

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(S_P)-Menthyl benzyl(phenyl)phosphonate

Wei-Min Wang and Chang-Qiu Zhao*

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: literabc@hotmail.com

Received 9 March 2010; accepted 12 March 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.066; wR factor = 0.170; data-to-parameter ratio = 15.0.

The title compound, $C_{23}H_{31}O_2P$, has three fully extended substituents around the P-atom chiral centre, forming an S_P configuration. The phenyl rings are inclined at a dihedral angle of 3.2 (3)°.

Related literature

For general background to phosphorus-sulfur compounds, see: Dilworth & Wheatley (2000); Chae *et al.* (1994). For alkylates of phosphorus-sulfur compounds, see: Aitken (2005).

Experimental

Crystal data $C_{23}H_{31}O_2P$ $M_r = 370.45$

Monoclinic, $P2_1$ a = 12.4777 (11) Å b = 5.7970 (7) Å c = 15.4190 (19) Å $\beta = 100.727 (1)^{\circ}$ $V = 1095.8 (2) \text{ Å}^{3}$ Z = 2

Data collection

```
Siemens SMART CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T_{\rm min} = 0.943, T_{\rm max} = 0.986
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.066$ $wR(F^2) = 0.170$ S = 0.893576 reflections 238 parameters 1 restraint H-atom parameters constrained $\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.23 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983),

1432 Friedel pairs

Flack parameter: -0.17 (16)

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We acknowledge the financial support of the Natural Science Foundation of China (No. 20772055).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2269).

References

Aitken, R. A. (2005). Comprehensive Organic Functional Group Transformations II, pp. 539–573. Amsterdam:Elsevier

Chae, M. Y., Postula, J. F. & Raushel, F. M. (1994). Bioorg. Med. Chem. Lett. 4, 1473–1478.

Dilworth, J. R. & Wheatley, N. (2000). Coord. Chem. Rev. 199, 89–158.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Mo $K\alpha$ radiation

 $0.43 \times 0.11 \times 0.10 \text{ mm}$

5541 measured reflections

3576 independent reflections 2596 reflections with $I > 2\sigma(I)$

 $\mu = 0.14 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int}=0.085$

supporting information

Acta Cryst. (2010). E66, o863 [doi:10.1107/S1600536810009372]

(S_P)-Menthyl benzyl(phenyl)phosphonate

Wei-Min Wang and Chang-Qiu Zhao

S1. Comment

Phosphorus-sulfur compounds, especially P-chiral, have extensive applications (Dilworth *et al.* 2000; Chae *et al.* 1994), wherein their alkylates are of significant senes, for example, they usually act as common ligands (Aitken *et al.* 2005). The title compound is a P-chiral compounds, which can be synthesized by (R_p)-O-menthyl S-ethyl phenylphosphonothioate and benzylmagnesium chloride. The compound is comprised of fully extended substituents: phenyl, menthyloxy and benzyl, and O atom which form a irregular tetrahedron, (Table 1). The phenyl rings makes a dihedral angle of 3.2 (3)°.The six-membered menthyloxy ring is in a chair conformation. The molecular structure is stabilized by a intramolecular C—H··· O hydrogen bond [C···O =2.893 (5) Å , C—H··· O =104°]. There are no further significant intermolecular interactions.

S2. Experimental

 (R_p) -O-menthyl *S*-ethyl phenylphosphonothioate (0.3 mmol) was added to a stirred ether solution of benzylmagnesium chloride (0.6 mmol) in a Schlenk tube under nitrogen and the mixture was stirred for 24 h at room temperature. After washing with water, the resulting solution was purified by silica gel plate to afford optically pure product. The crystal suitable for X-ray diffraction was obtained from recrystallization with ethyl ether/hexane.

S3. Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93-0.98 Å, with $U_{iso}(H) = 1.5 U_{eq}(methyl)$ and $U_{iso}(H) = 1.2 U_{eq}(C)$ for all other H atoms.

Figure 1

The molecular structure of the compound. H atoms have been omitted for clarity.

(S_P)-Menthyl benzyl(phenyl)phosphonate

Crystal data

C₂₃H₃₁O₂P $M_r = 370.45$ Monoclinic, P2₁ Hall symbol: P 2yb a = 12.4777 (11) Å b = 5.7970 (7) Å c = 15.4190 (19) Å $\beta = 100.727 (1)^{\circ}$ $V = 1095.8 (2) \text{ Å}^{3}$ Z = 2

Data collection

Siemens SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.943, T_{\max} = 0.986$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.066$ $wR(F^2) = 0.170$ S = 0.89 F(000) = 400 $D_x = 1.123 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1629 reflections $\theta = 2.7-25.0^{\circ}$ $\mu = 0.14 \text{ mm}^{-1}$ T = 298 KBlock, colorless $0.43 \times 0.11 \times 0.10 \text{ mm}$

5541 measured reflections 3576 independent reflections 2596 reflections with $I > 2\sigma(I)$ $R_{int} = 0.085$ $\theta_{max} = 25.0^\circ, \ \theta_{min} = 1.3^\circ$ $h = -14 \rightarrow 14$ $k = -6 \rightarrow 6$ $l = -15 \rightarrow 18$

3576 reflections238 parameters1 restraintPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$(\Delta/\sigma)_{\rm max} < 0.001$
map	$\Delta ho_{ m max} = 0.28 \ { m e} \ { m \AA}^{-3}$
Hydrogen site location: inferred from	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$
neighbouring sites	Absolute structure: Flack (1983), 1432 Friedel
H-atom parameters constrained	pairs
$w = 1/[\sigma^2(F_o^2) + (0.1052P)^2]$	Absolute structure parameter: -0.17 (16)
where $P = (F_0^2 + 2F_c^2)/3$	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
P1	0.14134 (8)	0.32764 (18)	0.12780 (6)	0.0440 (3)	
01	0.2011 (2)	0.2676 (5)	0.22583 (18)	0.0495 (7)	
O2	0.1092 (2)	0.5709 (5)	0.11455 (18)	0.0539 (8)	
C1	0.2811 (3)	0.3635 (8)	0.3776 (3)	0.0513 (11)	
H1	0.3316	0.2327	0.3810	0.062*	
C2	0.2606 (3)	0.4484 (9)	0.2817 (3)	0.0494 (10)	
H2	0.2140	0.5856	0.2776	0.059*	
C3	0.3653 (4)	0.5136 (9)	0.2527 (3)	0.0604 (13)	
H3A	0.3492	0.5651	0.1918	0.072*	
H3B	0.4119	0.3788	0.2556	0.072*	
C4	0.4259 (4)	0.7041 (10)	0.3099 (3)	0.0736 (15)	
H4	0.3776	0.8387	0.3045	0.088*	
C5	0.4456 (4)	0.6286 (13)	0.4061 (3)	0.0831 (17)	
H5A	0.4964	0.5004	0.4142	0.100*	
H5B	0.4786	0.7548	0.4430	0.100*	
C6	0.3419 (4)	0.5571 (10)	0.4352 (3)	0.0694 (14)	
H6A	0.2942	0.6901	0.4329	0.083*	
H6B	0.3590	0.5049	0.4959	0.083*	
C7	0.1778 (4)	0.2749 (10)	0.4090 (3)	0.0665 (14)	
H7	0.1455	0.1554	0.3672	0.080*	
C8	0.0910 (5)	0.4614 (15)	0.4086 (4)	0.104 (2)	
H8A	0.0268	0.3938	0.4239	0.157*	
H8B	0.0731	0.5286	0.3508	0.157*	
H8C	0.1187	0.5787	0.4508	0.157*	
C9	0.2060 (5)	0.1607 (12)	0.4997 (3)	0.0865 (18)	
H9A	0.2317	0.2756	0.5435	0.130*	
H9B	0.2620	0.0472	0.4992	0.130*	
H9C	0.1422	0.0876	0.5134	0.130*	
C10	0.5316 (5)	0.7791 (15)	0.2790 (4)	0.113 (3)	
H10A	0.5812	0.6511	0.2838	0.170*	
H10B	0.5649	0.9037	0.3153	0.170*	
H10C	0.5143	0.8289	0.2186	0.170*	
C11	0.2347 (3)	0.2350 (7)	0.0575 (3)	0.0445 (10)	
C12	0.2528 (4)	0.3793 (9)	-0.0106 (3)	0.0615 (14)	
H12	0.2167	0.5200	-0.0204	0.074*	
C13	0.3260 (4)	0.3096 (13)	-0.0641 (3)	0.0790 (15)	
H13	0.3387	0.4050	-0.1097	0.095*	
C14	0.3790 (4)	0.1029 (11)	-0.0502 (4)	0.0762 (15)	

H14	0.4277	0.0581	-0.0859	0.091*
C15	0.3601 (4)	-0.0387 (11)	0.0170 (4)	0.0776 (15)
H15	0.3964	-0.1791	0.0267	0.093*
C16	0.2876 (4)	0.0258 (9)	0.0701 (3)	0.0652 (13)
H16	0.2744	-0.0724	0.1146	0.078*
C17	0.0306 (3)	0.1248 (8)	0.1089 (3)	0.0511 (10)
H17A	-0.0110	0.1479	0.0498	0.061*
H17B	0.0603	-0.0303	0.1117	0.061*
C18	-0.0457 (3)	0.1452 (8)	0.1747 (3)	0.0490 (10)
C19	-0.1144 (4)	0.3305 (10)	0.1742 (3)	0.0668 (12)
H19	-0.1153	0.4478	0.1329	0.080*
C20	-0.1828 (4)	0.3417 (13)	0.2360 (4)	0.0828 (16)
H20	-0.2284	0.4684	0.2363	0.099*
C21	-0.1837 (5)	0.1675 (13)	0.2966 (4)	0.0861 (18)
H21	-0.2302	0.1752	0.3371	0.103*
C22	-0.1159 (5)	-0.0153 (12)	0.2966 (4)	0.0910 (19)
H22	-0.1155	-0.1324	0.3379	0.109*
C23	-0.0479 (4)	-0.0298 (10)	0.2365 (3)	0.0689 (13)
H23	-0.0028	-0.1576	0.2369	0.083*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0524 (5)	0.0365 (6)	0.0430 (5)	0.0020 (6)	0.0084 (4)	-0.0002 (5)
O1	0.0601 (16)	0.0395 (19)	0.0464 (15)	0.0000 (13)	0.0034 (12)	-0.0034 (12)
O2	0.0638 (16)	0.0401 (18)	0.0577 (18)	0.0061 (15)	0.0106 (14)	-0.0018 (13)
C1	0.054 (2)	0.055 (3)	0.044 (2)	0.005 (2)	0.0090 (17)	-0.002(2)
C2	0.052 (2)	0.048 (3)	0.047 (2)	0.003 (2)	0.0061 (19)	-0.008(2)
C3	0.067 (3)	0.068 (4)	0.047 (2)	-0.007(2)	0.012 (2)	0.000(2)
C4	0.069 (3)	0.087 (4)	0.064 (3)	-0.018 (3)	0.009 (2)	-0.013 (3)
C5	0.074 (3)	0.114 (5)	0.058 (3)	-0.023 (3)	0.004 (2)	-0.015 (3)
C6	0.066 (3)	0.090 (4)	0.052 (3)	-0.009(3)	0.011 (2)	-0.014 (3)
C7	0.078 (3)	0.078 (4)	0.047 (2)	-0.008 (3)	0.022 (2)	-0.005 (2)
C8	0.075 (3)	0.136 (6)	0.107 (5)	0.023 (4)	0.031 (3)	0.026 (4)
C9	0.111 (4)	0.089 (5)	0.067 (4)	-0.004 (4)	0.036 (3)	0.001 (3)
C10	0.101 (4)	0.152 (8)	0.089 (4)	-0.061 (5)	0.022 (3)	-0.019 (5)
C11	0.047 (2)	0.042 (3)	0.044 (2)	-0.0032 (18)	0.0047 (17)	0.0013 (17)
C12	0.067 (3)	0.062 (4)	0.058 (3)	0.002 (2)	0.017 (2)	0.006 (2)
C13	0.088 (3)	0.091 (4)	0.066 (3)	-0.005 (4)	0.034 (3)	0.006 (4)
C14	0.070 (3)	0.080 (4)	0.087 (4)	-0.008 (3)	0.037 (3)	-0.020 (3)
C15	0.075 (3)	0.058 (3)	0.107 (4)	0.010 (3)	0.032 (3)	-0.007 (3)
C16	0.070 (3)	0.056 (3)	0.075 (3)	0.008 (3)	0.029 (3)	0.008 (2)
C17	0.057 (2)	0.046 (3)	0.049 (2)	0.004 (2)	0.0082 (19)	-0.0035 (19)
C18	0.055 (2)	0.043 (3)	0.048 (2)	-0.005 (2)	0.0085 (18)	-0.0033 (19)
C19	0.070 (3)	0.056 (3)	0.076 (3)	0.010 (3)	0.017 (2)	0.009 (3)
C20	0.069 (3)	0.084 (4)	0.100 (4)	0.003 (3)	0.028 (3)	-0.013 (4)
C21	0.078 (4)	0.103 (5)	0.088 (4)	-0.013 (4)	0.041 (3)	-0.007 (4)
C22	0.112 (5)	0.088 (5)	0.082 (4)	-0.012 (4)	0.042 (3)	0.018 (4)

					supporting information		
C23	0.085 (3)	0.053 (3)	0.072 (3)	-0.002 (3)	0.025 (3)	0.013 (3)	
Geome	tric parameters ((Å, °)					
P1-0	2	1.470 (3)	С9—Н9С		0.9600	
P1—0	1	1.595 (3)	C10—H10A		0.9600	
P1—C	17	1.796 (4	·)	C10—H10B		0.9600	
P1—C	11	1.814 (4) .)	C10—H10C		0.9600	
01—C	2	1.467 (5)	C11—C16		1.377 (6)	
C1—C	2	1.533 (5		C11—C12		1.394 (6)	
C1—C	6	1.540 (6	$\tilde{\mathbf{D}}$	C12—C13		1.400 (7)	
C1—C	7	1.548 (6)	C12—H12		0.9300	
С1—Н	1	0.9800	/	C13—C14		1.366 (8)	
С2—С	3	1.507 (6		С13—Н13		0.9300	
С2—Н	2	0.9800	/	C14—C15		1.377 (8)	
С3—С	4	1.524 (7)	C14—H14		0.9300	
С3—Н	3A	0.9700	/	C15—C16		1.380 (7)	
С3—Н	3B	0.9700		C15—H15		0.9300	
C4—C	5	1.522 (7)	C16—H16		0.9300	
C4—C	10	1.546 (7)	C17—C18		1.519 (6)	
С4—Н	4	0.9800	/	C17—H17A		0.9700	
С5—С	6	1.504 (7)	C17—H17B		0.9700	
С5—Н	5A	0.9700	/	C18—C19		1.374 (6)	
С5—Н	5B	0.9700		C18—C23		1.396 (6)	
С6—Н	6A	0.9700		C19—C20		1.395 (7)	
С6—Н	6B	0.9700		C19—H19		0.9300	
С7—С	8	1.529 (8)	C20—C21		1.377 (9)	
C7—C	9	1.528 (7)	C20—H20		0.9300	
С7—Н	7	0.9800	, ,	C21—C22		1.356 (9)	
С8—Н	8A	0.9600		C21—H21		0.9300	
С8—Н	8B	0.9600		C22—C23		1.370(7)	
С8—Н	8C	0.9600		C22—H22		0.9300	
С9—Н	9A	0.9600		С23—Н23		0.9300	
С9—Н	9B	0.9600					
O2—P	1—01	114.13 (15)	С7—С9—Н9А		109.5	
O2—P	1—C17	115.1 (2)	С7—С9—Н9В		109.5	
O1—P	1—C17	102.76 (18)	H9A—C9—H9B		109.5	
O2—P	1—C11	112.96 (18)	С7—С9—Н9С		109.5	
O1—P	1—C11	105.23 ((17)	Н9А—С9—Н9С		109.5	
C17—I	P1—C11	105.6 (2)	Н9В—С9—Н9С		109.5	
С2—О	1—P1	119.8 (3)	C4—C10—H10A		109.5	
С2—С	1—C6	107.3 (4)	C4—C10—H10B		109.5	
С2—С	1—C7	114.1 (3)	H10A—C10—H10B	;	109.5	
С6—С	1—C7	114.2 (4)	C4—C10—H10C		109.5	
С2—С	1—H1	106.9		H10A—C10—H10C		109.5	
С6—С	1—H1	106.9		H10B—C10—H10C		109.5	
С7—С	1—H1	106.9		C16—C11—C12		119.6 (4)	

O1—C2—C3	112.1 (3)	C16—C11—P1	121.4 (3)
O1—C2—C1	108.2 (4)	C12—C11—P1	119.0 (3)
C3—C2—C1	111.6 (3)	C11—C12—C13	119.1 (5)
O1—C2—H2	108.3	C11—C12—H12	120.5
С3—С2—Н2	108.3	C13—C12—H12	120.5
C1—C2—H2	108.3	C14—C13—C12	120.7 (5)
C2—C3—C4	111.9 (4)	C14—C13—H13	119.7
С2—С3—НЗА	109.2	С12—С13—Н13	119.7
С4—С3—НЗА	109.2	C13—C14—C15	119.7 (5)
С2—С3—Н3В	109.2	C13—C14—H14	120.2
С4—С3—Н3В	109.2	C15—C14—H14	120.2
НЗА—СЗ—НЗВ	107.9	C14—C15—C16	120.5 (6)
C5—C4—C3	109.2 (5)	C14—C15—H15	119.7
C5—C4—C10	112.9 (4)	C16—C15—H15	119.7
C3—C4—C10	112.6 (5)	C11—C16—C15	120.4 (5)
C5—C4—H4	107.3	C11—C16—H16	119.8
C3—C4—H4	107.3	C15—C16—H16	119.8
C10—C4—H4	107.3	C18—C17—P1	113.5 (3)
C6—C5—C4	112.2 (4)	C18—C17—H17A	108.9
С6—С5—Н5А	109.2	P1—C17—H17A	108.9
C4—C5—H5A	109.2	C18—C17—H17B	108.9
С6—С5—Н5В	109.2	P1—C17—H17B	108.9
C4—C5—H5B	109.2	H17A—C17—H17B	107.7
H5A—C5—H5B	107.9	C19—C18—C23	118.7 (4)
C5—C6—C1	112.8 (4)	C19—C18—C17	121.7 (4)
С5—С6—Н6А	109.0	C23—C18—C17	119.6 (4)
С1—С6—Н6А	109.0	C18—C19—C20	119.6 (5)
С5—С6—Н6В	109.0	C18—C19—H19	120.2
С1—С6—Н6В	109.0	С20—С19—Н19	120.2
H6A—C6—H6B	107.8	C21—C20—C19	120.9 (6)
C8—C7—C9	110.6 (4)	C21—C20—H20	119.6
C8—C7—C1	113.2 (5)	C19—C20—H20	119.6
C9—C7—C1	111.5 (4)	C22—C21—C20	119.3 (5)
С8—С7—Н7	107.0	C22—C21—H21	120.4
С9—С7—Н7	107.0	C20—C21—H21	120.4
С1—С7—Н7	107.0	C21—C22—C23	120.8 (5)
С7—С8—Н8А	109.5	C21—C22—H22	119.6
С7—С8—Н8В	109.5	С23—С22—Н22	119.6
H8A—C8—H8B	109.5	C22—C23—C18	120.7 (5)
С7—С8—Н8С	109.5	С22—С23—Н23	119.6
H8A—C8—H8C	109.5	C18—C23—H23	119.6
H8B—C8—H8C	109.5		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
С7—Н7…О1	0.98	2.49	2.893 (5)	104