Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

5,5-Dimethyl-2-methylseleno-1,3,2-dioxaphosphorinan-2-one

Grzegorz Cholewinski, Jaroslaw Chojnacki,* Jerzy Pikies and Janusz Rachon

Chemical Faculty, Gdansk University of Technology, Narutowicza 11/12, Gdansk PL-80233, Poland
Correspondence e-mail: jaroslaw.chojnacki@chem.pg.gda.pl

Received 27 February 2010; accepted 4 March 2010

Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$;
R factor $=0.026 ; w R$ factor $=0.065$; data-to-parameter ratio $=12.0$.

The title compound, $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{PSe}$, was obtained in the reaction of 5,5-dimethyl-2-oxo-2-seleno-1,3,2-dioxaphosphorinane potassium salt with methyl iodide. The selenomethyl group is in the axial position in relation to the six-membered dioxaphosphorinane ring.

Related literature

For the structures of similar methyl esters with $>\mathrm{P}(\mathrm{Se}) \mathrm{OMe}$ and $>\mathrm{P}(\mathrm{Se})$ SeMe groups, see: Grand et al. (1975); Bartczak et al. (1987). For 5,5-dimethyl-2-seleno-1,3,2-dioxaphosphorinane derivatives with equatorial Se atoms, see: Bartczak \& Wolf (1983); Bartczak et al. (1983); Wolf \& Bartczak (1989) and for O-acyl derivatives with equatorial selenium, see: Cholewinski et al. (2009). For conformers with axial Se atoms, see: Bartczak et al. (1986); Potrzebowski et al. (1994); Wieczorek et al. (1995). For details of the synthesis, see: Rachon et al. (2005); Stec (1974). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{PSe}$
$M_{r}=243.09$
Monoclinic, $C c$
$a=9.2252(4) \AA$
$b=9.4842(4) \AA$
$c=11.4160$ (6) \AA

$$
\beta=101.078(5)^{\circ}
$$

$V=980.22(8) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation

$$
\mu=3.96 \mathrm{~mm}^{-1}
$$

$$
T=150 \mathrm{~K}
$$

Data collection
Oxford Diffraction KM-4-CCD diffractometer
Absorption correction: analytical [CrysAlis RED (Oxford
Diffraction, 2009), using a multifaceted crystal model based on expressions derived by Clark \&

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.065$
$S=1.05$
1238 reflections
103 parameters
2 restraints
$0.59 \times 0.41 \times 0.28 \mathrm{~mm}$

Reid (1995)]
$T_{\text {min }}=0.179, T_{\text {max }}=0.372$
3146 measured reflections
1238 independent reflections
1214 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.045$

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.69 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.33$ e \AA^{-3}
Absolute structure: Flack (1983), 189 Friedel pairs
Flack parameter: $-0.009(10)$

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2544).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bartczak, T. J., Gałdecki, Z., Trzeźwińska, H. B. \& Wolf, W. (1983). Acta Cryst. C39, 731-732.
Bartczak, T. J., Gałdecki, Z., Wolf, W. M., Lesiak, K. \& Stec, W. J. (1986). Acta Cryst. C42, 244-246.
Bartczak, T. J. \& Wolf, W. (1983). Acta Cryst. C39, 224-227.
Bartczak, T. J., Wolf, W., Swepston, P. N. \& Zerong, L. (1987). Acta Cryst. C43, 1788-1890.
Cholewinski, G., Chojnacki, J., Pikies, J. \& Rachon, J. (2009). Org. Biomol. Chem. 7, 4095-4100.
Clark, R. C. \& Reid, J. S. (1995). Acta Cryst. A51, 887-897.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Grand, A., Martin, J., Robert, J. B. \& Tordjman, I. (1975). Acta Cryst. B31, 2523-2524.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
Potrzebowski, M. J., Grossmann, G., Blaszczyk, J., Wieczorek, M. W., Sieler, J., Knopik, P. \& Komber, H. (1994). Inorg. Chem. 33, 4688-4695.
Rachon, J., Cholewinski, G. \& Witt, D. (2005). Chem. Commun. 21, 2692-2694.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Stec, W. J. (1974). Z. Naturforsch. Teil B, 29, 109-112.
Westrip, S. P. (2010). publCIF. In preparation.
Wieczorek, M. W., Blaszczyk, J., Potrzebowski, M. J., Skowronska, A. \& Dembinski, R. (1995). Phosphorus Sulfur Silicon Relat. Elem. 102, 15-18.
Wolf, W. M. \& Bartczak, T. J. (1989). Acta Cryst. C45, 1767-1770.

supporting information

Acta Cryst. (2010). E66, 0856 [doi:10.1107/S1600536810008330]

5,5-Dimethyl-2-methyIseleno-1,3,2-dioxaphosphorinan-2-one

Grzegorz Cholewinski, Jaroslaw Chojnacki, Jerzy Pikies and Janusz Rachon

S1. Comment

The title compound, 5,5-dimethyl-2-methylseleno-2-oxo-1,3,2-dioxaphosphorinane, forms molecular crystals (Fig. 1). No stronger intermolecular interactions beside weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{P}$ contacts (the shortest $\mathrm{H} 6 \mathrm{c} \cdots \mathrm{O} 3$ distance is $2.387 \AA$) can be found. Bonds $\mathrm{P}-\mathrm{Se}$ and $\mathrm{Se}-\mathrm{C}$ in the selenomethyl group are almost perpendicular, which is expected for selenium compounds. For comparison: in related compound bearing $>\mathrm{P}(\mathrm{Se}) \mathrm{SeMe}$ moiety (Bartczak et al., 1987) the relevant angle is ca two degrees wider $\left(95.17^{\circ}\right)$. Rather long P-Se bond length of ca $2.2 \AA$ is typical for selenium with the coordination number two.

Selenium atom can adopt axial or equatorial positions in the chair conformation of the six-membered ring in derivatives of 5,5-dimethyl-2-seleno-1,3,2-dioxaphosphorinane. Search of CSD data (Allen, 2002) reveals both possibilities can be realised in the solid state structures. Derivatives, which are substituted at P atom by $-\mathrm{NH}-$ aryl group, often have equatorial Se atoms (Bartczak et al., 1983, Bartczak \& Wolf, 1983, Wolf \& Bartczak, 1989 and Grand et al., 1975). Recently, we reported on several O-acyl derivatives with equatorial Se , but also $-\mathrm{NH}_{2}$ and $\mathrm{NH}-\mathrm{C}(\mathrm{O})^{\mathrm{t}} \mathrm{Bu}$ derivatives, which contain selenium atom in axial positions (Cholewinski et al., 2009). More precisely, the last derivative contains both conformers - axial and equatorial - in the unit cell. Conformers with axial Se atoms were found also for -NHEt derivative (Bartczak et al., 1986), and for two compounds with double $\mathrm{P}=\mathrm{O}$ or $\mathrm{P}=\mathrm{S}$ bonds: the bisselenide and the bisdiselenide, respectively (Wieczorek et al., 1995 and Potrzebowski et al., 1994). In the case of 5,5-dimethyl-2-methyl-seleno-1,3,2-dioxaphosphorinane-2-selenide the group - SeMe is aligned in the axial position and $\mathrm{P}=\mathrm{Se}$ positioned equatorially (Bartczak et al., 1987). In 5,5-dimethyl-2-methoxy-2-seleno-1,3,2-dioxaphosphorinane-OMe is axial, so Se atom adopts the equatorial position (Grand et al., 1975).

In our previous study (Cholewinski et al., 2009) we described a correlation between the anomeric iteractions $n_{O} \rightarrow \sigma_{\text {p-x }}^{*}$ (where X is O or NH) and axial / equatorial conformer distribution in $>\mathrm{P}(\mathrm{Se}) \mathrm{XR}$ systems. However, those orbital systems were different - contained single $\mathrm{P}-\mathrm{X}$ bond and the selenium atom was linked only to P atom, formally by a double bond. The reasoning derived there cannot be applied to prediction of conformation for systems with double $\mathrm{P}=\mathrm{O}$ and single $\mathrm{P}-$ Se bonds, like the present case or to bisselenides. In fact, the doubly bonded oxygen atoms tend to occupy equatorial position in relation to the six-membered ring.

S2. Experimental

The title compound was obtained according to Stec, 1974. To a solution of 5,5-dimethyl-2-oxo-2-seleno-1,3,2-dioxaphosphorinane potassium salt (Rachon et al., 2005) (1 mmol) in THF (5 ml) was added methyl iodide (1 mmol) portionwise. The reaction mixture was stirred at room temperature for 15 min . Then, the solvent was evaporated and crude product crystallized from hexane. Re-crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ - petroleum ether ($\mathrm{bp} 40-60{ }^{\circ} \mathrm{C}$) gave product in 53% yield.
$\mathrm{Mp} 90.5-92{ }^{\circ} \mathrm{C},{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{THF}+\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=11.5 \mathrm{ppm},{ }^{1} \mathrm{~J}_{\mathrm{PSe}}=456 \mathrm{~Hz}, \mathrm{IR} v\left(\mathrm{~cm}^{-1}\right): \mathrm{P}=\mathrm{O} 1258$.
Literature data (Stec, 1974): mp 90.5-91.5 ${ }^{\circ} \mathrm{C} ;{ }^{31} \mathrm{P}$ NMR (methanol) $\delta=13.1 \mathrm{ppm},{ }^{1} \mathrm{~J}_{\mathrm{PSe}}=457 \mathrm{~Hz}$.

S3. Refinement

Hydrogen atoms were placed in calculated positions and refined using a standard riding model. $\mathrm{C}-\mathrm{H}$ bond lengths were set to 0.99 and $0.98 \AA$ and $U_{i s o}(\mathrm{H})$ were set to 1.5 and $1.2 U_{e q}(\mathrm{C})$ for CH_{3} and CH_{2} groups, respectively.
The residual electron density peak is $0.83 \AA$ from SE1, the deepest electron density hole is $1.28 \AA$ from H5A. Absolute structure determination is unequivocal because only 189 Bijvoet pairs were measured. As the structure is not chiral, we did not attempt to elucidate it further.

Figure 1

The nolecular structure of (I), with the atom labeling scheme. Displacement ellipsods are drawn at the 30\% probability level. H atoms are represented as small spheres of arbitrary radii.

5,5-Dimethyl-2-methylseleno-1,3,2-dioxaphosphorinan-2-one

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{PSe}$
$F(000)=488$
$M_{r}=243.09$
Monoclinic, $C c$
$D_{\mathrm{x}}=1.647 \mathrm{Mg} \mathrm{m}^{-3}$
Hall symbol: C -2yc
$a=9.2252$ (4) \AA
$b=9.4842$ (4) \AA
$c=11.4160(6) \AA$
Melting point: 364 (1) K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3018 reflections
$\theta=3.1-28.6^{\circ}$
$\mu=3.96 \mathrm{~mm}^{-1}$
$\beta=101.078$ (5) ${ }^{\circ}$
$T=150 \mathrm{~K}$
$V=980.22(8) \AA^{3}$
Needless, colourless
$Z=4$
$0.59 \times 0.41 \times 0.28 \mathrm{~mm}$

Data collection

Oxford Diffraction KM-4-CCD
diffractometer
Radiation source: Mo Ka radiation
Graphite monochromator
Detector resolution: 8.1883 pixels mm^{-1}
ω scans, 0.8° width
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2009),
using a multifaceted crystal model based on

$$
\begin{aligned}
& T_{\min }=0.179, T_{\max }=0.372 \\
& 3146 \text { measured reflections } \\
& 1238 \text { independent reflections } \\
& 1214 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.045 \\
& \theta_{\max }=27^{\circ}, \theta_{\min }=3.1^{\circ} \\
& h=-11 \rightarrow 11 \\
& k=-11 \rightarrow 11 \\
& l=-5 \rightarrow 14
\end{aligned}
$$

expressions derived by Clark \& Reid (1995)]

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.065$
$S=1.05$
1238 reflections
103 parameters
2 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

> Hydrogen site location: inferred from \quad neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0472 P)^{2}\right]$
> where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.005$
> $\Delta \rho_{\max }=0.69 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.33$ e \AA^{-3}

Absolute structure: Flack (1983), 189 Friedel pairs
Absolute structure parameter: - 0.009 (10)

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009), Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark \& Reid (1995).
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Se1	$0.50195(3)$	$0.96219(3)$	$0.92664(3)$	$0.03344(13)$
P1	$0.69226(10)$	$0.84725(9)$	$0.88178(8)$	$0.02227(18)$
O1	$0.7985(3)$	$0.9613(2)$	$0.8432(2)$	$0.0256(6)$
O2	$0.7776(3)$	$0.7862(3)$	$1.0038(2)$	$0.0268(5)$
O3	$0.6521(3)$	$0.7389(3)$	$0.7910(3)$	$0.0352(6)$
C1	$0.8748(4)$	$1.0581(4)$	$0.9339(3)$	$0.0264(7)$
H1A	0.8017	1.1201	0.9614	0.032^{*}
H1B	0.9427	1.1185	0.8986	0.032^{*}
C2	$0.8592(4)$	$0.8836(4)$	$1.0927(3)$	$0.0267(7)$
H2A	0.9173	0.8285	1.1592	0.032^{*}
H2B	0.7882	0.9426	1.1257	0.032^{*}

C3	$0.9621(4)$	$0.9780(4)$	$1.0400(3)$	$0.0234(7)$
C4	$1.0265(5)$	$1.0859(5)$	$1.1365(4)$	$0.0352(8)$
H4A	0.9463	1.1423	1.1576	0.053^{*}
H4B	1.0957	1.1479	1.1061	0.053^{*}
H4C	1.0785	1.0361	1.2075	0.053^{*}
C5	$1.0866(4)$	$0.8934(4)$	$1.0014(4)$	$0.0317(8)$
H5A	1.1587	0.9584	0.9783	0.048^{*}
H5B	1.0453	0.8332	0.9334	0.048^{*}
H5C	1.1353	0.8345	1.0679	0.048^{*}
C6	$0.4408(6)$	$1.0359(5)$	$0.7641(5)$	$0.0502(13)$
H6A	0.4241	0.9573	0.7075	0.075^{*}
H6B	0.5184	1.0973	0.7449	0.075^{*}
H6C	0.3493	1.0901	0.7588	0.075^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Se1	$0.02636(18)$	$0.0350(2)$	$0.0420(2)$	$0.00387(16)$	$0.01415(14)$	$-0.0031(2)$
P1	$0.0210(4)$	$0.0227(4)$	$0.0225(4)$	$0.0011(3)$	$0.0029(3)$	$-0.0025(4)$
O1	$0.0235(13)$	$0.0358(15)$	$0.0182(11)$	$-0.0015(9)$	$0.0056(10)$	$0.0014(10)$
O2	$0.0287(12)$	$0.0229(11)$	$0.0273(12)$	$-0.0058(9)$	$0.0014(10)$	$0.0014(11)$
O3	$0.0294(13)$	$0.0375(13)$	$0.0351(14)$	$0.0044(12)$	$-0.0027(11)$	$-0.0129(13)$
C1	$0.0289(18)$	$0.0251(15)$	$0.0266(17)$	$-0.0075(14)$	$0.0088(15)$	$0.0013(15)$
C2	$0.0282(16)$	$0.0323(17)$	$0.0189(14)$	$-0.0088(13)$	$0.0029(13)$	$0.0021(14)$
C3	$0.0240(17)$	$0.0262(17)$	$0.0210(15)$	$-0.0061(13)$	$0.0065(14)$	$-0.0029(14)$
C4	$0.039(2)$	$0.0370(19)$	$0.0292(18)$	$-0.0188(17)$	$0.0060(15)$	$-0.0077(18)$
C5	$0.0253(18)$	$0.039(2)$	$0.0296(18)$	$0.0000(14)$	$0.0021(14)$	$-0.0003(18)$
C6	$0.044(3)$	$0.054(3)$	$0.050(3)$	$0.026(2)$	$0.003(2)$	$0.005(2)$

Geometric parameters (\AA, ${ }^{\circ}$)

Se1-C6	1.962 (6)	C2-H2B	0.99
Se1-P1	2.2094 (9)	C3-C5	1.534 (5)
P1-O3	1.456 (3)	C3-C4	1.537 (5)
$\mathrm{P} 1-\mathrm{O} 2$	1.574 (3)	C4-H4A	0.98
P1-O1	1.579 (3)	C4-H4B	0.98
$\mathrm{O} 1-\mathrm{C} 1$	1.460 (4)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.98
$\mathrm{O} 2-\mathrm{C} 2$	1.468 (4)	C5-H5A	0.98
$\mathrm{C} 1-\mathrm{C} 3$	1.523 (5)	C5-H5B	0.98
C1-H1A	0.99	C5-H5C	0.98
C1-H1B	0.99	C6-H6A	0.98
C2-C3	1.512 (5)	C6-H6B	0.98
$\mathrm{C} 2 \ldots \mathrm{H} 2 \mathrm{~A}$	0.99	C6-H6C	0.98
C6-Se1-P1	93.09 (15)	C1-C3-C5	110.1 (3)
$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 2$	112.74 (15)	C2-C3-C4	107.1 (3)
$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 1$	111.84 (16)	C1-C3-C4	108.2 (3)
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 1$	105.49 (14)	C5-C3-C4	110.3 (3)

$\mathrm{O} 3-\mathrm{P} 1-\mathrm{Se} 1$	$114.08(12)$
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{Se} 1$	$105.16(11)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{Se} 1$	$106.89(10)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{P} 1$	$118.3(2)$
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{P} 1$	$119.0(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 3$	$111.1(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.4
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.4
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.4
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.4
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$112.1(3)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.2
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.2
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.2
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.2
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.9
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 1$	$109.6(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 5$	$111.5(3)$
$\mathrm{C} 5-\mathrm{Se} 1-\mathrm{P} 1-\mathrm{O} 3$	$-61.8(2)$
$\mathrm{C} 6-\mathrm{Se} 1-\mathrm{P} 1-\mathrm{O} 2$	$174.2(2)$
$\mathrm{C} 6-\mathrm{Se} 1-\mathrm{P} 1-\mathrm{O} 1$	$62.4(2)$
$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 1-\mathrm{C} 1$	$-166.5(2)$
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 1-\mathrm{C} 1$	$-43.6(3)$
$\mathrm{Se} 1-\mathrm{P} 1-\mathrm{O} 1-\mathrm{C} 1$	$68.0(3)$
$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 2-\mathrm{C} 2$	$163.9(3)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 2-\mathrm{C} 2$	$41.6(3)$
$\mathrm{Se} 1-\mathrm{P} 1-\mathrm{O} 2-\mathrm{C} 2$	$-71.2(3)$

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.5
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.5
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.5
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
$\mathrm{H} 4 \mathrm{~B}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
$\mathrm{C} 3-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	109.5
C3-C5-H5B	109.5
H5A-C5-H5B	109.5
C3-C5-H5C	109.5
H5A-C5-H5C	109.5
H5B-C5-H5C	109.5
Se1-C6-H6A	109.5
Se1-C6-H6B	109.5
H6A-C6-H6B	109.5
Se1-C6-H6C	109.5
H6A-C6-H6C	109.5
H6B-C6-H6C	109.5

$\begin{array}{ll}\mathrm{P} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 3 & 54.9(4) \\ \mathrm{P} 1-\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3 & -51.4(4)\end{array}$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 1 \quad 56.3$ (4)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 5 \quad-65.9$ (4)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4 \quad 173.4$ (3)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 2 \quad-58.0(4)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 5 \quad 65.0$ (4)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 4 \quad-174.5(3)$

