organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

tert-Butyl *N*-[(*S*)-1-hydrazinecarbonyl-2hydroxyethyl]carbamate

Alessandra C. Pinheiro,^a Marcus V. N. de Souza,^b Solange M. S. V. Wardell,^c James L. Wardell^d‡ and Edward R. T. Tiekink^e*

^aInstituto de Tecnologia em Farmacos, Fundação Oswaldo Cruz (FIOCRUZ), FarManguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, ^bInstituto de Tecnologia em Farmacos, Fundação Oswaldo Cruz (FIOCRUZ), FarManguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, ^cCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, ^dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and ^eDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: edward.tiekink@gmail.com

Received 25 March 2010; accepted 25 March 2010

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.004 Å; R factor = 0.046; wR factor = 0.149; data-to-parameter ratio = 9.3.

In the title compound, $C_8H_{17}N_3O_4$, the dihedral angle between the hydrazinecarbonyl and carbamate groups is 44.94 (12)°, and the carbonyl groups are *anti* to each other. In the crystal, the hydroxy group forms an $O-H \cdots N_a$ (a = amine) hydrogen bond and each of the four N-H atoms forms an N-H···O hydrogen bond; the hydrazinecarbonyl O atom accepts two such bonds. This results in two-dimensional arrays in the *ab* plane, mediated by the hydrogen bonding, sandwiched by *tert*butyl groups.

Related literature

For background to the use of serinyl compounds as potential anti-tuberculosis agents, see: Pinheiro *et al.* (2007).

Experimental

Crystal data $C_8H_{17}N_3O_4$ $M_r = 219.25$

Monoclinic, $P2_1$ a = 6.9274 (5) Å

b = 5.0074 (4) Å	
c = 16.2388 (15) Å	
$\beta = 94.483 \ (5)^{\circ}$	
V = 561.57 (8) Å ³	
7 - 2	

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2007) $T_{min} = 0.616, T_{max} = 0.746$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.149$ S = 1.231428 reflections 154 parameters 6 restraints

 $0.26 \times 0.14 \times 0.03 \text{ mm}$

Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$

T = 120 K

6687 measured reflections 1428 independent reflections 1168 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.062$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} & \Delta\rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3} \\ & \Delta\rho_{\rm min} = -0.34 \ {\rm e} \ {\rm \AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H10\cdots N1^{i}$ $N1-H1n\cdots O2^{i}$ $N1-H2n\cdots O1^{ii}$ $N2-H3n\cdots O1^{iii}$ $N3-H4n\cdots O3^{iv}$	0.84 (3) 0.91 (3) 0.91 (1) 0.88 (2) 0.88 (1)	1.94 (3) 2.24 (3) 2.29 (2) 2.18 (2) 2.02 (1)	2.776 (4) 3.121 (4) 3.070 (4) 2.985 (4) 2.892 (4)	174 (5) 162 (4) 144 (3) 152 (3) 172 (3)

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + 1$; (ii) $-x + 1, y - \frac{1}{2}, -z + 1$; (iii) x, y - 1, z; (iv) x, y + 1, z.

Data collection: *COLLECT* (Hooft, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT*; data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES and FAPEMIG (Brazil).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5376).

References

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (1997). J. Appl. Cryst. **30**, 565.

Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.

- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Pinheiro, A. C., Kaiser, C. R., Lourenço, M. C. S., de Souza, M. V. N., Wardell, S. M. S. V. & Wardell, J. L. (2007). J. Chem. Res. pp. 180–184.
- Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). publCIF. In preparation.

[‡] Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

supporting information

Acta Cryst. (2010). E66, o994 [doi:10.1107/S1600536810011438]

tert-Butyl N-[(S)-1-hydrazinecarbonyl-2-hydroxyethyl]carbamate

Alessandra C. Pinheiro, Marcus V. N. de Souza, Solange M. S. V. Wardell, James L. Wardell and Edward R. T. Tiekink

S1. Comment

Continuing our interests in serinyl compounds as potential anti-tuberculosis agents (Pinheiro *et al.*, 2007), we have prepared the title compound, tert-butyl N-[1(S)-1-(hydrazinecarbonyl)-2-hydroxyethyl]carbamate (I) from L-serine methyl ester hydrochloride, as a precursor of a series of tert-butyl N-(2-hydroxy-1-(S)-{N'-[(1E)-(2-aryl)methylidene]-hydrazinecarbonyl}ethyl)carbamates. We now report the syntheses and structure of (I).

The molecular structure of (I), Fig. 1, is twisted with the dihedral angle formed between the least-squares planes through the hydrazinecarbonyl (r.m.s. deviation = 0.0045 Å) and carbamate (r.m.s. deviation = 0.021 Å) residues being 44.94 (12) °. The carbonyl-O1 and O3 atoms lie to opposite sides of the molecule as seen in the pseudo O1–C1···C4–O3 torsion angle of -176.7 (3) °. Finally, each of the N–H groups is *anti* to the adjacent carbonyl so that the N–H groups, too, lie to opposite sides of the molecule. Although the absolute structure could not be determined experimentally, the assignment of the S-configuration at the C2 atom is based on the starting reagents. There are five acidic H atoms in the structure, and each of these forms a significant hydrogen bonding interaction, Table 1. The hydroxyl-O2–H forms an O–H···N bond with the amino-N1 atom. The carbonyl-O1 atom accepts two N–H hydrogen bonds, one from the amino-N1 atom and the other from the hydrazine-N2. The second amino-N1–H atom forms a hydrogen bond with the hydroxyl-O2 atom, and, finally, the carbamate-N3–H interacts with the O3-carbonyl atom. The hydrogen bonds cooperate with each other to form a 2-D array in the *ab* plane, Fig. 2, and these stack along the *c* axis being sandwiched by the *t*-butyl groups, Fig. 3.

S2. Experimental

To a stirred ethanol solution (10 ml) of methyl (2*S*)-2-[(*tert*-butoxycarbonyl)amino]-3-hydroxypropanoate (0.3 g, 1.37 mmol), obtained from L-serine methyl ester hydrochloride and (BOC)₂O, at room temperature was added N₂H₄.H₂O (80%, 5.5 mmol). The reaction mixture was stirred for 24 hours at room temperature and concentrated under reduced pressure. The residue was columned chromatographed on silica gel using a gradient of 0 to 5% chloroform in methanol, affording the title compound as a white solid in 70% yield. The crystals used in the structural study were grown from EtOH solution, m. pt. 403–404 K. ¹H NMR (500 MHz, DMSO-d₆) δ (ppm): 9.02 (1*H*, s, NHNH₂), 6.58 (1*H*, d, J = 8.2, NHCH), 4.81 (1*H*, t, J = 5.6, OH), 4.19 (2*H*, s, NHNH₂), 3.93 (1*H*, m, CH), 3.60–3.40 (2*H*, m, CH₂OH), 1.37 (9*H*, s, (CH₃)₃C). ¹³C NMR (125 MHz, DMSO-d₆) δ (ppm): 169.7 (COCH), 155.1 (COO), 78.1 ((CH₃)₃C), 61.9 (CH₂OH), 55.5 (CH), 28.2 ((CH₃)₃C). IR (cm⁻¹, KBr): 3281 (O—H), 1699 (COCH), 1668 (COO). EM/ESI (m/z [M—H]⁻): 218.1.

S3. Refinement

The C-bound H atoms were geometrically placed (C–H = 0.98-1.00 Å) and refined as riding with U_{iso} (H) = $1.2-1.5U_{eq}$ (parent atom). The O-bound H atom was refined with the distance restraint O–H = 0.840 ± 0.001 , and with

 $U_{iso}(H) = 1.5U_{eq}(O)$. The N-bound H atoms were treated similarly with N–H = 0.880±0.001 and 0.910±0.001 Å, and with $U_{iso}(H) = 1.2U_{eq}(N)$. In the absence of significant anomalous scattering effects, 1067 Friedel pairs were averaged in the final refinement.

Figure 1

The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Figure 2

A view of a supramolecular array in (I) in the *ab* plane. The O–H…N and N–H…O hydrogen bonding interactions are shown as orange and blue dashed lines, respectively. Colour code: O, red; N, blue; C, grey; and H, green.

Figure 3

A view of the crystal packing in (I) in projection down the *b* axis, showing the stacking of layers. The O–H···N and N–H···O hydrogen bonding interactions are shown as orange and blue dashed lines, respectively. Colour code: O, red; N, blue; C, grey; and H, green.

tert-Butyl N-[(S)-1-hydrazinecarbonyl-2-hydroxyethyl]carbamate

Crystal data	
$C_8H_{17}N_3O_4$	$\beta = 94.483 \ (5)^{\circ}$
$M_r = 219.25$	V = 561.57 (8) Å ³
Monoclinic, <i>P</i> 2 ₁	Z = 2
Hall symbol: P 2yb	F(000) = 236
a = 6.9274 (5) Å	$D_{\rm x} = 1.297 {\rm ~Mg} {\rm ~m}^{-3}$
b = 5.0074 (4) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 16.2388 (15) Å	Cell parameters from 10838 reflections

 $\theta = 2.9-27.5^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 120 K

Data collection

Nonius KappaCCD
diffractometer
Radiation source: Enraf-Nonius FR591 rotating
anode
10 cm confocal mirrors monochromator
Detector resolution: 9.091 pixels mm ⁻¹
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H atoms treated by a mixture of independent
and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.0838P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta ho_{ m max} = 0.30 \ { m e} \ { m \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Plate, colourless

 $R_{\rm int} = 0.062$

 $h = -8 \longrightarrow 8$ $k = -6 \longrightarrow 6$ $l = -21 \longrightarrow 18$

 $0.26 \times 0.14 \times 0.03 \text{ mm}$

 $T_{\text{min}} = 0.616, T_{\text{max}} = 0.746$ 6687 measured reflections 1428 independent reflections 1168 reflections with $I > 2\sigma(I)$

 $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.0^{\circ}$

Absolute structure: nd

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and iso	otropic or equival	ent isotropic displacemer	ıt parameters (Ų	²)
---------------------------------------	--------------------	---------------------------	------------------	----------------

H4N	0.429 (6)	0.485 (2)	0.720 (2)	0.025*
C1	0.2715 (4)	0.3813 (8)	0.5650(2)	0.0181 (7)
C2	0.2480 (4)	0.2659 (8)	0.65093 (19)	0.0182 (7)
H2	0.2267	0.0688	0.6460	0.022*
C3	0.0743 (2)	0.3924 (5)	0.68777 (11)	0.0213 (7)
H3A	0.0723	0.3398	0.7465	0.026*
H3B	0.0842	0.5894	0.6852	0.026*
C4	0.5023 (2)	0.1141 (5)	0.75191 (11)	0.0193 (7)
C5	0.7406 (2)	0.0190 (5)	0.86737 (11)	0.0218 (7)
C6	0.8669 (2)	0.2032 (5)	0.92338 (11)	0.0317 (9)
H6A	0.9567	0.3001	0.8904	0.047*
H6B	0.9406	0.0969	0.9657	0.047*
H6C	0.7847	0.3310	0.9501	0.047*
C7	0.6005 (6)	-0.1336 (9)	0.9179 (2)	0.0300 (8)
H7A	0.5109	-0.0078	0.9411	0.045*
H7B	0.6735	-0.2291	0.9629	0.045*
H7C	0.5272	-0.2620	0.8823	0.045*
C8	0.8656 (5)	-0.1602 (7)	0.8176 (2)	0.0246 (8)
H8A	0.7860	-0.3046	0.7922	0.037*
H8B	0.9705	-0.2366	0.8542	0.037*
H8C	0.9207	-0.0549	0.7743	0.037*

Atomic displacement parameters $(Å^2)$

-						
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0269 (12)	0.0135 (13)	0.0271 (14)	-0.0025 (11)	-0.0007 (10)	0.0009 (10)
02	0.0192 (12)	0.0197 (14)	0.0342 (14)	0.0009 (10)	-0.0008 (10)	0.0023 (11)
03	0.0372 (13)	0.0126 (13)	0.0370 (15)	-0.0006 (12)	-0.0138 (11)	0.0009 (11)
04	0.0314 (12)	0.0113 (12)	0.0230 (12)	0.0012 (10)	-0.0066 (10)	0.0013 (10)
N1	0.0214 (14)	0.0213 (17)	0.0241 (15)	-0.0002 (12)	0.0013 (12)	-0.0001 (13)
N2	0.0235 (14)	0.0133 (13)	0.0225 (15)	-0.0017 (12)	0.0015 (11)	0.0000 (13)
N3	0.0231 (13)	0.0110 (14)	0.0272 (15)	-0.0018 (12)	-0.0031 (12)	-0.0014 (13)
C1	0.0143 (13)	0.0129 (16)	0.0266 (18)	0.0004 (13)	-0.0010 (12)	0.0017 (15)
C2	0.0182 (15)	0.0140 (17)	0.0215 (17)	-0.0020 (13)	-0.0032 (13)	-0.0013 (13)
C3	0.0225 (15)	0.0165 (16)	0.0252 (17)	-0.0019 (15)	0.0030 (13)	-0.0005 (14)
C4	0.0212 (15)	0.0121 (17)	0.0243 (18)	-0.0008(14)	-0.0001 (13)	0.0004 (13)
C5	0.0291 (18)	0.0122 (16)	0.0231 (18)	0.0020 (15)	-0.0036 (14)	0.0027 (14)
C6	0.042 (2)	0.0165 (18)	0.033 (2)	0.0034 (17)	-0.0155 (17)	-0.0002 (17)
C7	0.0403 (19)	0.022 (2)	0.028 (2)	0.0061 (18)	0.0032 (16)	0.0026 (16)
C8	0.0285 (16)	0.0156 (19)	0.0296 (19)	0.0021 (15)	0.0011 (14)	0.0029 (15)
	× ,	× ,	× ,		× ,	× /

Geometric parameters (Å, °)

01—C1	1.236 (4)	С2—Н2	1.0000	
O2—C3	1.416 (3)	С3—НЗА	0.9900	
O2—H1O	0.84 (3)	C3—H3B	0.9900	
O3—C4	1.216 (3)	C5—C8	1.523 (4)	
O4—C4	1.355 (3)	C5—C6	1.523 (3)	

supporting information

O4—C5	1.482 (3)	С5—С7	1.525 (4)
N1—N2	1.421 (4)	С6—Н6А	0.9800
N1—H1N	0.91 (3)	С6—Н6В	0.9800
N1—H2N	0.911 (13)	С6—Н6С	0.9800
N2—C1	1.336 (5)	C7—H7A	0.9800
N2—H3N	0.878 (18)	С7—Н7В	0.9800
N3—C4	1.352 (3)	C7—H7C	0.9800
N3—C2	1.466 (4)	C8—H8A	0.9800
N3—H4N	0.883 (14)	C8—H8B	0.9800
C1—C2	1.531 (5)	C8—H8C	0.9800
C2—C3	1.523 (4)		
C3—O2—H1O	102 (3)	O3—C4—O4	124.9 (2)
C4—O4—C5	119.0 (2)	N3—C4—O4	110.6 (2)
N2—N1—H1N	109 (3)	O4—C5—C8	109.80 (19)
N2—N1—H2N	107 (2)	O4—C5—C6	102.46 (12)
H1N—N1—H2N	114 (4)	C8—C5—C6	110.49 (15)
C1—N2—N1	122.7 (3)	O4—C5—C7	109.8 (2)
C1—N2—H3N	122 (3)	C8—C5—C7	113.7 (2)
N1—N2—H3N	114 (3)	C6—C5—C7	109.99 (17)
C4—N3—C2	119.3 (3)	С5—С6—Н6А	109.5
C4—N3—H4N	124 (3)	С5—С6—Н6В	109.5
C2—N3—H4N	110 (3)	H6A—C6—H6B	109.5
O1—C1—N2	123.9 (3)	С5—С6—Н6С	109.5
O1—C1—C2	122.0 (3)	H6A—C6—H6C	109.5
N2—C1—C2	114.0 (3)	H6B—C6—H6C	109.5
N3—C2—C3	109.8 (2)	С5—С7—Н7А	109.5
N3—C2—C1	109.9 (3)	С5—С7—Н7В	109.5
C3—C2—C1	110.2 (2)	H7A—C7—H7B	109.5
N3—C2—H2	109.0	С5—С7—Н7С	109.5
С3—С2—Н2	109.0	H7A—C7—H7C	109.5
C1—C2—H2	109.0	H7B—C7—H7C	109.5
O2—C3—C2	109.54 (19)	С5—С8—Н8А	109.5
O2—C3—H3A	109.8	C5—C8—H8B	109.5
С2—С3—НЗА	109.8	H8A—C8—H8B	109.5
O2—C3—H3B	109.8	C5—C8—H8C	109.5
С2—С3—Н3В	109.8	Н8А—С8—Н8С	109.5
НЗА—СЗ—НЗВ	108.2	H8B—C8—H8C	109.5
O3—C4—N3	124.4 (2)		

Hydrogen-bond geometry (Å, °)

H…A	D—H	H···A	$D \cdots A$	D—H··· A
O2—H1o…N1 ⁱ	0.84 (3)	1.94 (3)	2.776 (4)	174 (5)
N1—H1n···O2 ⁱ	0.91 (3)	2.24 (3)	3.121 (4)	162 (4)
N1—H2n···O1 ⁱⁱ	0.91 (1)	2.29 (2)	3.070 (4)	144 (3)

			supporting information	
N2—H3n…O1 ⁱⁱⁱ	0.88 (2)	2.18 (2)	2.985 (4)	152 (3)
N3—H4n…O3 ^{iv}	0.88 (1)	2.02 (1)	2.892 (4)	172 (3)

Symmetry codes: (i) -*x*, *y*+1/2, -*z*+1; (ii) -*x*+1, *y*-1/2, -*z*+1; (iii) *x*, *y*-1, *z*; (iv) *x*, *y*+1, *z*.