organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Benzyl *N*-((*S*)-2-hydroxy-1-{*N*'-[(*E*)-2methoxybenzylidene]hydrazinecarbonyl}ethyl)carbamate from synchrotron data

Alessandra C. Pinheiro,^a Marcus V. N. de Souza,^a Edward R. T. Tiekink,^b* James L. Wardell^c‡ and Solange M. S. V. Wardell^d

^aInstituto de Tecnologia em Farmacos, Fundação Oswaldo Cruz (FIOCRUZ), FarManguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, ^cCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and ^dCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland

Correspondence e-mail: edward.tiekink@gmail.com

Received 25 March 2010; accepted 25 March 2010

Key indicators: single-crystal synchrotron study; T = 120 K; mean σ (C–C) = 0.005 Å; R factor = 0.030; wR factor = 0.124; data-to-parameter ratio = 7.1.

A U-shaped conformation is found in the title compound, $C_{19}H_{21}N_3O_5$, with the benzene rings lying to the same side of the molecule; the dihedral angle between them is 10.83 (16)°. The dihedral angle formed between the hydrazinecarbonyl and carbamate residues is 68.42 (13)°. The carbonyl groups lie approximately at right angles to each other $[O-C\cdots C-O$ pseudo torsion angle of 107.7 (3)°], and the conformation about the C12=N3 bond [1.279 (4) Å] is *E*. An intramolecular $N_{cb}-H\cdots O_{hy}$ (cb = carbmate and hy = hydroxy) hydrogen bond occurs, generating an *S*(6) loop. In the crystal, intermolecular $O_h-H\cdots O_{ca}$ (ca = carbonyl) and $N_{hz}-H\cdots O_{ca}$ (hz = hydrazine) hydrogen bonds lead to the formation of a supramolecular chain, two molecules thick, which propagates along the *a* axis; these are connected by $C-H\cdots O_{ca}$ contacts.

Related literature

For background to tuberculosis, see: Cole & Alzari (2007); Portero & Rubio (2007). For information on the development of anti-tuberculosis agents, see: Lourenço *et al.* (2007*a,b*); Lourenço *et al.* (2008); Ferreira *et al.* (2008); Costa *et al.* (2006); de Souza *et al.* (2006*a,b*); Pinheiro *et al.* (2007).

Experimental

Crystal data

 $\begin{array}{l} C_{19}H_{21}N_{3}O_{5}\\ M_{r}=371.39\\ Orthorhombic, P2_{1}2_{1}2_{1}\\ a=6.002 \ (6) \ {\rm \AA}\\ b=14.053 \ (14) \ {\rm \AA}\\ c=21.09 \ (2) \ {\rm \AA}\\ V=1779 \ (3) \ {\rm \AA}^{3} \end{array}$

Data collection

Rigaku Saturn 724+ detector on Crystal Logics CCD diffractometer 13639 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.124$ S = 1.291827 reflections 257 parameters 3 restraints

$\lambda = 0.6889 \text{ Å}$
$\mu = 0.06 \text{ mm}^{-1}$
T = 120 K
$0.30 \times 0.04 \times 0.02$ mm

Synchrotron radiation

Z = 4

1827 independent reflections 1627 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.047$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$
$\Delta \rho = -0.31 \text{ e} \text{ Å}^{-3}$

Table 1			
Hydrogen-bond g	geometry	(Å,	°).

	·		
D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.89 (3)	2.44 (3)	2.788 (5)	104 (2)
0.85 (2)	2.04 (2)	2.789 (4)	147 (4)
0.88 (3)	2.10 (3)	2.974 (5)	177 (3)
0.99	2.45	3.439 (5)	175
0.95	2.55	3.284 (5)	134
	<i>D</i> -H 0.89 (3) 0.85 (2) 0.88 (3) 0.99 0.95	$D-H$ $H \cdot \cdot A$ 0.89 (3) 2.44 (3) 0.85 (2) 2.04 (2) 0.88 (3) 2.10 (3) 0.99 2.45 0.95 2.55	$D-H$ $H \cdots A$ $D \cdots A$ 0.89 (3) 2.44 (3) 2.788 (5) 0.85 (2) 2.04 (2) 2.789 (4) 0.88 (3) 2.10 (3) 2.974 (5) 0.99 2.45 3.439 (5) 0.95 2.55 3.284 (5)

Symmetry codes: (i) x + 1, y, z; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *CrystalClear* (Rigaku/MSC, 2008); cell refinement: *APEX2* (Bruker, 2008); data reduction: *APEX2*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank Prof. W. Clegg and the synchrotron component, based at Daresbury, of the EPSRC National Crystallographic Service, University of Southampton, for the data collection. JLW acknowledges support from CAPES and FAPEMIG (Brazil). Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5379).

References

- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (2008). *APEX2*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cole, S. T. & Alzari, P. M. (2007). Biochem. Soc. Trans. 35, 1321-1324.
- Costa, M. S., Boechat, N., Rangel, E. A., da Silva, F. C., de Souza, A. M. T., Rodrigues, C. R., Castro, H. C., Neves, I. Jr, Lourenço, M. C. S., Wardell, S. M. S. V. & Ferreira, V. F. (2006). *Bioorg. Med. Chem.* 14, 8644–8653.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Ferreira, M. L., Cardoso, L. N. F., Gonçalves, R. S. B., Da Silva, E. T., Lourenço, M. C. S., Vicente, F. R. & de Souza, M. V. N. (2008). Lett. Drug Des. Discov. 5, 137–140.
- Lourenço, M. C., de Souza, M. V. N., Pinheiro, A. C., Ferreira, M. L., Gonçalves, R. S. B., Nogueira, T. C. M. & Peralta, M. A. (2007a). ARKIVOC, pp. 181–191.

- Lourenço, M. C. S., Ferreira, M. L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A. & Henriques, M. G. M. O. (2008). *Eur. J. Med. Chem.* 43, 1344–1347.
- Lourenço, M. C. S., Vicente, F. R., Henriques, M. G. M. O., Candéa, A. L. P., Gonçalves, R. S. B., Nogueira, T. C. M., Ferreira, M. L. & De Souza, M. V. N. (2007b). Bioorg. Med. Chem. Lett. 17, 6895–6898.
- Pinheiro, A. C., Kaiser, C. R., Lourenço, M. C. S., de Souza, M. V. N., Wardell, S. M. V. & Wardell, J. L. (2007). J. Chem. Res. pp. 180–184.
- Portero, J. L. & Rubio, M. (2007). Exp. Opinion Ther. Pat. 17, 617-637.
- Rigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Souza, M. V. N. de, Junior, I. N., Miranda, G. B. P., Lourenço, M. C. S., Vasconcelos, T. A., Pais, K. C., Wardell, J. L., Wardell, S. M. S. V. & Junior, J. P. A. (2006a). Lett. Drug Des. Discov. 3, 424–428.
- Souza, M. V. N. de, Wardell, S. M. S. V., Ferreira, M. L., Wardell, J. L., Vasconcelos, T. A., Mascarenhas, Y. P., Ellena, J. & Silva, F. P. (2006b). J. Mol. Struct. 788, 63–71.
- Westrip, S. P. (2010). publCIF. In preparation.

supporting information

Acta Cryst. (2010). E66, o1004-o1005 [doi:10.1107/S1600536810011463]

Benzyl *N*-((*S*)-2-hydroxy-1-{*N*'-[(*E*)-2-methoxybenzylidene]hydrazinecarbonyl}ethyl)carbamate from synchrotron data

Alessandra C. Pinheiro, Marcus V. N. de Souza, Edward R. T. Tiekink, James L. Wardell and Solange M. S. V. Wardell

S1. Comment

Tuberculosis (TB) is once again a major public health problem. The need for better drugs is clear (Cole & Alzari, 2007; Portero & Rubio, 2007). Continuing our studies on potential anti-tuberculosis agents (Lourenço *et al.*, 2007*a*, 2007*b*, 2008; Ferreira *et al.*, 2008; Costa *et al.*, 2006; de Souza *et al.*, 2006*a*, 2006*b*), including serinyl derivatives (Pinheiro *et al.*, 2007), we have investigated a series of serinyl derivatives, *N*-(2-hydroxy-1-{N'-[(1*E*)-(2- methoxyphenyl)methyl-idene]hydrazinecarbonyl}ethyl)carbamic acid esters and now report the structure of one of these, benzyl *N*-(2-hydroxy-1-{N'-[(1*E*)-(2- methoxyphenyl)methylidene] hydrazinecarbonyl}ethyl)carbamate, (I).

Overall, the molecule of (I), Fig. 1, has a U-shaped conformation with the benzene rings lying to the same side of the molecule; the dihedral angle between their least-squares planes is 10.83 (16) °. The dihedral angle formed between the least-squares planes through the hydrazinecarbonyl (r.m.s. deviation of the O4,N2,N3,C11 atoms = 0.0198 Å) and carbamate (r.m.s. deviation of the O1,O2,N1,C8 atoms = 0.0044 Å) is 68.42 (13) °. The carbonyl groups are approximately at right-angles to each other as seen in the pseudo O2–C8…C11–O4 torsion angle of 107.7 (3) °. Each of the N–H groups is *anti* to the adjacent carbonyl so that the N–H groups also lie to opposite sides of the molecule. The conformation about the C12=N3 bond [1.279 (4) Å] is *E*. Although the absolute structure could not be determined experimentally, the assignment of the *S*-configuration at the C2 atom is based on a starting reagent.

There are three acidic H atoms in the molecule of (I) and each of these forms a significant hydrogen bond, Table 1. Whereas the carbamate-N1–H atom forms an intramolecular N–H···O hydrogen bond to the hydroxyl-O3 atom, the hydroxyl-O3–H atom forms an intermolecular O–H···O interaction with the carbonyl-O4 atom, and the hydrazine-N2–H atom likewise forms an N–H···O hydrogen bond with the carbonyl-O2 atom. The intermolecular hydrogen bonds lead to the formation of a supramolecular double-chain along the *a* direction, Fig. 2, with additional stability to the chain afforded by C–H···O interactions involving the carbonyl-O2 atom, Table 1. The primary interactions between chains are of the type C–H···O and involve the carbonyl-O4 atom, Table 1 and Fig. 3.

S2. Experimental

The compound, phenyl (1*S*)-2-hydrazino-1-(hydroxymethyl)-2-oxoethylcarbamate, was obtained from L-serine methyl ester hydrochloride on successive reactions with (a) PhCH₂Cl and Et₃N, and (b) N₂H₄.H₂O. To a stirred ethanol solution (10 ml) of phenyl (1*S*)-2-hydrazino-1-(hydroxymethyl)-2-oxoethylcarbamate (1.0 mmol), at room temperature was added 2-methoxybenzaldehyde (1.05 mmol). The reaction mixture was stirred for 4 hours at 353 K and concentrated under reduced pressure. The residue was purified by washing with cold ethanol (3 × 10 ml), affording the title compound; yield 80%. Solution NMR spectra revealed the presence of (*E*)- and (*Z*)-isomers, however, the colourless needles of (I)

obtained from MeOH solution were solely the (E)-isomer, m.pt. 453-454 K.

¹H NMR (400 MHz, DMSO-d₆) δ (ppm): 11.48 and 11.36 (1*H*, s, NHN, *E*- and *Z*- isomers), 8.59 and 8.33 (1*H*, s, N=CH, *E*- and *Z*- isomers), 7.83 (d, J = 7.1) and 7.79 (d, J = 7.8), (1*H*, H5, *E*- and *Z*- isomers), 7.45-7.25 (6*H*, m, Ph and H3), 7.45-7.25 (m) and 7.19 (d, J = 8.4), (1*H*, NHCH, *E* and *Z*- isomers), 7.10 and 7.08 (1*H*, s, H2, *E*- and *Z*- isomers), 7.00 (1*H*, m, H4), 5.05 and 5.04 (2*H*, s, CH₂Ph, *E*- and *Z*- isomers), 5.01 and 4.11 (1*H*, m, CH, *E*- and *Z*- isomers), 4.97 (t, J = 5.8) and 4.85 (t, J = 5.6), (1*H*, OH, *E*- and *Z*- isomers 3.86 and 3.84 (3*H*, s, CH₃, *E*- and *Z*- isomers), 3.80-3.55 (2*H*, m, CH₂OH). ¹³C NMR (100 MHz, DMSO-d₆) δ (ppm): 171.2 and 166.7 (COCH, *E*- and *Z*- isomers), 157.7 and 157.6 (C1, *E*- and *Z*- isomers), 155.9 and 155.8 (COO, *E*- and *Z*- isomers), 142.5 and 139.0 (N=CH, *E*- and *Z*- isomers), 137.0 and 136.9 (C6', *E*- and *Z*- isomers), 131.5, 131.3, 128.3, 127.7, 127.6 and 125.4 (C3, C5, C1', C2', C3', C4' and C5'), 122.2, 122.1 and 120.7 (C4 and C6), 111.8 (C2), 65.5 and 65.3 (CH₂Ph, *E*- and *Z*- isomers), 61.5 and 61.1 (CH₂OH, *E*- and *Z*- isomers), 56.4 and 54.6 (CH, *E*- and *Z*- isomers), 55.7 (CH₃). IR (cm⁻¹; KBr): 3262 (O—H); 1692 (COCH and COO). EM/ESI: [M+Na]: 370.2.

S3. Refinement

The C-bound H atoms were geometrically placed (C–H = 0.95-1.00 Å) and refined as riding with U_{iso} (H) = $1.2-1.5U_{eq}$ (parent atom). The O- and N-bound H atoms were refined with the distance restraints 0.84 ± 0.01 and 0.88 ± 0.01 Å, respectively. In the absence of significant anomalous scattering effects, 1278 Friedel pairs were averaged in the final refinement.

Figure 1

The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Figure 2

The supramolecular double-chain aligned along the *a* axis in the crystal structure of (I) formed through the agency of intermolecular O–H…O and N–H…O hydrogen bonding interactions shown as orange and blue dashed lines, respectively.

Figure 3

A view of the unit cell contents in (I) shown in projection down the *a* axis [the direction of the supramolecular chains illustrated in Fig. 2] and highlighting the C–H···O interactions (green dashed lines) formed between the double-chains; N–H···O interactions are shown as blue dashed lines.

Benzyl N-((S)-2-hydroxy-1-{N'-[(E)- 2-methoxybenzylidene]hydrazinecarbonyl}ethyl)carbamate

V = 1779 (3) Å ³
Z = 4
F(000) = 784
$D_{\rm x} = 1.387 {\rm ~Mg} {\rm ~m}^{-3}$
Synchrotron radiation, $\lambda = 0.6889$ Å
Cell parameters from 915 reflections
$\theta = 3.1 - 23.8^{\circ}$

 $\mu = 0.06 \text{ mm}^{-1}$ T = 120 K

Data collection

Rigaku Saturn 724+ detector on Crystal Logics
CCD
diffractometer
Radiation source: Diamond beamline I19
Silicon double crystal monochromator
ω scans
13639 measured reflections

Refinement

<i>Heymentern</i>	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.030$	Hydrogen site location: inferred from
$wR(F^2) = 0.124$	neighbouring sites
S = 1.29	H atoms treated by a mixture of independent
1827 reflections	and constrained refinement
257 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0788P)^2]$
3 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.22 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$
	Absolute structure: nd

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Needle, colourless

 $R_{\rm int} = 0.047$

 $h = -5 \rightarrow 7$ $k = -16 \rightarrow 16$ $l = -25 \rightarrow 25$

 $0.30 \times 0.04 \times 0.02 \text{ mm}$

 $\theta_{\text{max}} = 24.3^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$

1827 independent reflections 1627 reflections with $I > 2\sigma(I)$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.8873 (4)	-0.04357 (14)	0.54989 (10)	0.0315 (5)	
O2	0.8048 (4)	0.11402 (14)	0.55153 (10)	0.0300 (5)	
03	1.4014 (4)	0.06852 (18)	0.39880 (12)	0.0386 (6)	
H3O	1.531 (3)	0.068 (3)	0.3838 (18)	0.039 (11)*	
04	0.8614 (4)	0.09631 (14)	0.39964 (10)	0.0281 (5)	
05	0.8039 (4)	0.54912 (16)	0.29894 (11)	0.0360 (6)	
N1	1.1190 (5)	0.05803 (18)	0.50353 (12)	0.0275 (6)	
H1N	1.161 (6)	0.0066 (16)	0.4822 (15)	0.043 (11)*	
N2	0.9615 (5)	0.25280 (17)	0.39885 (12)	0.0279 (6)	
H2N	1.059 (5)	0.294 (2)	0.4132 (18)	0.054 (12)*	
N3	0.7903 (5)	0.27845 (18)	0.35818 (12)	0.0278 (6)	
C1	0.6559 (6)	-0.1678 (2)	0.59051 (15)	0.0314 (8)	
C2	0.8207 (7)	-0.2227 (2)	0.61849 (16)	0.0369 (8)	

H2	0.9550	-0.1935	0.6322	0.044*
C3	0.7916 (7)	-0.3195 (2)	0.62669 (17)	0.0404 (9)
H3	0.9057	-0.3568	0.6456	0.048*
C4	0.5939 (7)	-0.3618 (2)	0.60700 (16)	0.0415 (9)
H4	0.5718	-0.4281	0.6132	0.050*
C5	0.4302 (8)	-0.3084 (3)	0.57863 (18)	0.0443 (9)
Н5	0.2961	-0.3378	0.5649	0.053*
C6	0.4612 (7)	-0.2106 (2)	0.57000 (17)	0.0384 (9)
H6	0.3487	-0.1735	0.5501	0.046*
C7	0.6851 (6)	-0.0622 (2)	0.58501 (16)	0.0333 (8)
H7A	0.5558	-0.0340	0.5627	0.040*
H7B	0.6949	-0.0333	0.6277	0.040*
C8	0.9259 (6)	0.0482 (2)	0.53586 (14)	0.0271 (7)
C9	1.1576 (5)	0.1469 (2)	0.46987 (14)	0.0256 (7)
H9	1.1481	0.2004	0.5010	0.031*
C10	1.3898 (6)	0.1464 (2)	0.44118 (14)	0.0282 (7)
H10A	1.4175	0.2067	0.4182	0.034*
H10B	1.5034	0.1397	0.4749	0.034*
C11	0.9775 (5)	0.1615 (2)	0.41900 (14)	0.0247 (7)
C12	0.7823 (6)	0.3673 (2)	0.34522 (14)	0.0281 (7)
H12	0.8937	0.4088	0.3614	0.034*
C13	0.6034 (6)	0.4056 (2)	0.30579 (14)	0.0290 (7)
C14	0.6157 (6)	0.4991 (2)	0.28244 (14)	0.0296 (8)
C15	0.4450 (6)	0.5358 (2)	0.24549 (15)	0.0323 (8)
H15	0.4531	0.5995	0.2304	0.039*
C16	0.2632 (7)	0.4798 (2)	0.23060 (15)	0.0339 (8)
H16	0.1477	0.5046	0.2046	0.041*
C17	0.2486 (6)	0.3872 (2)	0.25348 (15)	0.0318 (8)
H17	0.1230	0.3490	0.2434	0.038*
C18	0.4166 (6)	0.3511 (2)	0.29081 (15)	0.0312 (7)
H18	0.4050	0.2880	0.3066	0.037*
C19	0.8395 (7)	0.6391 (2)	0.26835 (16)	0.0374 (9)
H19A	0.7233	0.6839	0.2815	0.056*
H19B	0.8337	0.6306	0.2223	0.056*
H19C	0.9858	0.6641	0.2804	0.056*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0299 (14)	0.0250 (10)	0.0396 (12)	0.0018 (10)	0.0069 (11)	0.0038 (9)
O2	0.0292 (14)	0.0283 (11)	0.0326 (11)	0.0038 (10)	0.0030 (10)	-0.0003 (9)
O3	0.0262 (14)	0.0436 (13)	0.0461 (14)	-0.0025 (12)	0.0049 (13)	-0.0140 (11)
O4	0.0239 (14)	0.0278 (11)	0.0327 (11)	-0.0005 (10)	-0.0004 (10)	-0.0024 (9)
O5	0.0347 (14)	0.0299 (11)	0.0434 (13)	-0.0050 (11)	-0.0073 (12)	0.0092 (10)
N1	0.0284 (16)	0.0246 (12)	0.0295 (13)	0.0034 (12)	0.0014 (12)	0.0013 (10)
N2	0.0260 (17)	0.0252 (12)	0.0327 (13)	-0.0009 (12)	-0.0040 (12)	0.0012 (11)
N3	0.0242 (16)	0.0296 (13)	0.0295 (13)	-0.0002 (12)	-0.0019 (12)	0.0016 (10)
C1	0.031 (2)	0.0318 (16)	0.0311 (16)	0.0001 (15)	0.0046 (15)	0.0005 (13)
N3 C1	0.0242 (16) 0.031 (2)	0.0296 (13) 0.0318 (16)	0.0295 (13) 0.0311 (16)	-0.0002 (12) 0.0001 (15)	-0.0019 (12) 0.0046 (15)	0.0016 (10) 0.0005 (13)

C2	0.034 (2)	0.0339 (17)	0.0430 (19)	0.0008 (16)	-0.0002 (17)	0.0041 (14)
C3	0.047 (2)	0.0321 (17)	0.0424 (19)	0.0056 (18)	0.0049 (18)	0.0059 (14)
C4	0.055 (3)	0.0294 (15)	0.0401 (18)	-0.0052 (18)	0.015 (2)	-0.0022 (13)
C5	0.044 (3)	0.0455 (19)	0.0435 (19)	-0.0143 (19)	0.0070 (19)	-0.0070 (15)
C6	0.037 (2)	0.0412 (18)	0.0372 (17)	-0.0010 (17)	0.0012 (16)	-0.0022 (15)
C7	0.029 (2)	0.0308 (16)	0.0404 (17)	0.0017 (15)	0.0068 (15)	0.0038 (13)
C8	0.0267 (19)	0.0278 (14)	0.0267 (15)	0.0000 (14)	-0.0030 (14)	0.0017 (12)
C9	0.0244 (18)	0.0243 (14)	0.0280 (15)	0.0013 (13)	0.0010 (14)	0.0007 (11)
C10	0.0267 (19)	0.0255 (14)	0.0324 (16)	-0.0028 (14)	-0.0011 (15)	-0.0005 (12)
C11	0.0203 (18)	0.0259 (14)	0.0279 (15)	-0.0001 (13)	0.0049 (13)	-0.0016 (12)
C12	0.0253 (19)	0.0296 (15)	0.0293 (15)	-0.0038 (14)	-0.0002 (14)	0.0004 (13)
C13	0.031 (2)	0.0296 (15)	0.0265 (15)	0.0030 (15)	-0.0002 (14)	-0.0006 (12)
C14	0.029 (2)	0.0302 (16)	0.0292 (15)	0.0012 (15)	-0.0005 (15)	0.0000 (12)
C15	0.037 (2)	0.0302 (16)	0.0294 (16)	0.0028 (16)	0.0015 (16)	0.0041 (12)
C16	0.034 (2)	0.0364 (18)	0.0309 (17)	0.0069 (16)	-0.0039 (16)	-0.0018 (13)
C17	0.028 (2)	0.0342 (17)	0.0328 (17)	0.0017 (14)	-0.0030 (15)	-0.0018 (13)
C18	0.033 (2)	0.0296 (15)	0.0308 (15)	-0.0004 (16)	-0.0001 (15)	0.0013 (12)
C19	0.044 (2)	0.0275 (16)	0.0410 (18)	-0.0027 (16)	-0.0028 (17)	0.0091 (13)

Geometric parameters (Å, °)

01-C8	1.343 (4)	С5—Н5	0.9500
O1—C7	1.446 (4)	С6—Н6	0.9500
O2—C8	1.222 (4)	С7—Н7А	0.9900
O3—C10	1.415 (4)	C7—H7B	0.9900
O3—H3O	0.843 (11)	C9—C10	1.519 (5)
O4—C11	1.221 (4)	C9—C11	1.537 (4)
O5—C14	1.375 (4)	С9—Н9	1.0000
O5—C19	1.435 (4)	C10—H10A	0.9900
N1—C8	1.352 (5)	C10—H10B	0.9900
N1-C9	1.455 (4)	C12—C13	1.461 (5)
N1—H1N	0.89 (3)	C12—H12	0.9500
N2—C11	1.355 (4)	C13—C18	1.394 (5)
N2—N3	1.386 (4)	C13—C14	1.405 (4)
N2—H2N	0.88 (3)	C14—C15	1.386 (5)
N3—C12	1.279 (4)	C15—C16	1.382 (5)
C1—C6	1.383 (5)	C15—H15	0.9500
C1—C2	1.386 (5)	C16—C17	1.390 (5)
C1—C7	1.499 (5)	C16—H16	0.9500
С2—С3	1.383 (5)	C17—C18	1.376 (5)
С2—Н2	0.9500	C17—H17	0.9500
C3—C4	1.391 (6)	C18—H18	0.9500
С3—Н3	0.9500	C19—H19A	0.9800
C4—C5	1.374 (6)	C19—H19B	0.9800
C4—H4	0.9500	C19—H19C	0.9800
C5—C6	1.399 (5)		
C8—O1—C7	115.6 (2)	N1—C9—H9	108.5

С10—О3—НЗО	107 (3)	С10—С9—Н9	108.5
C14—O5—C19	117.3 (3)	С11—С9—Н9	108.5
C8—N1—C9	118.1 (3)	O3—C10—C9	107.5 (3)
C8—N1—H1N	115 (3)	O3—C10—H10A	110.2
C9—N1—H1N	114 (2)	С9—С10—Н10А	110.2
C11—N2—N3	119.5 (3)	O3—C10—H10B	110.2
C11—N2—H2N	118 (3)	С9—С10—Н10В	110.2
N3—N2—H2N	122 (3)	H10A—C10—H10B	108.5
C12—N3—N2	114.4 (3)	04—C11—N2	124.4 (3)
C6-C1-C2	119.6 (3)	04	122.3 (3)
C6-C1-C7	120.3 (3)	N2-C11-C9	113.3 (3)
C2-C1-C7	120.1 (3)	N3—C12—C13	120.6 (3)
C_{3} $-C_{2}$ $-C_{1}$	120.7 (4)	N3-C12-H12	119.7
C3—C2—H2	119.6	C13—C12—H12	119.7
C1-C2-H2	119.6	C18 - C13 - C14	118.5 (3)
$C^2 - C^3 - C^4$	119.4 (4)	C18 - C13 - C12	1212(3)
C2—C3—H3	120.3	C14 - C13 - C12	121.2(3) 120.3(3)
C4-C3-H3	120.3	05-C14-C15	120.5(3) 1240(3)
C_{5} C_{4} C_{3}	120.3 120.4(3)	05-C14-C13	121.0(3) 1156(3)
$C_5 - C_4 - H_4$	119.8	C_{15} C_{14} C_{13}	1204(3)
$C_3 - C_4 - H_4$	119.8	C_{16} C_{15} C_{14} C_{15} C_{14}	120.4(3) 1199(3)
C4-C5-C6	119.0	C16-C15-H15	120.0
C4-C5-H5	120.0	C_{14} C_{15} H_{15}	120.0
C6-C5-H5	120.0	C_{15} C_{15} C_{16} C_{17}	120.0 120.3(3)
$C_1 - C_2 - C_2$	119 9 (4)	$C_{15} - C_{16} - H_{16}$	119.9
C1 - C6 - H6	120.1	C_{17} C_{16} H_{16}	119.9
C5-C6-H6	120.1	C18 - C17 - C16	119.9
C_{1} C_{7} C_{1}	108 5 (3)	$C_{18} = C_{17} = C_{10}$	119.8 (5)
O1 C7 H7A	110.0	$C_{16} = C_{17} = H_{17}$	120.1
$C_1 = C_7 = H_7 A$	110.0	$C_{10} = C_{17} = M_{17}$	120.1 121.1(3)
C1 = C7 = H7R	110.0	C17 C18 H18	121.1 (5)
$C_1 = C_7 = H_7 B$	110.0	$C_{12} = C_{10} = H_{10}$	119.5
	108.4	$C_{13} = C_{10} = H_{10}$	119.5
$\Pi/A = C/=\Pi/B$	100.4	05 C10 H10P	109.5
02 - 03 - 01	124.4(3) 124.7(3)	U10A C10 U10P	109.5
$O_2 = C_3 = N_1$	124.7(3) 110.0(3)	119A - C19 - 119B	109.5
$N_1 = C_0 = C_1 O_1$	110.9(3) 100.7(3)		109.5
N1 = C9 = C10	109.7(3)	H10P C10 H10C	109.5
$\begin{array}{ccc} \mathbf{N} & -\mathbf{C} & \mathbf{N} \\ \mathbf{C} & \mathbf{O} & \mathbf{C} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} \\ \mathbf{O} & \mathbf{O} & \mathbf{C} \\ \mathbf{I} & \mathbf{I} \\ \mathbf{I} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{I} \\$	110.1(3)	Піяв—Сія—Піяс	109.3
C10-C9-C11	111.0 (2)		
C11—N2—N3—C12	175 9 (3)	N3—N2—C11—C9	-1730(2)
C_{6} C_{1} C_{2} C_{3}	-0.6(5)	N1 - C9 - C11 - O4	-180(4)
C_{7} C_{1} C_{2} C_{3}	176 8 (3)	C10-C9-C11-O4	10.0(4) 104 0(3)
$C_1 - C_2 - C_3 - C_4$	-0.5(5)	N1-C9-C11-N2	161.6 (3)
$C_{2} = C_{3} = C_{4} = C_{5}$	1 2 (5)	C10-C9-C11-N2	-763(3)
$C_2 = C_3 = C_4 = C_5 = C_6$	-0.7(5)	$N_2 N_3 C_1^2 C_1^3$	-1766(3)
$C_{2} - C_{1} - C_{6} - C_{5}$	11(5)	N_{3} C_{12} C_{13} C_{13}	117(5)
$C_2 = C_1 = C_0 = C_2$	-1763(3)	$N_3 - C_{12} - C_{13} - C_{16}$	-168.8(3)
	1/0.3 (3)	113-012-013-014	100.0 (3)

C4—C5—C6—C1	-0.5 (5)	C19—O5—C14—C15	-9.5 (5)
C8—O1—C7—C1	174.1 (3)	C19—O5—C14—C13	170.7 (3)
C6-C1-C7-O1	-124.9 (3)	C18—C13—C14—O5	180.0 (3)
C2-C1-C7-O1	57.7 (4)	C12—C13—C14—O5	0.4 (4)
C7—O1—C8—O2	1.1 (4)	C18—C13—C14—C15	0.1 (5)
C7	179.6 (3)	C12—C13—C14—C15	-179.4 (3)
C9—N1—C8—O2	-17.9 (4)	O5-C14-C15-C16	179.1 (3)
C9—N1—C8—O1	163.6 (3)	C13—C14—C15—C16	-1.1 (5)
C8—N1—C9—C10	175.6 (3)	C14—C15—C16—C17	1.2 (5)
C8—N1—C9—C11	-61.2 (3)	C15—C16—C17—C18	-0.4 (5)
N1-C9-C10-O3	60.0 (3)	C16—C17—C18—C13	-0.6 (5)
C11—C9—C10—O3	-62.3 (3)	C14—C13—C18—C17	0.7 (5)
N3—N2—C11—O4	6.6 (5)	C12-C13-C18-C17	-179.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N1—H1n···O3	0.89 (3)	2.44 (3)	2.788 (5)	104 (2)
O3—H3o···O4 ⁱ	0.85 (2)	2.04 (2)	2.789 (4)	147 (4)
N2—H2n···O2 ⁱⁱ	0.88 (3)	2.10 (3)	2.974 (5)	177 (3)
C10—H10b…O2 ⁱ	0.99	2.45	3.439 (5)	175
C16—H16…O4 ⁱⁱⁱ	0.95	2.55	3.284 (5)	134

Symmetry codes: (i) x+1, y, z; (ii) x+1/2, -y+1/2, -z+1; (iii) -x+1, y+1/2, -z+1/2.