organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

endo-3,3-Dimethyl-4-oxobicyclo[3.1.0]hexan-2-yl methanesulfonate

Adrian Kremer, Bernadette Norberg, Alain Krief and **Johan Wouters***

Department of Chemistry, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium

Correspondence e-mail: johan.wouters@fundp.ac.be

Received 19 March 2010; accepted 23 March 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.046; wR factor = 0.130; data-to-parameter ratio = 26.4.

The relative configuration of the endo isomer of the title compound, C₉H₁₄O₄S, has been established and the conformation of the diastereoisomer is discussed. The fivemembered ring adopts an envelope conformation. The conformation of the methanesulfonate substituent is stabilized by intermolecular $C-H \cdots O$ hydrogen bonds. The crystal packing results in alternating layers of polar methanesulfonates and stacked bicyclohexanyl rings parallel to *ab*.

Related literature

For related enantioselective syntheses, see: Krief (1994); Krief et al. (2000). For puckering parameters and theoretical torsion angles, see: Cremer & Pople (1975); Dunitz (1979).

Experimental

Crystal data

- / 14 - 4 -	<u>ر</u>
$M_r = 218.27$ $c = 12.2527$	(
Triclinic, $P\overline{1}$ $\alpha = 84.290$	(4
$a = 5.8558 (3) \text{ Å} \qquad \beta = 79.531$	(4

$\gamma = 72.070 \ (5)^{\circ}$
$V = 519.66 (5) \text{ Å}^3$
Z = 2
Mo $K\alpha$ radiation

Data collection

Oxford Diffraction Xcalibur	Diffraction, 2009)
diffractometer with a Ruby	$T_{\min} = 0.904, \ T_{\max} = 0.966$
(Gemini ultra Mo) detector	6128 measured reflections
Absorption correction: multi-scan	3432 independent reflections
(CrysAlis PRO; Oxford	2283 reflections with $I > 2\sigma(I)$
	$R_{\rm int} = 0.019$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	130 parameters
$wR(F^2) = 0.130$	H-atom parameters constrained
S = 0.99	$\Delta \rho_{\rm max} = 0.36 \text{ e} \text{ Å}^{-3}$
3432 reflections	$\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$

 $\mu = 0.30 \text{ mm}^{-1}$ T = 293 K

 $0.35 \times 0.14 \times 0.12 \text{ mm}$

Diffraction, 2009)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	Н∙∙∙А	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C4-H4\cdots O4^{i}$ $C9-H9B\cdots O2^{ii}$	0.98 0.96	2.48 2.54	3.302 (4) 3.485 (2)	141 169
	4 (**)			

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 1, -z + 2.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

This work was supported in part by the Fonds National de la Recherche Scientifique (FNRS, Belgium).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2550).

References

- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Dunitz, J. (1979). X-ray Analysis and the Structure of Organic Molecules, p. 429, Ithaca: Cornell University Press.
- Krief, A. (1994). Stereocontrolled Organic Synthesis: A Chemistry for the 21th Century Monograph, edited by B. M. Trost, pp. 337-397. London: Blackwell Scientific.
- Krief, A., Lorvelec, G. & Jeanmart, S. (2000). Tetrahedron Lett. 41, 3871-3874.
- Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2010). E66, o948 [doi:10.1107/S1600536810010901]

endo-3,3-Dimethyl-4-oxobicyclo[3.1.0]hexan-2-yl methanesulfonate

Adrian Kremer, Bernadette Norberg, Alain Krief and Johan Wouters

S1. Comment

In the course of a work involving the enantioselective synthesis of didesmethyl-deltametrinic acid (Krief *et al.*, 2000; Krief, 1994) both the *exo* and *endo* isomers of 3,3-dimethyl-4-oxobicyclo[3.1.0]hexan-2-yl methanesulfonate were synthesized and characterized.

The X-ray crystallography study reported here determined the relative stereochemistry of the *endo* diasteroisomer : C(1) *S*, C(4) *R*, and C(5) *R*. The compound crystallizing in a centrosymetric space group, one obtains the racemic mixture *S*,*R*,*R*/*R*,*S*,*S*.

The five-membered ring C1—C5 adopts an envelope conformation. Puckering parameter Phi is 260.1 (8)° and close to the expected value of k *x* 36° (Cremer & Pople, 1975), suggesting that the presence of a *sp*² carbon (C2) in the five-membered ring does not significantly distort its conformation. The observed values of torsion angles defining the C1—C5 ring (Table 1) fairly well follow the theoretical sequence of torsion angles $-\omega_1$, ω_2 , $-\omega_2$, ω_1 and 0 (Dunitz, 1979) characteristic of an envelope conformation.

Atom C6 of the fused three-membered ring deviates by +1.250 (2) Å from the mean plane defined by the five atoms of the C1—C5 ring (Figure 1).

Steric effects resulting from C6 being in *cis* of the mesylate substituent on O2, constrain the conformation of the methanesulfonate group. Positions of the oxygen atoms O3 and O4 of the sulfonate group are further explained by intra and intermolecular CH···O hydrogen bondings. Indeed O3 forms an intramolecular H bond $[O3\cdots H4 = 2.81 \text{ Å}]$ with H4 of C4 that carries the mesylate. An intermolecular H bond with H4 further involves O4 [C(4)—H4 ··· O4_{*i*}: D···A = 3.302 (4) Å; H···A = 2.48 Å; D - H···A = 141°, *i* = *x*-1,*y*,*z*].

Packing is also reinforced by van der Waals interactions resulting in alterning layers of polar methanesulfonates and stacked bicyclohexanyl rings parallel to the *ab* cell planes.

S2. Experimental

Synthesis of the compound will be detailed elsewhere.

Crystals were obtained by evaporation at 5°C of solutions in diethylether.

S3. Refinement

All H atoms were placed at idealized positions and allowed to ride on their parent atoms, with C—H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for methylene groups and $U_{iso}(H) = 1.5U_{eq}(C)$ for the methyl group.

Figure 1

Conformation (*ORTEP* view) of the title compound. Only H atoms on chiral carbons have been retained for clarity. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

endo-3,3-Dimethyl-4-oxobicyclo[3.1.0]hexan-2-yl methanesulfonate

Crystal data

C₉H₁₄O₄S $M_r = 218.27$ Triclinic, *P*1 Hall symbol: -P 1 a = 5.8558 (3) Å b = 7.7497 (4) Å c = 12.2527 (6) Å a = 84.290 (4)° $\beta = 79.531$ (4)° $\gamma = 72.070$ (5)° V = 519.66 (5) Å³

Data collection

Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini ultra Mo)
detector
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 10.3712 pixels mm ⁻¹
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)

Z = 2 F(000) = 232 $D_x = 1.395 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2686 reflections $\theta = 3.2-32.6^{\circ}$ $\mu = 0.30 \text{ mm}^{-1}$ T = 293 K Prism, colorless $0.35 \times 0.14 \times 0.12 \text{ mm}$

 $T_{\min} = 0.904, T_{\max} = 0.966$ 6128 measured reflections 3432 independent reflections 2283 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.019$ $\theta_{\text{max}} = 32.6^{\circ}, \theta_{\text{min}} = 3.2^{\circ}$ $h = -8 \rightarrow 8$ $k = -8 \rightarrow 11$ $l = -18 \rightarrow 18$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from
$wR(F^2) = 0.130$	neighbouring sites
S = 0.99	H-atom parameters constrained
3432 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0721P)^2]$
130 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.36 \ m e \ m \AA^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.1819 (3)	0.4668 (2)	0.66360 (15)	0.0492 (4)
H1	0.0668	0.4050	0.6508	0.059*
C2	0.1965 (3)	0.6346 (2)	0.59887 (13)	0.0422 (3)
C3	0.2668 (3)	0.75983 (19)	0.66753 (13)	0.0377 (3)
C4	0.2405 (3)	0.6746 (2)	0.78727 (12)	0.0383 (3)
H4	0.0950	0.7502	0.8323	0.046*
C5	0.2143 (3)	0.4885 (2)	0.78131 (14)	0.0474 (4)
Н5	0.1187	0.4400	0.8439	0.057*
C6	0.4088 (4)	0.3618 (2)	0.70955 (15)	0.0534 (4)
H6A	0.4345	0.2330	0.7265	0.064*
H6B	0.5558	0.3956	0.6814	0.064*
C7	0.5212 (3)	0.7725 (3)	0.61787 (15)	0.0556 (5)
H7A	0.6366	0.6539	0.6194	0.083*
H7B	0.5646	0.8515	0.6606	0.083*
H7C	0.5216	0.8202	0.5425	0.083*
C8	0.0812 (4)	0.9504 (2)	0.66350 (19)	0.0642 (5)
H8A	0.1226	1.0300	0.7066	0.096*
H8B	-0.0787	0.9425	0.6935	0.096*
H8C	0.0843	0.9972	0.5879	0.096*
С9	0.2608 (3)	0.7738 (2)	1.04091 (14)	0.0503 (4)
H9A	0.2548	0.8619	1.0920	0.075*
H9B	0.3173	0.6540	1.0740	0.075*
H9C	0.1012	0.7930	1.0235	0.075*
01	0.1502 (3)	0.67456 (18)	0.50596 (10)	0.0606 (4)
O2	0.4535 (2)	0.64888 (14)	0.84223 (9)	0.0421 (3)

supporting information

O3	0.3691 (3)	0.97232 (17)	0.87030 (11)	0.0717 (4)	
O4	0.7018 (2)	0.7375 (2)	0.94357 (12)	0.0761 (5)	
S1	0.45905 (8)	0.79673 (6)	0.91953 (3)	0.04398 (14)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0598 (11)	0.0458 (9)	0.0546 (10)	-0.0288 (8)	-0.0180 (8)	-0.0019 (7)
C2	0.0405 (8)	0.0438 (8)	0.0452 (8)	-0.0140 (7)	-0.0116 (6)	-0.0025 (7)
C3	0.0408 (8)	0.0344 (7)	0.0426 (8)	-0.0156 (6)	-0.0133 (6)	0.0027 (6)
C4	0.0353 (7)	0.0398 (8)	0.0421 (8)	-0.0143 (6)	-0.0058 (6)	-0.0031 (6)
C5	0.0589 (10)	0.0487 (9)	0.0438 (9)	-0.0314 (8)	-0.0089 (7)	0.0059 (7)
C6	0.0680 (12)	0.0369 (8)	0.0601 (11)	-0.0172 (8)	-0.0211 (9)	0.0017 (7)
C7	0.0600 (11)	0.0673 (12)	0.0508 (10)	-0.0390 (10)	-0.0052 (8)	0.0036 (9)
C8	0.0767 (14)	0.0400 (9)	0.0783 (13)	-0.0074 (9)	-0.0359 (11)	-0.0025 (9)
C9	0.0526 (10)	0.0515 (10)	0.0414 (8)	-0.0116 (8)	0.0001 (7)	-0.0030 (7)
01	0.0771 (9)	0.0638 (8)	0.0499 (7)	-0.0244 (7)	-0.0290 (6)	0.0015 (6)
O2	0.0476 (6)	0.0399 (6)	0.0409 (6)	-0.0116 (5)	-0.0131 (5)	-0.0061 (4)
03	0.1261 (14)	0.0447 (7)	0.0544 (8)	-0.0425 (8)	-0.0113 (8)	0.0004 (6)
O4	0.0484 (8)	0.1248 (13)	0.0661 (9)	-0.0348 (8)	-0.0039 (6)	-0.0363 (9)
S1	0.0507 (3)	0.0491 (2)	0.0385 (2)	-0.02405 (19)	-0.00324 (16)	-0.00920 (16)

Geometric parameters (Å, °)

C1—C2	1.472 (2)	С6—Н6В	0.9700	
C1—C6	1.503 (2)	С7—Н7А	0.9600	
C1—C5	1.521 (2)	С7—Н7В	0.9600	
C1—H1	0.9800	С7—Н7С	0.9600	
C2—O1	1.2066 (19)	C8—H8A	0.9600	
С2—С3	1.534 (2)	C8—H8B	0.9600	
С3—С7	1.532 (2)	C8—H8C	0.9600	
С3—С8	1.543 (2)	C9—S1	1.7429 (17)	
C3—C4	1.549 (2)	С9—Н9А	0.9600	
C4—O2	1.4747 (17)	С9—Н9В	0.9600	
C4—C5	1.506 (2)	С9—Н9С	0.9600	
C4—H4	0.9800	O2—S1	1.5687 (11)	
C5—C6	1.467 (3)	O3—S1	1.4156 (14)	
С5—Н5	0.9800	O4—S1	1.4287 (14)	
С6—Н6А	0.9700			
C2—C1—C6	114.72 (14)	C1—C6—H6A	117.6	
C2—C1—C5	107.13 (13)	С5—С6—Н6В	117.6	
C6—C1—C5	58.06 (11)	C1—C6—H6B	117.6	
C2-C1-H1	120.3	H6A—C6—H6B	114.7	
C6—C1—H1	120.3	С3—С7—Н7А	109.5	
C5-C1-H1	120.3	С3—С7—Н7В	109.5	
01—C2—C1	125.52 (15)	H7A—C7—H7B	109.5	
O1—C2—C3	123.47 (14)	С3—С7—Н7С	109.5	

C1—C2—C3	110.94 (13)	H7A—C7—H7C	109.5
C7—C3—C2	109.53 (13)	H7B—C7—H7C	109.5
C7—C3—C8	109.33 (15)	C3—C8—H8A	109.5
C2—C3—C8	108.62 (13)	C3—C8—H8B	109.5
C7—C3—C4	115.62 (13)	H8A—C8—H8B	109.5
C2—C3—C4	103.93 (11)	C3—C8—H8C	109.5
C8—C3—C4	109.53 (14)	H8A—C8—H8C	109.5
O2—C4—C5	106.44 (12)	H8B—C8—H8C	109.5
O2—C4—C3	113.84 (11)	S1—C9—H9A	109.5
C5—C4—C3	108.08 (12)	S1—C9—H9B	109.5
O2—C4—H4	109.5	H9A—C9—H9B	109.5
C5—C4—H4	109.5	S1—C9—H9C	109.5
C3—C4—H4	109.5	Н9А—С9—Н9С	109.5
C6—C5—C4	116.56 (15)	Н9В—С9—Н9С	109.5
C6—C5—C1	60.38 (11)	C4—O2—S1	120.23 (9)
C4—C5—C1	108.34 (13)	O3—S1—O4	119.56 (10)
С6—С5—Н5	119.1	O3—S1—O2	110.12 (7)
C4—C5—H5	119.1	O4—S1—O2	103.74 (8)
C1—C5—H5	119.1	O3—S1—C9	108.61 (9)
C5—C6—C1	61.56 (12)	O4—S1—C9	108.62 (9)
С5—С6—Н6А	117.6	O2—S1—C9	105.24 (8)
C6—C1—C2—O1	127.22 (19)	C8—C3—C4—C5	128.36 (15)
C5—C1—C2—O1	-170.65 (18)	O2—C4—C5—C6	-66.42 (17)
C6—C1—C2—C3	-55.74 (19)	C3—C4—C5—C6	56.24 (18)
C5—C1—C2—C3	6.39 (18)	O2—C4—C5—C1	-131.81 (14)
O1—C2—C3—C7	-70.5 (2)	C3—C4—C5—C1	-9.15 (18)
C1—C2—C3—C7	112.43 (15)	C2—C1—C5—C6	-108.87 (16)
O1—C2—C3—C8	48.9 (2)	C2—C1—C5—C4	1.83 (19)
C1—C2—C3—C8	-128.22 (16)	C6—C1—C5—C4	110.70 (16)
O1—C2—C3—C4	165.44 (17)	C4—C5—C6—C1	-96.92 (16)
C1—C2—C3—C4	-11.67 (17)	C2—C1—C6—C5	95.46 (16)
C7—C3—C4—O2	10.41 (18)	C5—C4—O2—S1	-146.30 (11)
C2—C3—C4—O2	130.47 (12)	C3—C4—O2—S1	94.74 (13)
C8—C3—C4—O2	-113.62 (15)	C4—O2—S1—O3	-42.98 (13)
C7—C3—C4—C5	-107.61 (15)	C4—O2—S1—O4	-172.07 (11)
C2—C3—C4—C5	12.45 (16)	C4—O2—S1—C9	73.90 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C4—H4····O4 ⁱ	0.98	2.48	3.302 (4)	141
C9—H9 <i>B</i> ···O2 ⁱⁱ	0.96	2.54	3.485 (2)	169

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+1, -*y*+1, -*z*+2.