Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-Bromopyridine-3-carboxylic acid

R. Alan Howie, ${ }^{\text {a }}$ Raoni S. Gonçalves, ${ }^{\text {b }}$ Marcus V. N. de Souza, ${ }^{\text {b }}$ Edward R. T. Tiekink ${ }^{\text {c* }}$ and James L. Wardell ${ }^{\text {d }} \ddagger$
${ }^{\text {a }}$ Department of Chemistry, University of Aberdeen, Old Aberdeen AB15 5NY, Scotland, 'blnstituto de Tecnologia em Farmacos, Fundação Oswaldo Cruz (FIOCRUZ), Far-Manguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, ${ }^{\text {c }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil Correspondence e-mail: edward.tiekink@gmail.com

Received 26 January 2010; accepted 27 January 2010
Key indicators: single-crystal X-ray study; $T=120 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$; R factor $=0.038 ; w R$ factor $=0.093$; data-to-parameter ratio $=12.5$.

The carboxylic acid residue in the title compound, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{BrNO}_{2}$, is twisted out of the plane of the other atoms, as indicated by the $(\mathrm{Br}) \mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{O}_{\text {carbonyl }}$ torsion angle of $-20.1(9)^{\circ}$. In the crystal, supramolecular chains mediated by $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds are formed with base vector [201] and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions reinforce the packing.

Related literature

For the biological activity of N-heterocylic compounds, see: de Souza (2005); Cunico et al. (2006). For related structures, see: Wright \& King (1953); Kutoglu \& Scheringer (1983); de Souza et al. (2005); Kaiser et al. (2009). For the synthesis, see: Bradlow \& van der Werf (1949).

Experimental

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{BrNO}_{2}$
$M_{r}=202.01$
Monoclinic, $P 2_{b} / c$
$a=3.9286$ (3) A。
$b=12.9737$ (9) \AA
$c=12.8570$ (8) A
$\beta=96.695$ (4) ${ }^{\circ}$
$V=650.83(8) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=6.24 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
$0.10 \times 0.09 \times 0.08 \mathrm{~mm}$

Data collection

Nonius KappaCCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)
$T_{\text {min }}=0.453, T_{\text {max }}=0.607$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038 \quad 92$ parameters
$w R\left(F^{2}\right)=0.093 \quad \mathrm{H}$-atom parameters constrained
$S=1.06$
$\Delta \rho_{\max }=0.86 \mathrm{e}^{\AA^{-3}}$
1147 reflections

7699 measured reflections 1147 independent reflections 882 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.070$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N}^{\mathrm{i}}$	0.84	1.85	$2.685(5)$	173
$\mathrm{C}^{\mathrm{i}}-\mathrm{H} 5 \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.95	2.39	$3.258(7)$	152
$\mathrm{C}^{\mathrm{H}} 6 \cdots \mathrm{O}^{\mathrm{iii}}$	0.95	2.47	$3.171(6)$	131
Symmetry codes:	(i) $x-1,-y+\frac{3}{2}, z-\frac{1}{2} ;$	(ii)	$-x+1, y+\frac{1}{2},-z+\frac{3}{2} ;$	(iii)
$x+1,-y+\frac{3}{2}, z+\frac{1}{2}$.				

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski \& Minor, 1997) and COLLECT; data reduction: $D E N Z O$ and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5318).

References

Bradlow, H. L. \& van der Werf, C. A. (1949). J. Org. Chem. 14, 509-515.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Cunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, G. M. A. P., Zanetta, N., de Souza, M. V. N., Freitas, I. Q., Soares, R. P. P. \& Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649-653.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Kaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. \& Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133-1140.
Kutoglu, A. \& Scheringer, C. (1983). Acta Cryst. C39, 232-234.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Souza, M. V. N. de (2005). Mini Rev. Med. Chem. 5, 1009-1017.
Souza, M. V. N. de, Wardell, S. M. S. V. \& Howie, R. A. (2005). Acta Cryst. E61, o1347-o1349.
Westrip, S. P. (2010). publCIF. In preparation.
Wright, W. B. \& King, G. S. D. (1953). Acta Cryst. 6, 305-317.

[^0]
supporting information

2-Bromopyridine-3-carboxylic acid

R. Alan Howie, Raoni S. Gonçalves, Marcus V. N. de Souza, Edward R. T. Tiekink and James L. Wardell

S1. Comment

The structure of the title compound, (I), was determined in connection with on-going studies of biological activitiess, e.g. anti-mycobacterial activity, of N-heterocyclic compounds (Cunico et al. 2006; de Souza, 2005), as we have embarked on complementary systematic structural investigations in order to ascertain supramolecular aggregation patterns (Kaiser et al., 2009).
In the molecular structure of (I), Fig. 1, the carbonyl-O2 atom is approximately syn to the bromide. The carboxylic acid residue is twisted out of the plane of the pyridine ring as seen in the value of the $\mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 7 / \mathrm{O} 1$ torsion angle of 161.1 $(5)^{\circ}$. In the crystal packing, a supramolecular chain with base vector [20 01] is formed through the agency of $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, Fig. 2 and Table 1. Additional stabilisation to the chains are afforded by $C-H \cdots \mathrm{O}_{\text {carbonyl }}$ interactions, Table 1. The chains stack into layers in the ab place and are consolidated in the crystal structure by further $C-H \cdots \mathrm{O}_{\text {carbonyl }}$ contacts, Fig. 2 \& Table 1. Similar supramolecular chains are found in the crystal structures of nicotinic acid (Wright \& King, 1953; Kutoglu \& Scheringer, 1983) as well as in 2-chloropyridine-3-carboxylic acid (de Souza et al., 2005).

S2. Experimental

A mixture of 2-bromo-3-methylpyridine $(0.77 \mathrm{~g}, 4.5 \mathrm{mmol}), \mathrm{KMnO}_{4}(0.316 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ was refluxed until the purple colour of the solution disappeared. A second portion of $\mathrm{KMnO}_{4}(0.316 \mathrm{~g})$ and water $(10 \mathrm{ml})$ were added and the reaction mixture was refluxed again until no purple colour remained. The reaction mixture was concentrated to 10 ml , acidified with concentrated hydrochloric acid, and filtered. The precipitate was washed with cold water and cold diethylether (20 ml). The yield was $0.79 \mathrm{~g}(60 \%)$, m.p. $520-523 \mathrm{~K}$; lit value $522-523 \mathrm{~K}$ (Bradlow \& van der Werf, 1949). 2Bromonicotinic acid was recrystallised from EtOH for the crystallographic study. ${ }^{1} \mathrm{H}$ NMR [500.00 MHz, DMSO-d ${ }_{6}$] δ : $8.50(1 H$, dd, $J=5.0$ and $2.0 \mathrm{~Hz}, \mathrm{H} 6), 8.13(1 H$, dd, $J=7.5$ and $2.0 \mathrm{~Hz}, \mathrm{H} 4), 7.55(1 H$, dd, $J=7.5$ and $5.0 \mathrm{~Hz}, \mathrm{H} 5), 3.44$

S3. Refinement

The C-bound H atoms were geometrically placed $(\mathrm{C}-\mathrm{H}=0.95 \AA)$ and refined as riding with $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$. The N bound H atoms were located from a difference map and refined with $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.5 \mathrm{U}_{\text {eq }}(\mathrm{N})$.

Figure 1
The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Figure 2
View of the unit cell contents in (I) highlighting the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding (orange dashed lines) leading to supramolecular chains, and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts within and between chains (blue dashed lines). Colour code: Br, olive; O, red; N, blue; C, grey; and H , green.

2-Bromopyridine-3-carboxylic acid

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{BrNO}_{2}$
$M_{r}=202.01$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=3.9286$ (3) Å
$b=12.9737$ (9) \AA
$c=12.8570(8) \AA$
$\beta=96.695(4)^{\circ}$
$V=650.83(8) \AA^{3}$
$Z=4$

Data collection

Nonius KappaCCD area-detector diffractometer
Radiation source: Enraf Nonius FR591 rotating anode
10 cm confocal mirrors monochromator
Detector resolution: 9.091 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
$F(000)=392$
$D_{\mathrm{x}}=2.062 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 24006 reflections
$\theta=2.9-27.5^{\circ}$
$\mu=6.24 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Block, colourless
$0.10 \times 0.09 \times 0.08 \mathrm{~mm}$
$T_{\text {min }}=0.453, T_{\text {max }}=0.607$
7699 measured reflections
1147 independent reflections
882 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.070$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-4 \rightarrow 4$
$k=-15 \rightarrow 15$
$l=-15 \rightarrow 13$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.093$
$S=1.06$
1147 reflections
92 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier \quad map
> Hydrogen site location: inferred from \quad neighbouring sites
> H-atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0439 P)^{2}+1.1585 P\right]$ \quad where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.86$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.62 \mathrm{e}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
Br	$0.26644(13)$	$0.59770(4)$	$0.89357(4)$	$0.0284(2)$
O 1	$-0.1485(10)$	$0.8088(3)$	$0.6204(3)$	$0.0329(9)$
H 1	-0.2563	0.7783	0.5691	0.049^{*}
O 2	$0.0225(11)$	$0.6488(3)$	$0.6647(3)$	$0.0484(12)$
N 1	$0.5499(10)$	$0.7843(3)$	$0.9471(3)$	$0.0257(10)$
C 2	$0.3563(13)$	$0.7384(4)$	$0.8676(4)$	$0.0237(11)$
C 3	$0.2287(12)$	$0.7899(4)$	$0.7756(4)$	$0.0246(11)$
C 4	$0.3069(14)$	$0.8942(4)$	$0.7698(4)$	$0.0303(12)$
H 4	0.2193	0.9327	0.7098	0.036^{*}
C 5	$0.5111(13)$	$0.9428(4)$	$0.8507(4)$	$0.0252(12)$
H 5	0.5688	1.0137	0.8461	0.030^{*}
C6	$0.6276(13)$	$0.8854(4)$	$0.9378(4)$	$0.0268(12)$
H 6	0.7679	0.9179	0.9935	0.032^{*}
C7	$0.0240(13)$	$0.7406(4)$	$0.6822(4)$	$0.0290(12)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br	$0.0342(3)$	$0.0217(3)$	$0.0277(3)$	$-0.0033(2)$	$-0.0029(2)$	$0.0016(2)$
O 1	$0.042(2)$	$0.030(2)$	$0.025(2)$	$0.0023(18)$	$-0.0059(17)$	$-0.0007(16)$
O 2	$0.072(3)$	$0.027(2)$	$0.041(2)$	$0.009(2)$	$-0.018(2)$	$-0.0066(19)$
N 1	$0.031(2)$	$0.024(2)$	$0.023(2)$	$0.0023(19)$	$0.0034(19)$	$-0.0008(19)$
C 2	$0.021(2)$	$0.024(3)$	$0.026(3)$	$0.002(2)$	$0.005(2)$	$-0.001(2)$
C 3	$0.023(3)$	$0.026(3)$	$0.024(3)$	$0.005(2)$	$0.002(2)$	$-0.003(2)$
C 4	$0.035(3)$	$0.025(3)$	$0.029(3)$	$0.003(2)$	$-0.003(2)$	$0.003(2)$

C5	$0.030(3)$	$0.020(3)$	$0.026(3)$	$-0.001(2)$	$0.003(2)$	$-0.003(2)$
C6	$0.027(3)$	$0.028(3)$	$0.024(3)$	$0.000(2)$	$-0.002(2)$	$-0.007(2)$
C7	$0.028(3)$	$0.031(3)$	$0.027(3)$	$0.003(2)$	$0.000(2)$	$0.002(2)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Br}-\mathrm{C} 2$	$1.897(5)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.392(7)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.322(6)$	$\mathrm{C} 3-\mathrm{C} 7$	$1.507(7)$
$\mathrm{O} 1-\mathrm{H} 1$	0.8400	$\mathrm{C} 4-\mathrm{C} 5$	$1.388(7)$
$\mathrm{O} 2-\mathrm{C} 7$	$1.213(6)$	$\mathrm{C} 4-\mathrm{H} 4$	0.9500
$\mathrm{~N} 1-\mathrm{C} 2$	$1.340(6)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.378(7)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.356(6)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9500
$\mathrm{C} 2-\mathrm{C} 3$	$1.400(7)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9500
		$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	119.5
$\mathrm{C} 7-\mathrm{O} 1-\mathrm{H} 1$	109.5	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$118.1(5)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6$	$118.4(4)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	121.0
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{C} 3$	$123.3(5)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	121.0
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{Br}$	$113.2(3)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$122.6(4)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Br}$	$123.5(4)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	118.7
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$116.7(5)$	$\mathrm{O} 2-\mathrm{C} 4-\mathrm{O} 1$	118.7
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 7$	$118.1(4)$	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 3$	$123.7(5)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 7$	$125.2(4)$	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 3$	$123.8(5)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$120.9(5)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 7-\mathrm{O} 2$	$112.6(4)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	119.5	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 7-\mathrm{O} 2$	$-20.1(9)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 7-\mathrm{O} 1$		$158.1(6)$	
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 7-\mathrm{O} 1$			

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{~N}^{\mathrm{i}}$	0.84	1.85	$2.685(5)$	173
$\mathrm{C} 5 — \mathrm{H} 5 \cdots 2^{\mathrm{ii}}$	0.95	2.39	$3.258(7)$	152
$\mathrm{C} 6 — \mathrm{H} 6 \cdots \mathrm{O}^{\mathrm{iii}}$	0.95	2.47	$3.171(6)$	131

Symmetry codes: (i) $x-1,-y+3 / 2, z-1 / 2$; (ii) $-x+1, y+1 / 2,-z+3 / 2$; (iii) $x+1,-y+3 / 2, z+1 / 2$.

[^0]: \ddagger Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

