organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Methylbenzimidazolium nitrate

Qingshuang Ma,^a Wenzeng Duan,^{a,b} Yudao Ma,^a* Xiao Liu^a and Bo Ou^a

^aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China, and ^bDepartment of Chemistry and Environmental Science, Taishan University, 271021 Taian, Shandong, People's Republic of China

Correspondence e-mail: ydma@sdu.edu.cn

Received 15 January 2010; accepted 6 March 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.135; data-to-parameter ratio = 13.2.

In the title compound, $C_8H_9N_2^+ \cdot NO_3^-$, intermolecular N-H...O hydrogen bonds join the molecules into a chain extending along the b axis.

Related literature

For the applications of related benzimidazole compounds, see: Wright (1951); El-masry et al. (2000); Gümüş et al. (2003).

Experimental

Crystal data $C_8H_9N_2^+ \cdot NO_3^ M_r = 195.18$ Monoclinic, $P2_1/c$ a = 7.711 (4) Å b = 15.127 (7) Å c = 8.270 (4) Å $\beta = 99.398 \ (7)^{\circ}$

V = 951.7 (8) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.11 \text{ mm}^-$ T = 298 K $0.18 \times 0.16 \times 0.12 \ \mathrm{mm}$ Data collection

```
Bruker SMART APEX
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2005)
  T_{\min} = 0.981, T_{\max} = 0.987
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	128 parameters
$wR(F^2) = 0.135$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$
1685 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

4774 measured reflections

 $R_{\rm int} = 0.027$

1685 independent reflections

1319 reflections with $I > 2\sigma(I)$

Table 1

,,, (, , (, ,	Hydrogen-bond	geometry	(A, '	°)
---------------	---------------	----------	-------	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdotsO1^{i}$ $N3-H3\cdotsO2^{ii}$	0.86 0.86	2.03 1.93	2.855 (3) 2.775 (2)	162 166

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$.

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Financial support from the National Natural Science Foundation of China (grant Nos. 20441004, 20671059) and the Department of Science and Technology of Shandong Province is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2255).

References

- Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- El-masry, A. H., Fahmy, H. H. & Ali Abdelwahed, S. H. (2000). Molecules, 5, 1429-1438.
- Gümüş, F., Algül, Ö., Eren, G., Eroğlu, H., Diril, N., Gür, S. & Özkul, A. (2003). Eur. J. Med. Chem. 38, 473-480.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wright, J. B. (1951). Chem. Rev. 48, 397-541.

supporting information

Acta Cryst. (2010). E66, o814 [doi:10.1107/S1600536810008615]

2-Methylbenzimidazolium nitrate

Qingshuang Ma, Wenzeng Duan, Yudao Ma, Xiao Liu and Bo Qu

S1. Comment

Benzimidazole and its derivatives have found practical applications in a number of fields (Wright, 1951). This ring system is present in numerous antiparasitic, antihelmintic and anti-inflammatory drugs (El-masry *et al.*, 2000). The complexes of transition metals with benzimidazole and related ligands have been extensively studied as models of some important biological molecules (Gümüş *et al.*, 2003). During our search to find new benzimidazole-metal complexes 2-methylbenzimidazole nitrate was unintentionally obtained.

Herein, we report the structure of the title compound, $C_8H_9N_3O_3$ (Fig 1). The crystal structure showed that intermolecular N—H···O hydrogen bonds link the molecules into a 1D polymeric structure (Fig. 2).

S2. Experimental

A mixture of *o*-phenylenediamine(1.08 g, 10 mmol) and anhydrous sodium acetate (2.46 g, 30 mmol) were dissolved in 100 mL 5% hydrochloric acid. After stirring for 2 h under reflux, the solution was cooled to room temperature. Then the solution was treated with ammonia solution to pH 9-10 and an orange precipitate was formed. The precipitate was filtred and washed with water. 2-methylbenzimidazolium chloride was gained in 27.32% yield. The compound 2-methylbenzimidazole nitrate was obtained in 35% yield when the 2-methylbenzimidazolium chloride (0.46 g, 2.73 mmol) was reacted with $Cr(NO_3)_3.9H_2O$ (1.01 g, 2.54 mmol) in ethanol under reflux. The crystals suitable for X-ray diffraction analysis were obtained by recrystallization from ethanol.

S3. Refinement

All H atoms were located in difference maps. H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions, with C—H distances of 0.93 (aromatic), 0.96 (CH3—H) and 0.86 (N—H) Å, and with $U_{iso}(H) = kU_{eq}(C)$, where k is 1.5 for the methyl group and 1.2 for all the other H atoms.

Figure 1

The structure of the title compound showing 50% probability displacement.

Figure 2

The supramolecular chain of the title compound formed via N-H-O hydrogen bonds.

2-methylbenzimidazolium nitrate

Crystal data

C₈H₉N₂^{+.}NO₃⁻ $M_r = 195.18$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 7.711 (4) Å b = 15.127 (7) Å c = 8.270 (4) Å $\beta = 99.398$ (7)° V = 951.7 (8) Å³ Z = 4

Data collection

Bruker SMART APEX diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.981, T_{\max} = 0.987$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.135$ S = 1.071685 reflections 128 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 408 $D_x = 1.362 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2174 reflections $\theta = 2.5-25.5^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 298 KBlock, colorless $0.18 \times 0.16 \times 0.12 \text{ mm}$

4774 measured reflections 1685 independent reflections 1319 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 25.1^{\circ}, \ \theta_{min} = 2.7^{\circ}$ $h = -9 \rightarrow 9$ $k = -11 \rightarrow 18$ $l = -9 \rightarrow 9$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0681P)^2 + 0.208P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.22$ e Å⁻³ $\Delta\rho_{min} = -0.21$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.3641 (2)	0.06287 (10)	0.78462 (18)	0.0735 (5)	
O2	0.33057 (19)	0.15524 (9)	0.97555 (17)	0.0643 (4)	
O3	0.2248 (3)	0.02349 (11)	0.9773 (2)	0.0915 (6)	
N1	0.3063 (2)	0.07987 (10)	0.9136 (2)	0.0538 (4)	
N2	0.6679 (2)	0.12445 (11)	0.25067 (19)	0.0600 (5)	
H2	0.6828	0.0687	0.2374	0.072*	
N3	0.5577 (2)	0.24731 (11)	0.31726 (19)	0.0576 (5)	
H3	0.4889	0.2842	0.3542	0.069*	
C1	0.3941 (3)	0.11166 (15)	0.3743 (3)	0.0727 (6)	
H1A	0.3921	0.0516	0.3368	0.109*	
H1B	0.2839	0.1395	0.3331	0.109*	
H1C	0.4132	0.1126	0.4920	0.109*	
C2	0.5376 (3)	0.15990 (13)	0.3145 (2)	0.0569 (5)	
C3	0.7769 (3)	0.19049 (13)	0.2083 (2)	0.0561 (5)	
C4	0.7057 (3)	0.26993 (13)	0.2519 (2)	0.0542 (5)	
C5	0.7834 (3)	0.35057 (14)	0.2303 (3)	0.0677 (6)	
Н5	0.7356	0.4035	0.2595	0.081*	
C6	0.9355 (3)	0.34816 (19)	0.1630 (3)	0.0805 (7)	
H6	0.9920	0.4009	0.1463	0.097*	
C7	1.0070 (3)	0.2684 (2)	0.1191 (3)	0.0802 (7)	
H7	1.1095	0.2695	0.0734	0.096*	
C8	0.9302 (3)	0.18829 (18)	0.1416 (3)	0.0715 (7)	
H8	0.9787	0.1353	0.1134	0.086*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.1006 (12)	0.0560 (9)	0.0718 (10)	0.0061 (8)	0.0370 (9)	-0.0048 (7)
O2	0.0865 (10)	0.0434 (8)	0.0651 (9)	-0.0085 (7)	0.0188 (7)	-0.0067 (6)
03	0.1307 (16)	0.0554 (10)	0.0990 (13)	-0.0287 (10)	0.0499 (12)	0.0017 (8)
N1	0.0628 (10)	0.0406 (9)	0.0590 (10)	0.0020 (7)	0.0127 (8)	0.0042 (7)
N2	0.0735 (11)	0.0464 (9)	0.0564 (10)	0.0153 (8)	-0.0006 (8)	-0.0086 (7)
N3	0.0710 (11)	0.0476 (10)	0.0521 (9)	0.0150 (8)	0.0038 (8)	-0.0094 (7)
C1	0.0902 (16)	0.0612 (14)	0.0673 (13)	0.0017 (12)	0.0145 (12)	-0.0006 (11)
C2	0.0728 (13)	0.0487 (12)	0.0462 (10)	0.0126 (10)	0.0004 (9)	-0.0052 (8)
C3	0.0621 (12)	0.0575 (12)	0.0440 (10)	0.0131 (10)	-0.0051 (8)	-0.0086 (9)

supporting information

C4	0.0619 (11)	0.0536 (11)	0.0433 (10)	0.0096 (9)	-0.0024 (8)	-0.0058 (8)	
C5	0.0810 (15)	0.0539 (13)	0.0631 (13)	0.0037 (11)	-0.0033 (11)	-0.0019 (10)	
C6	0.0806 (16)	0.0842 (18)	0.0716 (15)	-0.0133 (14)	-0.0030 (12)	0.0061 (13)	
C7	0.0679 (14)	0.105 (2)	0.0662 (14)	0.0061 (14)	0.0070 (11)	-0.0032 (14)	
C8	0.0685 (14)	0.0831 (17)	0.0593 (13)	0.0169 (13)	-0.0007 (11)	-0.0124 (11)	

Geometric parameters (Å, °)

01—N1	1.248 (2)	C1—H1C	0.9600
O2—N1	1.252 (2)	C3—C8	1.384 (3)
O3—N1	1.228 (2)	C3—C4	1.393 (3)
N2—C2	1.322 (3)	C4—C5	1.383 (3)
N2—C3	1.387 (3)	C5—C6	1.378 (4)
N2—H2	0.8600	С5—Н5	0.9300
N3—C2	1.331 (3)	C6—C7	1.399 (4)
N3—C4	1.383 (3)	С6—Н6	0.9300
N3—H3	0.8600	C7—C8	1.374 (4)
C1—C2	1.476 (3)	С7—Н7	0.9300
C1—H1A	0.9600	C8—H8	0.9300
C1—H1B	0.9600		
O3—N1—O1	120.19 (17)	C8—C3—N2	132.5 (2)
O3—N1—O2	120.66 (17)	C8—C3—C4	121.5 (2)
01—N1—O2	119.14 (16)	N2—C3—C4	105.96 (18)
C2—N2—C3	109.90 (17)	C5—C4—N3	132.13 (19)
C2—N2—H2	125.1	C5—C4—C3	122.0 (2)
C3—N2—H2	125.1	N3—C4—C3	105.85 (18)
C2—N3—C4	109.90 (16)	C6—C5—C4	116.3 (2)
С2—N3—H3	125.1	С6—С5—Н5	121.8
C4—N3—H3	125.1	C4—C5—H5	121.8
C2—C1—H1A	109.5	C5—C6—C7	121.7 (2)
C2—C1—H1B	109.5	С5—С6—Н6	119.2
H1A—C1—H1B	109.5	С7—С6—Н6	119.2
C2—C1—H1C	109.5	C8—C7—C6	121.9 (2)
H1A—C1—H1C	109.5	С8—С7—Н7	119.1
H1B—C1—H1C	109.5	С6—С7—Н7	119.1
N2-C2-N3	108.40 (19)	C7—C8—C3	116.6 (2)
N2-C2-C1	126.37 (19)	С7—С8—Н8	121.7
N3—C2—C1	125.23 (19)	С3—С8—Н8	121.7
C3—N2—C2—N3	-0.6 (2)	C8—C3—C4—N3	-178.53 (17)
C3—N2—C2—C1	179.86 (19)	N2-C3-C4-N3	-0.24 (19)
C4—N3—C2—N2	0.4 (2)	N3—C4—C5—C6	178.52 (19)
C4—N3—C2—C1	179.99 (19)	C3—C4—C5—C6	0.0 (3)
C2—N2—C3—C8	178.5 (2)	C4—C5—C6—C7	0.0 (3)
C2—N2—C3—C4	0.5 (2)	C5—C6—C7—C8	-0.4 (4)
C2—N3—C4—C5	-178.8 (2)	C6—C7—C8—C3	0.7 (3)
C2—N3—C4—C3	-0.1 (2)	N2-C3-C8-C7	-178.4 (2)

supporting information

C8—C3—C4—C5 N2—C3—C4—C5	0.3 (3) 178.59 (17)	C4—C3—C8—C7		-0.7 (3)	
Hydrogen-bond geometry (Å, °)					
D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A	
N2—H2···O1 ⁱ	0.86	2.03	2.855 (3)	162	
N3—H3····O2 ⁱⁱ	0.86	1.93	2.775 (2)	166	

Symmetry codes: (i) –*x*+1, –*y*, –*z*+1; (ii) *x*, –*y*+1/2, *z*–1/2.