organic compounds

Acta Crystallographica Section E **Structure Reports** Online

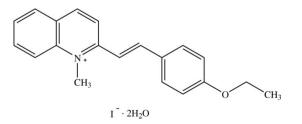
ISSN 1600-5368

2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1methylquinolinium iodide dihydrate

Hoong-Kun Fun,^a*‡ Kullapa Chanawanno,^b Thawanrat Kobkeatthawin^b and Suchada Chantrapromma^b§

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malavsia, and ^bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand

Correspondence e-mail: hkfun@usm.my


Received 12 March 2010; accepted 21 March 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.013 Å; R factor = 0.074; wR factor = 0.211; data-to-parameter ratio = 17.8.

In the title compound, $C_{20}H_{20}NO^+ \cdot I^- \cdot 2H_2O$, the cation is almost planar (r.m.s. deviation = 0.038 Å) and exists in an E configuration. The dihedral angle between the quinolinium ring system and the benzene ring is $0.7 (4)^{\circ}$. In the crystal structure, the cations are stacked in an anti-parallel manner along [100] with $\pi - \pi$ interactions between the pyridinium and ethoxybenzene [centroid-centroid rings distance 3.678 (5) Å]. The cations, iodide anions and water molecules are linked together through O-H···O, O-H···I and C-H...I hydrogen bonds into a two-dimensional network parallel to (001).

Related literature

For background to non-linear optical materials research, see: Kagawa et al. (1994); Williams (1984). For the antibacterial activity of quinoline derivatives, see: Hopkins et al. (2005); Kaminsky & Meltzer (1968); Musiol et al. (2006); O'Donnell et al. (2010). For a related structure, see: Laksana et al. (2008). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

[‡] Thomson Reuters ResearcherID: A-3561-2009.

Crystal data

 $C_{20}H_{20}NO^{+}\cdot I^{-}\cdot 2H_{2}O$ $\gamma = 71.272 \ (2)^{\circ}$ V = 961.21 (19) Å³ $M_r = 453.30$ Z = 2Triclinic, P1 a = 8.2450 (9) Å b = 10.6676 (12) Å c = 12.2492 (14) Å $T = 100 {\rm K}$ $\alpha = 85.789 (2)^{\circ}$ $\beta = 70.516$ (2)

Data collection

Bruker APEX DUO CCD areadetector diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2009) $T_{\min} = 0.493, T_{\max} = 0.927$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.074$ $wR(F^2) = 0.211$ S = 1.153910 reflections 220 parameters

Mo $K\alpha$ radiation $\mu = 1.68 \text{ mm}^{-1}$ $0.49 \times 0.08 \times 0.05 \; \text{mm}$

11172 measured reflections 3910 independent reflections 3551 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.033$

20 restraints
H-atom parameters constrained
$\Delta \rho_{\rm max} = 2.43 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.85 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O2W−H1W2···O1W	0.83	1.99	2.711 (11)	143
$O1W - H2W1 \cdots I1^{i}$	0.84	2.77	3.588 (7)	163
$O2W - H2W2 \cdot \cdot \cdot I1^{ii}$	0.84	2.87	3.579 (7)	144
$C2-H2A\cdots I1^{iii}$	0.93	3.02	3.814 (10)	145
$C7-H7A\cdots I1^{i}$	0.93	2.89	3.708 (10)	148
Symmetry codes: (i)	-x, -y + 1, -x + 1	-z + 1; (ii)	-x + 1, -y + 1	-z + 1; (iii)

-x, -v + 2, -z + 1.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors thank the Prince of Songkla University for the research grant. They also thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. KC thanks the Development and Promotion of Science and Technology Talents Project for a fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5058).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Hopkins, K. L., Davies, R. H. & Threfall, E. J. (2005). Int. J. Antimicrob. Agents. 25, 358-373.

[§] Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

- Kagawa, K., Sagawa, M., Kakuta, A., Saji, M., Nakayama, H. & Ishii, K. (1994). J. Cryst. Growth, **139**, 309–318.
- Kaminsky, D. & Meltzer, R. I. (1968). J. Med. Chem. 11, 160-163.
- Laksana, C., Ruanwas, P., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, 0145–0146.
- Musiol, R., Jampilek, J., Buchta, V., Silva, L., Halina, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). *Bioorg. Med. Chem.* 14, 3592–3598.
- O'Donnell, F., Smyth, T. J. P., Ramachandran, V. N. & Smyth, W. F. (2010). *Int. J. Antimicrob. Agents*, **35**, 30–38.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155.
- Williams, D. J. (1984). Angew. Chem. Int. Ed. Engl. 23, 690-703.

supporting information

Acta Cryst. (2010). E66, o938-o939 [doi:10.1107/S1600536810010548]

2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolinium iodide dihydrate

Hoong-Kun Fun, Kullapa Chanawanno, Thawanrat Kobkeatthawin and Suchada Chantrapromma

S1. Comment

Organic crystals are highly recognized as materials of the future because their molecular nature combined with versatility of synthetic chemistry can be used to alter their structures in order to maximize the nonlinear optical (NLO) properties (Kagawa *et al.*, 1994). The title quinolinium salt, (I), was synthesized in order to study its NLO properties. In addition, quinolinium derivatives were found to exhibit interesting bioactivities and pharmacological activities (Hopkins *et al.*, 2005; Kaminsky & Meltzer, 1968; Musiol *et al.*, 2006; O'Donnell *et al.*, 2010). Due to the well-known bioactivities of quinoline core, the antibacterial activities of (I) were also evaluated. Our results show that (I) is very active against the Methicillin-Resistant *Staphylococcus aureus* with a very low MIC value of 2.34 μ g/ml, whereas it is inactive against the Gram-negative bacteria *i.e. Pseudomonas aeruginosa*, *Salmonella typhi* and *Shigella sonnei*. Nevertheless (I) did not possess NLO properties since it crystallized in the centrosymmetric triclinic P-1 space group (Williams, 1984).

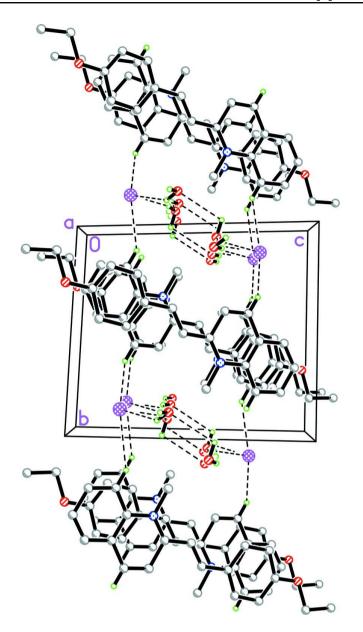
In the title compound (Fig. 1), the cation exists in an *E* configuration with respect to the ethenyl bond [torsion angle C9 -C10-C11-C12 = -178.2 (8)°]. The cation is almost planar with a dihedral angle between the N1/C1-C9 quinolinium and C12-C17 benzene rings of 0.7 (4)°. The ethoxy unit is coplanar with the attached benzene ring with a C15-O1-C18-C19 torsion angle of 179.9 (6)°. Bond distances in the cation have normal values (Allen *et al.*, 1987) and are comparable to those observed in a related structure (Laksana *et al.*, 2008).

In the crystal, the cations are arranged into layers parallel to the (100) and stacked in anti-parallel manner along the *a* axis with π - π interactions involving the quinolinium ring system and benzene ring [Cg1...Cg2ⁱⁱ = 3.678 (5) Å; symmetry code as in Table 1; Cg1 and Cg2 are centroids of the N1/C1/C6–C9 and C12–C17 rings, respectively]. The I⁻ ions and water molecules are located in the interstitial sites of the cations. The cations, I⁻ anions and water molecules are linked together through O—H...O, O—H...I and C—H...I hydrogen bonds (Table 1) into a two-dimensional network parallel to the (001) (Fig. 2).

S2. Experimental

The title compound was prepared by mixing a solution (1:1:1 mole ratio) of 1,2-dimethylquinolinium iodide (2.00 g, 7.0 mmol), 4-ethoxybenzaldehyde (4.32 ml, 7.0 mmol) and piperidine (0.69 ml, 7.0 mmol) in hot methanol (50 ml). The resulting solution was refluxed for 6 h under nitrogen atmosphere. The resultant orange-brown solid was filtered, washed with diethyl ether, dried in vacuo and purified by recrystallization. Brown needle-shaped single crystals of the title compound suitable for X-ray structure determination were obtained from methanol solution by slow evaporation at room temperature after several days (m.p. 492-494 K).

S3. Refinement


The water H atoms were initially located in a difference map and were refined with O–H and H…H distance restraints of 0.84 (1) and 1.37 (2) Å, respectively. During the final stages of the refinement they were allowed to ride on their parent O

atoms with $U_{iso}(H) = 1.5U_{eq}(O)$. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C-H = 0.93 Å (aromatic) and 0.96 Å (CH₃). The U_{iso} values were constrained to be $1.5U_{eq}$ of the carrier atom for methyl H atoms and $1.2U_{eq}$ for the remaining H atoms. The U_{ij} components of atoms C1, C6 and C9 were restrained to approximate isotropic behaviour. A rigid bond restraint with an s.u. of 0.01 was applied to the atomic displacement parameters of atoms C2 and C3 (also C12 and C17), because the components of the displacement parameters in the direction of the bond between these atoms were slightly inconsistent. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 1.17 Å from I1 and the deepest hole is located at 1.46 Å from C11.

Figure 1

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

The crystal packing of the title compound, viewed down the *a* axis. H atom not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolinium iodide dihydrate

Crystal data	
$C_{20}H_{20}NO^+ \cdot I^- \cdot 2H_2O$	$\gamma = 71.272 \ (2)^{\circ}$
$M_r = 453.30$	$V = 961.21 (19) \text{ Å}^3$
Triclinic, $P\overline{1}$	Z = 2
Hall symbol: -P 1	F(000) = 456
a = 8.2450 (9) Å	$D_{\rm x} = 1.566 {\rm ~Mg} {\rm ~m}^{-3}$
b = 10.6676 (12) Å	Melting point = $492-494$ K
c = 12.2492 (14) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
$\alpha = 85.789 \ (2)^{\circ}$	Cell parameters from 3910 reflections
$\beta = 70.516 \ (2)^{\circ}$	$\theta = 1.8 - 26.5^{\circ}$

 $\mu = 1.68 \text{ mm}^{-1}$ T = 100 K

Data collection

Dula collection	
Bruker APEX DUO CCD area-detector	11172 measured reflections
diffractometer	3910 independent reflections
Radiation source: sealed tube	3551 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.033$
φ and ω scans	$\theta_{\rm max} = 26.5^{\circ}, \theta_{\rm min} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(SADABS; Bruker, 2009)	$k = -13 \rightarrow 12$
$T_{\min} = 0.493, \ T_{\max} = 0.927$	$l = -15 \rightarrow 15$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.074$	Hydrogen site location: inferred from
$wR(F^2) = 0.211$	neighbouring sites
S = 1.15	H-atom parameters constrained
3910 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1163P)^2 + 8.5465P]$
220 parameters	where $P = (F_o^2 + 2F_c^2)/3$
20 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$

20 restraints Primary atom site location: structure-invariant direct methods

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

 $\Delta \rho_{\text{max}} = 2.43 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.85 \ {\rm e} \ {\rm \AA}^{-3}$

Needle, brown

 $0.49 \times 0.08 \times 0.05 \text{ mm}$

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
I1	0.20275 (7)	0.86454 (5)	0.22772 (4)	0.0286 (2)
01	1.0063 (6)	0.2957 (5)	0.0164 (4)	0.0164 (10)
N1	0.0190 (9)	0.6541 (6)	0.6219 (5)	0.0208 (13)
C1	-0.1326 (9)	0.6672 (8)	0.7248 (6)	0.0217 (11)
C2	-0.2476 (13)	0.7907 (9)	0.7709 (8)	0.0326 (19)
H2A	-0.2303	0.8675	0.7351	0.039*
C3	-0.3924 (12)	0.7963 (10)	0.8742 (9)	0.040 (2)
H3A	-0.4731	0.8783	0.9064	0.048*
C4	-0.4171 (11)	0.6817 (11)	0.9290 (7)	0.034 (2)
H4A	-0.5106	0.6869	0.9985	0.041*
C5	-0.3070 (14)	0.5671 (11)	0.8815 (8)	0.040 (2)
H5A	-0.3259	0.4904	0.9167	0.048*

C6	-0.1606 (11)	0.5559 (9)	0.7787 (8)	0.0286 (18)
C7	-0.0408 (12)	0.4278 (9)	0.7286 (8)	0.0314 (18)
H7A	-0.0604	0.3517	0.7646	0.038*
C8	0.0966 (11)	0.4172 (8)	0.6319 (8)	0.0317 (19)
H8A	0.1738	0.3342	0.6002	0.038*
C9	0.1275 (9)	0.5398 (8)	0.5737 (6)	0.0217 (11)
C10	0.2787 (10)	0.5185 (8)	0.4684 (6)	0.0237 (15)
H10A	0.2917	0.5939	0.4280	0.028*
C11	0.4004 (11)	0.4063 (9)	0.4220 (7)	0.0298 (17)
H11A	0.3834	0.3316	0.4622	0.036*
C12	0.5632 (11)	0.3792 (10)	0.3141 (7)	0.0322 (19)
C13	0.6568 (11)	0.2555 (10)	0.2820 (7)	0.0325 (19)
H13A	0.6225	0.1887	0.3276	0.039*
C14	0.8067 (11)	0.2211 (9)	0.1813 (7)	0.0267 (16)
H14A	0.8703	0.1327	0.1590	0.032*
C15	0.8592 (9)	0.3215 (7)	0.1150 (6)	0.0155 (13)
C16	0.7674 (10)	0.4541 (8)	0.1450 (6)	0.0225 (15)
H16A	0.8050	0.5203	0.1003	0.027*
C17	0.6132 (11)	0.4851 (9)	0.2471 (7)	0.0308 (18)
H17A	0.5457	0.5728	0.2702	0.037*
C18	1.0977 (11)	0.1578 (8)	-0.0216 (7)	0.0251 (16)
H18A	1.0150	0.1195	-0.0369	0.030*
H18B	1.1423	0.1076	0.0375	0.030*
C19	1.2542 (11)	0.1552 (10)	-0.1316 (7)	0.037 (2)
H19A	1.3064	0.0676	-0.1668	0.055*
H19B	1.3445	0.1797	-0.1130	0.055*
H19C	1.2106	0.2166	-0.1845	0.055*
C20	0.0510 (12)	0.7731 (9)	0.5679 (8)	0.0340 (19)
H20A	0.1758	0.7529	0.5203	0.051*
H20B	0.0235	0.8385	0.6267	0.051*
H20C	-0.0252	0.8067	0.5209	0.051*
O1W	0.2568 (8)	0.0771 (7)	0.5862 (6)	0.0385 (15)
H1W1	0.3030	-0.0003	0.6046	0.058*
H2W1	0.1437	0.0966	0.6162	0.058*
O2W	0.5594 (9)	0.1337 (7)	0.5759 (5)	0.0335 (14)
H1W2	0.4515	0.1362	0.6067	0.050*
H2W2	0.6181	0.0959	0.6196	0.050*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.0254 (3)	0.0302 (3)	0.0278 (3)	-0.0099 (2)	-0.0040 (2)	-0.0019 (2)
01	0.014 (2)	0.013 (2)	0.014 (2)	0.0002 (18)	0.0023 (18)	-0.0053 (18)
N1	0.025 (3)	0.021 (3)	0.018 (3)	-0.006 (2)	-0.011 (2)	0.001 (2)
C1	0.015 (2)	0.042 (3)	0.011 (2)	-0.010 (2)	-0.0062 (18)	-0.005 (2)
C2	0.042 (5)	0.033 (5)	0.041 (5)	-0.021 (4)	-0.029 (4)	0.016 (4)
C3	0.029 (4)	0.039 (5)	0.052 (5)	0.009 (4)	-0.026 (4)	-0.027 (4)
C4	0.021 (4)	0.071 (7)	0.014 (4)	-0.022(4)	-0.001(3)	-0.004 (4)

C5	0.055 (6)	0.054 (6)	0.035 (5)	-0.035 (5)	-0.032 (5)	0.020 (5)
C6	0.023 (3)	0.035 (4)	0.036 (4)	-0.003 (3)	-0.023 (3)	-0.010 (3)
C7	0.035 (4)	0.034 (5)	0.033 (5)	-0.017 (4)	-0.016 (4)	0.011 (4)
C8	0.025 (4)	0.019 (4)	0.048 (5)	-0.001 (3)	-0.012 (4)	-0.012 (4)
C9	0.015 (2)	0.042 (3)	0.011 (2)	-0.010 (2)	-0.0062 (18)	-0.005 (2)
C10	0.018 (3)	0.032 (4)	0.018 (3)	-0.004 (3)	-0.003 (3)	-0.007 (3)
C11	0.028 (4)	0.033 (5)	0.024 (4)	-0.008 (3)	-0.004 (3)	0.000 (3)
C12	0.026 (4)	0.058 (6)	0.013 (3)	-0.013 (4)	-0.008 (3)	0.004 (3)
C13	0.024 (4)	0.049 (6)	0.019 (4)	-0.014 (4)	0.001 (3)	0.005 (4)
C14	0.022 (4)	0.038 (5)	0.019 (4)	-0.010 (3)	-0.006 (3)	0.007 (3)
C15	0.010 (3)	0.023 (4)	0.014 (3)	-0.006 (3)	-0.004 (2)	-0.002 (3)
C16	0.018 (3)	0.025 (4)	0.019 (4)	0.005 (3)	-0.009 (3)	-0.007 (3)
C17	0.027 (4)	0.035 (5)	0.026 (4)	0.006 (3)	-0.014 (3)	-0.016 (3)
C18	0.027 (4)	0.017 (4)	0.024 (4)	0.006 (3)	-0.010 (3)	-0.009 (3)
C19	0.025 (4)	0.047 (6)	0.024 (4)	0.008 (4)	-0.006 (3)	-0.017 (4)
C20	0.031 (4)	0.034 (5)	0.026 (4)	-0.005 (3)	-0.003 (3)	0.007 (4)
O1W	0.016 (3)	0.057 (4)	0.034 (3)	-0.007 (3)	0.000 (2)	-0.007 (3)
O2W	0.043 (3)	0.047 (4)	0.023 (3)	-0.026 (3)	-0.015 (3)	0.001 (3)

Geometric parameters (Å, °)

01—C15	1.365 (8)	C11—H11A	0.93
O1-C18	1.450 (9)	C12—C13	1.308 (14)
N1-C9	1.300 (10)	C12—C17	1.435 (14)
N1-C1	1.426 (9)	C13—C14	1.393 (11)
N1-C20	1.447 (11)	C13—H13A	0.93
C1—C6	1.364 (13)	C14—C15	1.389 (11)
C1—C2	1.380 (13)	C14—H14A	0.93
C2—C3	1.410 (14)	C15—C16	1.383 (11)
C2—H2A	0.93	C16—C17	1.421 (11)
C3—C4	1.391 (15)	C16—H16A	0.93
С3—НЗА	0.93	C17—H17A	0.93
C4—C5	1.303 (15)	C18—C19	1.517 (12)
C4—H4A	0.93	C18—H18A	0.97
C5—C6	1.404 (14)	C18—H18B	0.97
C5—H5A	0.93	C19—H19A	0.96
С6—С7	1.440 (13)	C19—H19B	0.96
С7—С8	1.319 (13)	C19—H19C	0.96
C7—H7A	0.93	C20—H20A	0.96
С8—С9	1.496 (12)	C20—H20B	0.96
C8—H8A	0.93	C20—H20C	0.96
C9—C10	1.435 (10)	O1W—H1W1	0.84
C10-C11	1.307 (12)	O1W—H2W1	0.84
C10—H10A	0.93	O2W—H1W2	0.84
C11—C12	1.502 (11)	O2W—H2W2	0.84
C15—O1—C18	116.7 (6)	C13—C12—C11	117.9 (8)
C9—N1—C1	122.7 (7)	C17—C12—C11	121.3 (8)

C9—N1—C20	118.8 (7)	C12—C13—C14	121.8 (9)
C1—N1—C20	118.6 (7)	C12—C13—H13A	119.1
C6—C1—C2	120.2 (7)	C14—C13—H13A	119.1
C6—C1—N1	119.1 (7)	C15—C14—C13	118.7 (8)
C2—C1—N1	120.7 (8)	C15—C14—H14A	120.6
C1—C2—C3	117.6 (8)	C13—C14—H14A	120.6
C1—C2—H2A	121.2	O1—C15—C16	115.6 (6)
C3—C2—H2A	121.2	O1—C15—C14	122.1 (7)
C4—C3—C2	121.4 (8)	C16-C15-C14	122.3 (7)
C4—C3—H3A	119.3	C15—C16—C17	117.2 (8)
С2—С3—НЗА	119.3	C15—C16—H16A	121.4
C5—C4—C3	119.0 (8)	C17—C16—H16A	121.4
C5—C4—H4A	120.5	C16—C17—C12	119.1 (8)
C3—C4—H4A	120.5	C16—C17—H17A	120.5
C4—C5—C6	122.0 (9)	C12—C17—H17A	120.5
С4—С5—Н5А	119.0	O1—C18—C19	106.7 (7)
С6—С5—Н5А	119.0	O1—C18—H18A	110.4
C1—C6—C5	119.9 (8)	C19—C18—H18A	110.4
C1—C6—C7	119.4 (8)	O1—C18—H18B	110.4
C5—C6—C7	120.7 (9)	C19—C18—H18B	110.4
C8—C7—C6	120.7 (8)	H18A—C18—H18B	108.6
С8—С7—Н7А	119.7	C18—C19—H19A	109.5
С6—С7—Н7А	119.7	C18—C19—H19B	109.5
C7—C8—C9	119.6 (8)	H19A—C19—H19B	109.5
C7—C8—H8A	120.2	C18—C19—H19C	109.5
С9—С8—Н8А	120.2	H19A—C19—H19C	109.5
N1—C9—C10	126.0 (8)	H19B—C19—H19C	109.5
N1—C9—C8	118.4 (7)	N1—C20—H20A	109.5
C10-C9-C8	115.6 (7)	N1—C20—H20B	109.5
C11—C10—C9	128.1 (8)	H20A—C20—H20B	109.5
C11—C10—H10A	115.9	N1—C20—H20C	109.5
C9—C10—H10A	115.9	H20A—C20—H20C	109.5
C10-C11-C12	130.2 (9)	H20B—C20—H20C	109.5
C10—C11—H11A	114.9	H1W1—O1W—H2W1	107.7
C12—C11—H11A	114.9	H1W2—O2W—H2W2	109.1
C13—C12—C17	120.9 (8)	111 W 2 0 2 W 112 W 2	109.1
015-012-017	120.7 (0)		
C9—N1—C1—C6	3.5 (10)	C20—N1—C9—C8	178.3 (7)
C20—N1—C1—C6	-177.8 (7)	C20—N1—C9—C8 C7—C8—C9—N1	1.4 (11)
C20—N1—C1—C0 C9—N1—C1—C2	-177.9 (7)	C7 - C8 - C9 - C10	-179.2(7)
C_{20} N1- C_{1} C2	0.8 (10)	N1-C9-C10-C11	173.5 (8)
$C_{20} = N_1 = C_1 = C_2$ C6C1C2C3	0.0 (11)	C8—C9—C10—C11	
N1-C1-C2-C3	-178.6(6)	C9-C10-C11-C12	-5.8(12) -1782(8)
C1 - C2 - C3 - C4	. ,	C10-C11-C12-C13	-178.2 (8) -175.1 (9)
C1 = C2 = C3 = C4 C2 = C3 = C4 = C5	1.1(11) -2.2(12)	C10-C11-C12-C13 C10-C11-C12-C17	
C2C3C4C5 C3C4C5C6	-2.2(12)		3.9(14)
C3-C4-C5-C6 C2-C1-C6-C5	2.2 (12)	C17—C12—C13—C14	-0.9(13)
N1-C1-C6-C5	0.0 (10)	C11—C12—C13—C14	178.1 (8)
NI-CI-CO-CJ	178.6 (6)	C12—C13—C14—C15	1.3 (12)

C2-C1-C6-C7	179.1 (7)	C18—O1—C15—C16	-175.9 (6)	
N1—C1—C6—C7	-2.3 (10)	C18—O1—C15—C14	4.8 (9)	
C4—C5—C6—C1	-1.2 (12)	C13—C14—C15—O1	178.9 (7)	
C4—C5—C6—C7	179.7 (8)	C13—C14—C15—C16	-0.4 (11)	
С1—С6—С7—С8	0.8 (11)	O1-C15-C16-C17	179.9 (6)	
С5—С6—С7—С8	179.9 (8)	C14—C15—C16—C17	-0.8 (10)	
C6—C7—C8—C9	-0.3 (12)	C15—C16—C17—C12	1.1 (10)	
C1—N1—C9—C10	177.7 (6)	C13—C12—C17—C16	-0.3 (12)	
C20-N1-C9-C10	-1.1 (11)	C11—C12—C17—C16	-179.3 (7)	
C1—N1—C9—C8	-3.0 (10)	C15—O1—C18—C19	179.9 (6)	

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	D··· A	D—H···A
O2 <i>W</i> —H1 <i>W</i> 2···O1 <i>W</i>	0.83	1.99	2.711 (11)	143
$O1W$ — $H2W1$ ··· $I1^{i}$	0.84	2.77	3.588 (7)	163
O2 <i>W</i> —H2 <i>W</i> 2…I1 ⁱⁱ	0.84	2.87	3.579 (7)	144
C2—H2A···I1 ⁱⁱⁱ	0.93	3.02	3.814 (10)	145
C7—H7A···I1 ⁱ	0.93	2.89	3.708 (10)	148

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*, -*y*+2, -*z*+1.