sen \& Roach, 1995) as in the present case. During our research toward siliconcontaining anti-cancer drugs the title compound, (I), was isolated and characterized.
The bond distances and angles of (I) are typical as confirmed by the Mogul structural check (Bruno et al., 2002), and agree well with those for the related compounds 2-(3-(methyldiphenylsilyl)propyl)isoindoline-1,3-dione (Guzei, Spencer, Zakai \& Lynch, 2010) and 2-(((4-methoxyphenyl)dimethylsilyl)methyl)isoindoline-1,3-dione (Guzei, Spencer \& Zakai, 2010). Specifically, the average $\mathrm{Si}-\mathrm{C}$ distances of 1.867 (3) \AA for compound (I) are statistically similar to the 1.88 (3) \AA average for 83 related compounds in the Cambridge Structural Database (Version 1.11, September 2009 release; Allen, 2002). The Si atom has a distorted tetrahedral geometry with angles ranging from $107.87(11)^{\circ}$ to $110.45(11)^{\circ}$. The phthalate entity is expectedly planar within $0.0083 \AA$.
The molecules form dimers via a weak C11- $\mathrm{H} 11 \cdots \mathrm{O} 2$ interaction with a distance of 3.443 (4) \AA and an angle of 155°. The pattern formed can be described in graph set notation as $R_{2}{ }^{2}(10)$ (Grell et. al., 1999). The dimers are assembled into rows via weak $\pi-\pi$ interactions with a distance of 3.366 (5) \AA between atoms C13 in separate dimers. The rows are stacked in the crystallographic b direction.

S2. Experimental

The title compound was obtained via a Mitsunubu reaction as described by Sen and co-workers (Sen \& Roach, 1995). To a pre-dried 100 ml round bottom flask was added 2-(trimethylsilyl)ethanol ($319 \mathrm{mg}, 2.7 \mathrm{mmol}$). Additionally, potassium phthalimide ($512 \mathrm{mg}, 3.48 \mathrm{mmol}$) and triphenyl phosphine ($913,3.48 \mathrm{mmol}$) were added to the reaction flask. The flask was sealed with a rubber septum, evacuated, and then filled with an inert atmosphere (nitrogen). Subsequently, 30 ml of freshly distilled THF was added to the round bottom flask. In the dark, the flask was then wrapped with aluminium foil and diisopropyl azodicarboxylate (DIAD) was slowly syringed into the reaction flask. This mixture was allowed to stir at room temperature for four hours. Three ml of water was slowly injected into the reaction mixture, and the given suspension was allowed to stir for a few more minutes. The aluminium foil covering the reaction flask was removed and its contents were poured into an extraction flask. The aqueous phase was extracted 3-5 times with hexane and the resultant organic extracts were dried with MgSO_{4} and filtered. The filtrate was mixed with silica gel and this slurry was dried under reduced pressure. The dry powder was loaded onto a pre-dry packed silica gel column and eluted with a gradient column. The desired material was collected using a $8: 2$ hexane:ethyl acetate mixture. The compound of interest
was dried under reduced pressure and recrystallized from dichloromethane to afford lustrous white needles ($0.35 \mathrm{~g}, 1.41$ $\mathrm{mmol}, 52 \%$ yield) for X-ray crystallography. Manipulation of air and moisture sensitive compounds was performed using standard high-vacuum line techniques. All solvents and reagents were obtained from Aldrich. 2-(trimethylsilyl)ethanol was purchased from Gelest. ${ }^{1} \mathrm{H}$ NMR spectra were obtained on a Varian Unity 500 spectrometer, ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR spectra were obtained on a Varian 500 spectrometer operating at $125 \mathrm{MHz},{ }^{29} \mathrm{Si}\{\mathrm{H}\}$ NMR spectra were obtained on a Varian Unity spectrometer operating at 99 MHz . EI Mass spectra were determined on a Waters (Micromass) AutoSpec mass spectrometer. Melting points were determined on a Mel-Temp Laboratory Device. mp: 48-50 $;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.04\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{Me}_{3}\right)_{3}\right), 0.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.66(\mathrm{dd}, J=5.48,3.01 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.79(\mathrm{dd}$, $J=5.42,3.06 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-1.8(\mathrm{SiMe}), 17.0\left(\mathrm{CH}_{2}\right), 34.4\left(\mathrm{CH}_{2}\right), 123.0(\mathrm{CH}), 132.3(\mathrm{CH})$, $133.7(\mathrm{CH}), 168.2(\mathrm{CO}) ;{ }^{29} \mathrm{Si} \mathrm{NMR}\left(99 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.01\left(\mathrm{Si}\left(\mathrm{Me}_{3}\right)_{3}\right) ; \mathrm{MS}\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}$ (rel. intensity \%) $247\left(\mathrm{M}^{+}, 23\right), 246$ (M-1, 100), 232 (50), 204 (75), 160 (26), 130 (55), 91 (49), 73 (39); HRMS (EI $)^{+}$: calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{Si}\left(M^{+}\right)$247.1024, found $(M-1)^{+} 246.0945$.

S3. Refinement

All H -atoms were placed in idealized locations and refined as riding with appropriate thermal displacement coefficients $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}$ (bearing atom). The data were collected at room temperature on a Bruker SMART X2S diffractometer in the automated mode and manually processed thereafter.

Figure 1

Molecular structure of (I). The thermal ellipsoids are shown at 30% probability level.

2-[2-(Trimethylsilyl)ethyl]isoindoline-1,3-dione

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{Si} \\
& M_{r}=247.37 \\
& \text { Monoclinic, } P 2_{1} / n \\
& \text { Hall symbol: }-\mathrm{P} 2 \mathrm{yn} \\
& a=11.562(5) \AA \\
& b=6.411(2) \AA \\
& c=19.445(8) \AA \\
& \beta=95.176(14)^{\circ} \\
& V=1435.5(10) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
\begin{aligned}
& F(000)=528 \\
& D_{\mathrm{x}}=1.145 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 2755 \text { reflections } \\
& \theta=3.4-23.7^{\circ} \\
& \mu=0.16 \mathrm{~mm}^{-1} \\
& T=300 \mathrm{~K} \\
& \text { Needle, colourless } \\
& 0.89 \times 0.40 \times 0.30 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART X2S

diffractometer
Radiation source: micro-focus sealed tube
Doubly curved silicon crystal monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\text {min }}=0.875, T_{\text {max }}=0.955$

> 9164 measured reflections
> 2701 independent reflections
> 1750 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.036$
> $\theta_{\max }=25.7^{\circ}, \theta_{\min }=3.4^{\circ}$
> $h=-14 \rightarrow 14$
> $k=-7 \rightarrow 7$
> $l=-23 \rightarrow 23$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.151$
$S=0.99$
2701 reflections
157 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Si1	$0.90115(5)$	$0.20211(9)$	$0.38252(3)$	$0.0610(3)$
O1	$0.75423(19)$	$0.2215(3)$	$0.61648(12)$	$0.1052(7)$
O2	$0.60178(16)$	$0.7082(3)$	$0.46280(10)$	$0.0929(6)$
N1	$0.68492(15)$	$0.4340(3)$	$0.52646(10)$	$0.0686(5)$
C1	$0.8769(3)$	$-0.0839(4)$	$0.38950(16)$	$0.0987(9)$
H1A	0.9213	-0.1366	0.4299	0.148^{*}
H1B	0.9009	-0.1522	0.3492	0.148^{*}
H1C	0.7959	-0.1103	0.3930	0.148^{*}
C2	$1.0592(2)$	$0.2585(5)$	$0.37947(16)$	$0.1010(9)$
H2A	1.1015	0.2083	0.4209	0.152^{*}
H2B	1.0705	0.4063	0.3757	0.152^{*}
H2C	1.0869	0.1900	0.3402	0.152^{*}
C3	$0.8170(3)$	$0.3029(5)$	$0.30296(15)$	$0.1078(10)$
H3A	0.8418	0.2326	0.2632	0.162^{*}
H3B	0.8302	0.4500	0.2989	0.162^{*}
H3C	0.7357	0.2778	0.3058	0.162^{*}

C4	$0.85121(18)$	$0.3403(3)$	$0.45914(11)$	$0.0615(6)$
H4A	0.8976	0.2924	0.5001	0.074^{*}
H4B	0.8659	0.4883	0.4543	0.074^{*}
C5	$0.72357(19)$	$0.3103(4)$	$0.47001(13)$	$0.0773(7)$
H5A	0.6770	0.3469	0.4277	0.093^{*}
H5B	0.7100	0.1640	0.4792	0.093^{*}
C6	$0.7031(2)$	$0.3775(4)$	$0.59582(14)$	$0.0758(7)$
C7	$0.6491(2)$	$0.5451(4)$	$0.63477(13)$	$0.0724(6)$
C8	$0.6418(3)$	$0.5693(6)$	$0.70431(16)$	$0.0995(9)$
H8	0.6728	0.4707	0.7359	0.119^{*}
C9	$0.5867(3)$	$0.7459(7)$	$0.72558(18)$	$0.1135(11)$
H9	0.5795	0.7658	0.7724	0.136^{*}
C10	$0.5424(3)$	$0.8922(6)$	$0.67926(19)$	$0.1061(10)$
H10	0.5059	$1.0092(2)$	0.6955	0.127^{*}
C11	$0.5502(2)$	$0.8714(4)$	$0.60893(15)$	$0.0847(8)$
H11	0.5206	$0.9715(4)$	0.5775	0.102^{*}
C12	$0.60455(18)$	$0.6934(4)$	$0.58821(12)$	$0.0659(6)$
C13	$0.62725(19)$	$0.6246(4)$	$0.51808(13)$	$0.0679(6)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
Si1	$0.0681(4)$	$0.0500(4)$	$0.0653(4)$	$-0.0086(3)$	$0.0081(3)$	$-0.0030(3)$
O1	$0.1094(16)$	$0.0863(13)$	$0.1218(16)$	$0.0091(12)$	$0.0198(13)$	$0.0246(12)$
O2	$0.0852(13)$	$0.1100(14)$	$0.0822(13)$	$0.0171(11)$	$-0.0001(10)$	$0.0038(10)$
N1	$0.0528(11)$	$0.0727(12)$	$0.0818(13)$	$-0.0037(9)$	$0.0134(9)$	$-0.0067(10)$
C1	$0.119(2)$	$0.0547(15)$	$0.125(2)$	$-0.0060(14)$	$0.0245(19)$	$-0.0052(15)$
C2	$0.0817(19)$	$0.113(2)$	$0.113(2)$	$-0.0169(17)$	$0.0352(17)$	$-0.0301(18)$
C3	$0.140(3)$	$0.100(2)$	$0.0790(18)$	$-0.0160(19)$	$-0.0120(18)$	$0.0127(15)$
C4	$0.0537(13)$	$0.0573(12)$	$0.0731(14)$	$-0.0078(10)$	$0.0040(10)$	$-0.0068(10)$
C5	$0.0557(14)$	$0.0794(16)$	$0.0971(18)$	$-0.0096(12)$	$0.0096(13)$	$-0.0228(13)$
C6	$0.0624(15)$	$0.0761(16)$	$0.0902(18)$	$-0.0133(13)$	$0.0135(12)$	$0.0076(14)$
C7	$0.0562(13)$	$0.0845(16)$	$0.0787(16)$	$-0.0124(12)$	$0.0180(12)$	$0.0012(13)$
C8	$0.088(2)$	$0.129(3)$	$0.0849(19)$	$-0.0080(18)$	$0.0235(15)$	$0.0079(18)$
C9	$0.091(2)$	$0.167(3)$	$0.086(2)$	$-0.014(2)$	$0.0268(18)$	$-0.025(2)$
C10	$0.078(2)$	$0.124(3)$	$0.120(3)$	$-0.0098(18)$	$0.0273(19)$	$-0.045(2)$
C11	$0.0559(14)$	$0.0910(18)$	$0.108(2)$	$-0.0047(13)$	$0.0119(13)$	$-0.0201(16)$
C12	$0.0427(11)$	$0.0765(15)$	$0.0791(15)$	$-0.0121(11)$	$0.0095(10)$	$-0.0134(13)$
C13	$0.0469(12)$	$0.0777(15)$	$0.0789(16)$	$-0.0061(11)$	$0.0040(11)$	$-0.0031(13)$

Geometric parameters ($A,{ }^{\circ}$)

Si1-C1	$1.862(2)$	C4-C5	$1.522(3)$
Si1-C2	$1.869(3)$	C4-H4A	0.9700
Si1-C4	$1.869(2)$	C4-H4B	0.9700
Si1-C3	$1.867(3)$	C5-H5A	0.9700
O1-C6	$1.212(3)$	C5-H5B	0.9700
O2-C13	$1.213(3)$	C6-C7	$1.484(4)$

N1-C6	1.394 (3)
N1-C13	1.395 (3)
N1-C5	1.457 (3)
C1-H1A	0.9600
C1-H1B	0.9600
C1-H1C	0.9600
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9600
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9600
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9600
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9600
С3-H3B	0.9600
C3-H3C	0.9600
C1-Si1-C2	110.31 (14)
C1—Si1-C4	110.45 (11)
C2—Si1-C4	107.87 (11)
C1-Si1-C3	109.30 (14)
C2-Si1-C3	110.16 (15)
C4-Si1-C3	108.73 (14)
C6-N1-C13	111.7 (2)
C6-N1-C5	123.9 (2)
C13-N1-C5	124.4 (2)
Sil-C1-H1A	109.5
Sil-C1-H1B	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{Si1}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
Sil-C2-H2A	109.5
$\mathrm{Si1}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{Si1}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
Sil-C3-H3A	109.5
Si1-C3-H3B	109.5
H3A-C3-H3B	109.5
$\mathrm{Si1}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
H3A-C3-H3C	109.5
$\mathrm{H} 3 \mathrm{~B}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
C5-C4-Si1	115.09 (15)
C5-C4-H4A	108.5
Si1-C4-H4A	108.5
C5-C4-H4B	108.5
Sil-C4-H4B	108.5
C1-Si1-C4-C5	-59.0 (2)
C2-Si1-C4-C5	-179.61 (18)

$\mathrm{C} 7-\mathrm{C} 8$	$1.371(4)$
$\mathrm{C} 7-\mathrm{C} 12$	$1.380(3)$
$\mathrm{C} 8-\mathrm{C} 9$	$1.381(5)$
$\mathrm{C} 8-\mathrm{H} 8$	0.9300
$\mathrm{C} 9-\mathrm{C} 10$	$1.367(5)$
$\mathrm{C} 9-\mathrm{H} 9$	0.9300
$\mathrm{C} 10-\mathrm{C} 11$	$1.385(4)$
$\mathrm{C} 10-\mathrm{H} 10$	0.9300
$\mathrm{C} 11-\mathrm{C} 12$	$1.380(3)$
$\mathrm{C} 11-\mathrm{H} 11$	0.9300
$\mathrm{C} 12-\mathrm{C} 13$	$1.479(3)$

H4A-C4-H4B 107.5
N 1 - C5-C4 113.77 (18)
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A} \quad 108.8$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A} \quad 108.8$
N 1 - $\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B} \quad 108.8$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B} \quad 108.8$
$\mathrm{H} 5 \mathrm{~A}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B} \quad 107.7$
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{N} 1 \quad 124.2$ (3)
O1-C6-C7 130.1 (3)
N1-C6-C7 105.8 (2)
C8-C7-C12 121.1 (2)
C8-C7-C6 130.6 (3)
C12-C7-C6 108.3 (2)
C7-C8-C9 117.3 (3)
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8 \quad 121.3$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8 \quad 121.3$
C10-C9-C8 121.4 (3)
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{H} 9 \quad 119.3$
C8-C9—H9 119.3
C9-C10-C11 122.1 (3)
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10 \quad 119.0$
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10 \quad 119.0$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12 \quad 116.1$ (3)
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{H} 11 \quad 122.0$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{H} 11 \quad 122.0$
C11-C12-C7 122.1 (2)
C11-C12-C13 129.7 (2)
C7-C12-C13 108.2 (2)
$\mathrm{O} 2-\mathrm{C} 13-\mathrm{N} 1 \quad 124.5$ (2)
$\mathrm{O} 2-\mathrm{C} 13-\mathrm{C} 12 \quad 129.5$ (2)
$\mathrm{N} 1-\mathrm{C} 13-\mathrm{C} 12 \quad 106.0$ (2)

C8-C9-C10-C11
0.1 (5)

C9-C10-C11-C12
0.5 (4)

$\mathrm{C} 3-\mathrm{Si} 1-\mathrm{C} 4-\mathrm{C} 5$	$60.9(2)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 7$	$-0.3(4)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$-80.8(3)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$-179.8(2)$
$\mathrm{C} 13-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$98.0(3)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 11$	$-0.4(3)$
$\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$-174.99(17)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 11$	$-178.9(2)$
$\mathrm{C} 13-\mathrm{N} 1-\mathrm{C} 6-\mathrm{O} 1$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 13$	$179.2(2)$	
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 6-\mathrm{O} 1$	$1.0(4)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 13$	$0.7(2)$
$\mathrm{C} 13-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7$	$1.7(2)$	$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 13-\mathrm{O} 2$	$179.6(2)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7$	$-179.43(18)$	$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 13-\mathrm{O} 2$	$0.7(3)$
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-0.2(5)$	$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 13-\mathrm{C} 12$	$-1.3(2)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-179.7(2)$	$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 13-\mathrm{C} 12$	$179.83(18)$
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 12$	$178.1(3)$	$\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 13-\mathrm{O} 2$	$-1.0(4)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 12$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{N} 1$	$179.4(2)$	
$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 13-\mathrm{N} 1$	$179.9(2)$	
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$			$0.3(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$1.0(4)$		

Hydrogen-bond geometry $\left({ }_{A},{ }^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{C} 11 — \mathrm{H} 11 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.93	2.57	$3.443(4)$	156

Symmetry code: (i) $-x+1,-y+2,-z+1$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2025).

