

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Di-*µ*-thiocyanato-bis[bis(tri-*p*-toly]phosphine)silver(I)] 0.35-hydrate

Nozipho M. Khumalo, Reinout Meijboom, Alfred Muller and Bernard Omondi*

Synthesis and Catalysis Research Centre, Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa Correspondence e-mail: boowaga@uj.ac.za

Received 12 March 2010; accepted 17 March 2010

Key indicators: single-crystal X-ray study: T = 173 K: mean $\sigma(C-C) = 0.003$ Å: disorder in solvent or counterion; R factor = 0.032; wR factor = 0.090; data-toparameter ratio = 22.3.

In the binuclear centrosymmetric title compound, $[Ag_2(NCS)_2(C_{21}H_{21}P)_4] \cdot 0.35H_2O$, a pseudo-polymorph of $[Ag_2(NCS)_2(C_{21}H_{21}P)_4]$ ·2CH₃CN, the Ag atom is coordinated by two phosphine ligands and two bridging thiocyanate ligands in a distorted tetrahedral configuration. The crystal structure exhibits intermolecular $C-H \cdot \cdot \pi$ interactions.

Related literature

For a general introduction to the coordination chemistry of silver-phosphine complexes, see: Meijboom et al. (2009). For the original preparation of silver-phosphine complexes, see: Mann et al. (1937). For related silver(I)-thiocyanate complexes, see: Bowmaker et al. (1997); Effendy et al. (2005), Venter et al. (2007), Omondi & Meijboom (2010). For related silver(I)-tri-p-tolylphosphine complexes, see: Meijboom et al. (2006); Meijboom (2006, 2007); Meijboom & Muller (2006); Venter et al. (2006). For bond-length data, see: Allen (2002).

Experimental

Crystal data [Ag₂(NCS)₂(C₂₁H₂₁P)₄]·0.35H₂O $M_r = 1554.94$ Triclinic, $P\overline{1}$ a = 10.5470 (6) Å b = 13.5063 (8) Å c = 14.9779 (8) Å $\alpha = 91.575(1)^{\circ}$ $\beta = 110.064 (1)^{\circ}$

 $\gamma = 105.615 \ (1)^{\circ}$ V = 1913.15 (19) Å³ Z = 1Mo $K\alpha$ radiation $\mu = 0.70 \text{ mm}^{-1}$ T = 173 K $0.42 \times 0.35 \times 0.15 \ \text{mm}$

metal-organic compounds

 $R_{\rm int} = 0.022$

23789 measured reflections

9487 independent reflections

8868 reflections with $I > 2\sigma(I)$

Data collection

Bruker APEXII CCD

```
diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2004)
  T_{\rm min} = 0.758, T_{\rm max} = 0.903
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	5 restraints
$wR(F^2) = 0.090$	H-atom parameters constrained
S = 0.85	$\Delta \rho_{\rm max} = 1.67 \text{ e } \text{\AA}^{-3}$
9487 reflections	$\Delta \rho_{\rm min} = -1.70 \text{ e} \text{ Å}^{-3}$
425 parameters	

Table 1

Selected geometric parameters (Å, °).

C-N	1.160 (3)	Ag-P1	2.4516 (5)
C-S	1.656 (2)	Ag-P2	2.4987 (5)
N-Ag	2.3519 (18)	Ag-S ⁱ	2.6062 (6)
N-C-S	178.0 (2)	P1-Ag-P2	119.826 (18)
C-N-Ag	142.81 (16)	N-Ag-S ⁱ	105.61 (5)
C-S-Ag ⁱ	97.85 (7)	P1-Ag-Si	111.461 (18)
N-Ag-P1	115.23 (5)	P2-Ag-S ⁱ	110.655 (19)
N-Ag-P2	91.90 (5)		
C-N-Ag-S ⁱ	51.7 (3)		

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Table 2 Hydrogen-bond geometry (Å, °).

rings, respectively.

Cg1 and Cg6 are the centroids of the C111-C116 and C231-C236 benzene

C135-H135Cg6 ⁱⁱ 0.95 2.86 3.772 (2) 161 C225-H225Cg1 ⁱⁱⁱ 0.95 2.73 3.568 (2) 147	$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
	$C135 - H135 \cdots Cg6^{ii}$ $C225 - H225 \cdots Cg1^{iii}$	0.95 0.95	2.86 2.73	3.772 (2) 3.568 (2)	161 147

Symmetry codes: (ii) -x, -y + 1, -z + 1; (iii) -x, -y + 1, -z.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

NMK thanks the Research Academy for Undergraduates, University of Johannesburg, for financial support. Financial assistance from the South African National Research Foundation and the University of Johannesburg is gratefully acknowledged. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2658).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bowmaker, G. A., Effendy, Hart, R. D., Kildea, J. D., De Silva, E. N. & White, A. H. (1997). Aust. J. Chem. 50, 627–640.
- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Effendy, Di Nicola, C., Fianchini, M., Pettinari, C., Skelton, B.W., Somers, N. & White, A. H. (2005). *Inorg. Chim. Acta*, **358**, 763–795.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Mann, F. G., Wells, A. F. & Purdue, D. (1937). J. Chem. Soc. pp. 1828–1836.
- Meijboom, R. (2006). Acta Cryst. E62, m2698-m2700.
- Meijboom, R. (2007). Acta Cryst. E63, m78-m79.
- Meijboom, R., Bowen, R. J. & Berners-Price, S. J. (2009). Coord. Chem. Rev. 253, 325–342.
- Meijboom, R. & Muller, A. (2006). Acta Cryst. E62, m3191-m3193.
- Meijboom, R., Muller, A. & Roodt, A. (2006). Acta Cryst. E62, m2162-m2164.
- Omondi, B. & Meijboom, R. (2010). Acta Cryst. B66, 69-75.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Venter, G. J. S., Meijboom, R. & Roodt, A. (2006). Acta Cryst. E62, m3453– m3455.
- Venter, G. J. S., Meijboom, R. & Roodt, A. (2007). Acta Cryst. E63, m3076– m3077.

supporting information

Acta Cryst. (2010). E66, m451-m452 [doi:10.1107/S1600536810010032]

Di-µ-thiocyanato-bis[bis(tri-p-tolylphosphine)silver(I)] 0.35-hydrate

Nozipho M. Khumalo, Reinout Meijboom, Alfred Muller and Bernard Omondi

S1. Comment

Silver(I) complexes of the type [AgLnX] (L is a tertiary phosphine or arsine, n = 1-4 and X is a coordinating or noncoordinating anion) were first prepared by Mann *et al.* (1937) and were the first crystallographic examples of metal phosphine complexes. These compounds display a rich diversity of structural types due to the interplay of parameters such as the geometric flexibility of Ag(I), the bite angle, the electronic properties of the group 15 donor ligand, the coordination of the supporting ligand, etc. (Meijboom *et al.*, 2009).

As part of work that was aimed at the identification of roles the above mentioned properties play during the crystallization of simple silver(I) salts with Group 15 donor ligands with initial focus on tri-*p*-tolylphosphine complexes (Meijboom *et al.*, 2006; Meijboom, 2006; Meijboom & Muller, 2006; Venter *et al.*, 2006; Meijboom, 2007), we present here a pseudo-polymorph of the previously reported $[Ag_2(NCS)_2(C_{21}H_{21}P)_4]2CH_3CN$ (Venter *et al.*, 2007), $[Ag_2(NCS)_2(C_{21}H_{21}P)_4]0.35H_2O$ (I). Complex (I) was left standing on the bench top in the lab for a long period of time during which it supposedly absorbed moisture into its structure.

The asymmetric unit of the title compound, Fig. 1, comprises half a unit of the Ag^I complex (the other half generated by the symmetry operator -x+1, -y+1, -z+1) and 0.35 molecule of H₂O. The bond lengths (Allen *et al.*, 1987) and angles (Table 1) are within the normal ranges and are comparable to those of related complexes such as the pseudo-polymorph $[Ag_2(NCS)_2(C_{21}H_{21}P)_4]$.2CH₃CN (Venter *et al.* 2007), $[Ag_2(NCS)_2\{P(4-FC_6H_4)_3\}_4]$ (Omondi & Meijboom, 2010) and other silver(I) thiocyanate complexes, (Bowmaker *et al.* 1997; Effendy *et al.* 2005).

The geometry around the Ag(I) atom is a slightly distorted tetrahedral which is coordinated by the two SCN anions and two phosphine ligands resulting in a dimeric species in which the two Ag(I) centres are bridged by the SCN anions (Table 1).

The crystal structure is stabilized by pairs of C—H··· π intermolecular interactions along the crystallographic a and c axes [H225···Cg1 = 2.73 Å, C225—H225···Cg1 = 147° and H135···Cg6 = 2.86 Å, C135—H135···Cg6 = 161° (Fig. 2). Cg1 and Cg6 are the centroids of the C111/C112/C113/C114/C115/C116 and C231/C232/C233/C234/C235/C236 benzene rings]. The symmetry operator for the two interactions is -x, -y+1, -z+1. The two C—H··· π interactions result in dimeric pairs of the adjacent molecules involved.

S2. Experimental

AgSCN (0.08g, 0.49 mmol) and $P(p</>-tol)_3$ (0.30g, 0.98 mmol) were dissolved in warm pyridine to give a clear solution which on cooling and solvent evaporation deposited colourless crystals of $[Ag_2(NCS)_2(C_{21}H_{21}P)_4]$. H₂O in good yield.

S3. Refinement

All hydrogen atoms were positioned geometrically, with C-H = 0.95 Å for aromatic hydrogens and 0.98 Å for methyl hydrogens, and allowed to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$.

CheckCif Alerts explanations

Applying restraints does not seem to remove Hirshfeld Test Diff. There is partial occupation of the O atom. EADP restaraints were applied. The su's on the Cell Angles are true values. The Solvent Disorder fraction too small.

Figure 1

The structure (I), showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity. For the C atoms, the first digit indicates ring number and the second digit indicates the position of the atom in the ring. Primed atoms were generated by symmetry operator (1-x, 1-y, 1-z).

Figure 2

Packing pattern of (I) as viewed down the crystallographic *b* axis where the C—H $\cdots\pi$ intermolecular interactions are shown in dashed lines [Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+1, -z+1 and (iii) x+1, y, z].

Di-µ-thiocyanato-bis[bis(tri-p-tolylphosphine)silver(I)] 0.35-hydrate

Z = 1
F(000) = 803.2
$D_{\rm x} = 1.35 {\rm ~Mg} {\rm ~m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 19388 reflections
$\theta = 1.5 - 28.4^{\circ}$
$\mu=0.70~\mathrm{mm^{-1}}$
T = 173 K
Plate, colourless
$0.42 \times 0.35 \times 0.15 \text{ mm}$

Data collection

Bruker APEXII CCD	9487 independent reflections
diffractometer	8868 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.022$
Absorption correction: multi-scan	$\theta_{\rm max} = 28.4^{\circ}, \ \theta_{\rm min} = 1.5^{\circ}$
(SADABS; Bruker, 2004)	$h = -13 \rightarrow 14$
$T_{\min} = 0.758, \ T_{\max} = 0.903$	$k = -17 \rightarrow 17$
23789 measured reflections	$l = -19 \rightarrow 19$
Refinement	
Refinement on F^2	5 restraints
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.032$	$w = 1/[\sigma^2(F_o^2) + (0.0542P)^2 + 4.2409P]$
$wR(F^2) = 0.090$	where $P = (F_0^2 + 2F_c^2)/3$
S = 0.85	$(\Delta/\sigma)_{\rm max} = 0.001$
9487 reflections	$\Delta \rho_{\rm max} = 1.67 \text{ e} \text{ Å}^{-3}$
425 parameters	$\Delta \rho_{\rm min} = -1.70 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
С	0.3928 (2)	0.51437 (16)	0.57467 (14)	0.0177 (4)	
C111	-0.0803 (2)	0.40359 (15)	0.16962 (14)	0.0156 (4)	
C112	-0.0451 (2)	0.47931 (16)	0.11306 (15)	0.0195 (4)	
H112	0.0384	0.4879	0.0993	0.023*	
C113	-0.1307 (2)	0.54193 (16)	0.07693 (16)	0.0209 (4)	
H113	-0.1054	0.5925	0.0383	0.025*	
C114	-0.2536 (2)	0.53172 (16)	0.09658 (15)	0.0201 (4)	
C115	-0.2896 (2)	0.45523 (18)	0.15105 (15)	0.0218 (4)	
H115	-0.3738	0.4462	0.164	0.026*	
C116	-0.2048 (2)	0.39130 (17)	0.18733 (15)	0.0194 (4)	
H116	-0.2319	0.3393	0.2242	0.023*	
C117	-0.3407 (3)	0.60450 (19)	0.06084 (18)	0.0288 (5)	
H11A	-0.4174	0.5912	0.0858	0.043*	
H11B	-0.3807	0.5932	-0.0094	0.043*	
H11C	-0.2805	0.6764	0.0829	0.043*	
C121	0.0701 (2)	0.26637 (15)	0.13329 (14)	0.0161 (4)	
C122	-0.0348 (2)	0.23392 (16)	0.04197 (14)	0.0186 (4)	
H122	-0.1181	0.2548	0.0258	0.022*	
C123	-0.0171 (2)	0.17082 (17)	-0.02548 (15)	0.0223 (4)	
H123	-0.0891	0.1491	-0.0873	0.027*	
C124	0.1038 (2)	0.13926 (16)	-0.00379 (15)	0.0219 (4)	
C125	0.2092 (2)	0.17344 (17)	0.08672 (16)	0.0230 (4)	
H125	0.2933	0.1535	0.1023	0.028*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

G10 (0.1000 (0)			0.0000 (1)
C126	0.1929 (2)	0.23641 (17)	0.15464 (15)	0.0203 (4)
H126	0.2659	0.2592	0.216	0.024*
C127	0.1228 (3)	0.06905 (19)	-0.07552 (17)	0.0303 (5)
H12A	0.1933	0.1091	-0.0999	0.045*
H12B	0.0325	0.0397	-0.1289	0.045*
H12C	0.1548	0.0128	-0.0442	0.045*
C131	-0.0335 (2)	0.23911 (15)	0.28655 (14)	0.0156 (4)
C132	-0.1165 (2)	0.14053 (16)	0.23791 (15)	0.0204 (4)
H132	-0.1356	0.1259	0.1714	0.024*
C133	-0.1715 (2)	0.06369 (16)	0.28579 (16)	0.0224 (4)
H133	-0.2278	-0.0028	0.2514	0.027*
C134	-0.1454(2)	0.08243 (16)	0.38360 (16)	0.0203 (4)
C135	-0.0651(2)	0.18157 (17)	0.43150 (15)	0.0231 (4)
H135	-0.0486	0.1967	0.4976	0.028*
C136	-0.0086(2)	0 25880 (16)	0 38437 (15)	0.0205 (4)
H136	0.0472	0.3254	0.4188	0.025*
C137	-0.1997(3)	-0.00233(18)	0.43636 (18)	0.025
H13A	-0.294	-0.0456	0.30/0	0.0270 (3)
	-0.205	0.0450	0.3949	0.04
	0.205	0.0280	0.4541	0.04*
G211	-0.1334	-0.0431	0.4341	0.04°
C211	0.4180(2)	0.74299(19)	0.44028(18)	0.0284(3)
C212	0.5508 (2)	0.72876 (19)	0.48426 (18)	0.0284 (3)
H212	0.5692	0.6724	0.4568	0.034*
C213	0.6573 (2)	0.79579 (17)	0.56212 (16)	0.0215 (4)
H213	0.7479	0.7852	0.5862	0.026*
C214	0.6338 (2)	0.87726 (17)	0.60492 (15)	0.0223 (4)
C215	0.4993 (2)	0.88878 (19)	0.56982 (18)	0.0284 (3)
H215	0.4799	0.9429	0.5997	0.034*
C216	0.3917 (3)	0.82230 (19)	0.49124 (18)	0.0284 (3)
H216	0.3001	0.8313	0.4685	0.034*
C217	0.7509 (3)	0.95257 (19)	0.68683 (17)	0.0298 (5)
H21A	0.7794	1.0196	0.6646	0.045*
H21B	0.832	0.9254	0.7101	0.045*
H21C	0.7172	0.9616	0.739	0.045*
C221	0.3423 (2)	0.71958 (16)	0.24398 (15)	0.0178 (4)
C222	0.3987 (2)	0.82711 (16)	0.24913 (16)	0.0221 (4)
H222	0.4115	0.8715	0.3038	0.026*
C223	0.4360(2)	0.86902 (17)	0 17507 (18)	0.0254(4)
H223	0.4738	0.9421	0 1797	0.03*
C224	0.4194(2)	0.80636 (18)	0.1777 0.09378 (17)	0.0233(4)
C224	0.4174(2)	0.60030(10)	0.09370(17)	0.0233(4)
U225	0.3044 (2)	0.6540	0.03922(10)	0.0210 (4)
П223 С226	0.3323 0.2272(2)	0.0349	0.0347 0.16211 (15)	0.023°
0220	0.3273(2)	0.05005 (10)	0.10311 (13)	0.0102 (4)
H220	0.291	0.5855	0.138/	0.022*
0227	0.4579(3)	0.8511 (2)	0.0122 (2)	0.0364 (6)
H22A	0.3754	0.8648	-0.0348	0.055*
H22B	0.4882	0.8017	-0.0185	0.055*
H22C	0.535	0.9161	0.037	0.055*

C231	0.1245 (2)	0.68002 (15)	0.32687 (14)	0.0171 (4)	
C232	0.0794 (2)	0.76033 (17)	0.28263 (16)	0.0210 (4)	
H232	0.1369	0.8067	0.2555	0.025*	
C233	-0.0494(2)	0.77291 (17)	0.27792 (16)	0.0229 (4)	
H233	-0.0778	0.8288	0.2485	0.028*	
C234	-0.1373 (2)	0.70543 (17)	0.31532 (15)	0.0203 (4)	
C235	-0.0920 (2)	0.62480 (17)	0.35919 (16)	0.0223 (4)	
H235	-0.1502	0.5777	0.3853	0.027*	
C236	0.0369 (2)	0.61247 (16)	0.36516 (15)	0.0207 (4)	
H236	0.066	0.5574	0.3957	0.025*	
C237	-0.2777 (2)	0.7183 (2)	0.30916 (19)	0.0288 (5)	
H23A	-0.27	0.7475	0.3721	0.043*	
H23B	-0.35	0.6506	0.2894	0.043*	
H23C	-0.3044	0.7651	0.2621	0.043*	
N	0.3107 (2)	0.47534 (14)	0.49960 (13)	0.0211 (3)	
S	0.50745 (5)	0.56667 (5)	0.68345 (4)	0.02352 (11)	
Ag	0.270935 (15)	0.468455 (11)	0.334821 (10)	0.01632 (5)	
P1	0.05204 (5)	0.34022 (4)	0.22977 (3)	0.01412 (10)	
P2	0.29159 (5)	0.65734 (4)	0.33849 (4)	0.01642 (10)	
0	0.5565 (9)	0 2031 (7)	0 2512 (6)	0.0211(3)	0.176(4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
С	0.0168 (8)	0.0207 (9)	0.0169 (7)	0.0042 (7)	0.0089 (6)	0.0024 (7)
C111	0.0150 (8)	0.0153 (9)	0.0141 (8)	0.0037 (7)	0.0032 (7)	-0.0010 (7)
C112	0.0170 (9)	0.0190 (9)	0.0220 (10)	0.0041 (7)	0.0073 (8)	0.0036 (8)
C113	0.0211 (10)	0.0167 (9)	0.0219 (10)	0.0031 (7)	0.0058 (8)	0.0048 (7)
C114	0.0200 (9)	0.0182 (9)	0.0182 (9)	0.0074 (8)	0.0014 (8)	-0.0024 (7)
C115	0.0187 (9)	0.0292 (11)	0.0191 (9)	0.0094 (8)	0.0071 (8)	0.0007 (8)
C116	0.0186 (9)	0.0226 (10)	0.0171 (9)	0.0056 (8)	0.0069 (8)	0.0040 (7)
C117	0.0273 (11)	0.0261 (11)	0.0314 (12)	0.0150 (9)	0.0032 (9)	0.0020 (9)
C121	0.0167 (9)	0.0156 (8)	0.0154 (9)	0.0034 (7)	0.0064 (7)	0.0009 (7)
C122	0.0200 (9)	0.0187 (9)	0.0153 (9)	0.0050 (7)	0.0048 (7)	0.0017 (7)
C123	0.0284 (11)	0.0206 (10)	0.0139 (9)	0.0041 (8)	0.0053 (8)	-0.0001 (7)
C124	0.0310 (11)	0.0165 (9)	0.0196 (10)	0.0037 (8)	0.0135 (9)	0.0015 (7)
C125	0.0224 (10)	0.0226 (10)	0.0259 (11)	0.0071 (8)	0.0112 (9)	0.0001 (8)
C126	0.0177 (9)	0.0216 (10)	0.0188 (9)	0.0041 (8)	0.0046 (8)	-0.0017 (8)
C127	0.0455 (14)	0.0276 (12)	0.0223 (11)	0.0124 (10)	0.0170 (10)	-0.0010 (9)
C131	0.0154 (8)	0.0156 (9)	0.0154 (9)	0.0045 (7)	0.0051 (7)	0.0017 (7)
C132	0.0229 (10)	0.0175 (9)	0.0185 (9)	0.0021 (8)	0.0081 (8)	-0.0011 (7)
C133	0.0248 (10)	0.0155 (9)	0.0253 (10)	0.0019 (8)	0.0107 (9)	-0.0007 (8)
C134	0.0202 (10)	0.0196 (9)	0.0232 (10)	0.0063 (8)	0.0100 (8)	0.0056 (8)
C135	0.0270 (11)	0.0229 (10)	0.0168 (9)	0.0036 (8)	0.0079 (8)	0.0008 (8)
C136	0.0234 (10)	0.0171 (9)	0.0167 (9)	0.0015 (8)	0.0059 (8)	-0.0006 (7)
C137	0.0323 (12)	0.0228 (10)	0.0300 (11)	0.0066 (9)	0.0172 (10)	0.0089 (9)
C211	0.0235 (6)	0.0269 (6)	0.0285 (6)	0.0104 (4)	0.0006 (4)	-0.0100 (4)
C212	0.0235 (6)	0.0269 (6)	0.0285 (6)	0.0104 (4)	0.0006 (4)	-0.0100 (4)

C213	0.0157 (9)	0.0235 (10)	0.0219 (10)	0.0043 (8)	0.0040 (8)	0.0012 (8)
C214	0.0220 (10)	0.0180 (9)	0.0198 (10)	0.0035 (8)	0.0011 (8)	0.0003 (8)
C215	0.0235 (6)	0.0269 (6)	0.0285 (6)	0.0104 (4)	0.0006 (4)	-0.0100 (4)
C216	0.0235 (6)	0.0269 (6)	0.0285 (6)	0.0104 (4)	0.0006 (4)	-0.0100 (4)
C217	0.0292 (12)	0.0235 (11)	0.0245 (11)	0.0036 (9)	-0.0015 (9)	-0.0037 (9)
C221	0.0143 (9)	0.0165 (9)	0.0207 (9)	0.0033 (7)	0.0052 (7)	0.0007 (7)
C222	0.0203 (10)	0.0163 (9)	0.0267 (11)	0.0026 (8)	0.0075 (8)	-0.0009 (8)
C223	0.0206 (10)	0.0180 (10)	0.0342 (12)	0.0013 (8)	0.0091 (9)	0.0048 (9)
C224	0.0164 (9)	0.0272 (11)	0.0260 (11)	0.0055 (8)	0.0078 (8)	0.0087 (9)
C225	0.0173 (9)	0.0243 (10)	0.0205 (10)	0.0065 (8)	0.0058 (8)	0.0012 (8)
C226	0.0151 (9)	0.0171 (9)	0.0197 (9)	0.0034 (7)	0.0043 (7)	0.0004 (7)
C227	0.0356 (14)	0.0398 (14)	0.0342 (13)	0.0050 (11)	0.0173 (11)	0.0149 (11)
C231	0.0157 (9)	0.0165 (9)	0.0153 (9)	0.0024 (7)	0.0031 (7)	-0.0022 (7)
C232	0.0193 (10)	0.0196 (10)	0.0230 (10)	0.0041 (8)	0.0075 (8)	0.0047 (8)
C233	0.0227 (10)	0.0222 (10)	0.0232 (10)	0.0082 (8)	0.0062 (8)	0.0049 (8)
C234	0.0184 (9)	0.0214 (10)	0.0178 (9)	0.0027 (8)	0.0055 (8)	-0.0037 (7)
C235	0.0234 (10)	0.0196 (10)	0.0248 (10)	0.0038 (8)	0.0120 (8)	0.0016 (8)
C236	0.0237 (10)	0.0179 (9)	0.0219 (10)	0.0054 (8)	0.0105 (8)	0.0028 (8)
C237	0.0226 (11)	0.0303 (12)	0.0359 (13)	0.0099 (9)	0.0121 (10)	0.0022 (10)
Ν	0.0218 (8)	0.0235 (9)	0.0175 (6)	0.0056 (7)	0.0077 (6)	0.0034 (6)
S	0.0158 (2)	0.0346 (3)	0.0168 (2)	0.0025 (2)	0.00627 (18)	-0.0048 (2)
Ag	0.01599 (8)	0.01542 (8)	0.01422 (8)	0.00279 (5)	0.00302 (5)	-0.00025 (5)
P1	0.0136 (2)	0.0137 (2)	0.0132 (2)	0.00289 (17)	0.00369 (17)	0.00016 (17)
P2	0.0160 (2)	0.0139 (2)	0.0169 (2)	0.00268 (18)	0.00463 (18)	-0.00128 (17)
0	0.0218 (8)	0.0235 (9)	0.0175 (6)	0.0056 (7)	0.0077 (6)	0.0034 (6)

Geometric parameters (Å, °)

C—N	1.160 (3)	C211—P2	1.822 (2)	
C—S	1.656 (2)	C212—C213	1.392 (3)	
C111—C116	1.395 (3)	C212—H212	0.95	
C111—C112	1.400 (3)	C213—C214	1.379 (3)	
C111—P1	1.820 (2)	C213—H213	0.95	
C112—C113	1.387 (3)	C214—C215	1.387 (3)	
С112—Н112	0.95	C214—C217	1.510 (3)	
C113—C114	1.397 (3)	C215—C216	1.399 (3)	
С113—Н113	0.95	C215—H215	0.95	
C114—C115	1.387 (3)	C216—H216	0.95	
C114—C117	1.508 (3)	C217—H21A	0.98	
C115—C116	1.396 (3)	C217—H21B	0.98	
С115—Н115	0.95	C217—H21C	0.98	
С116—Н116	0.95	C221—C226	1.398 (3)	
C117—H11A	0.98	C221—C222	1.402 (3)	
C117—H11B	0.98	C221—P2	1.827 (2)	
С117—Н11С	0.98	C222—C223	1.385 (3)	
C121—C126	1.396 (3)	C222—H222	0.95	
C121—C122	1.398 (3)	C223—C224	1.395 (3)	
C121—P1	1.825 (2)	C223—H223	0.95	

C122—C123	1.396 (3)	C224—C225	1.397 (3)
C122—H122	0.95	C224—C227	1.507 (3)
C123—C124	1.389 (3)	C225—C226	1.386 (3)
C123—H123	0.95	С225—Н225	0.95
C124—C125	1.393 (3)	C226—H226	0.95
C124—C127	1.512 (3)	C227—H22A	0.98
C125—C126	1.393 (3)	C227—H22B	0.98
C125—H125	0.95	С227—Н22С	0.98
C126—H126	0.95	C231—C232	1.394 (3)
C127—H12A	0.98	C231—C236	1.398 (3)
C127—H12B	0.98	C231—P2	1.820 (2)
C127—H12C	0.98	C^{232} C^{233}	1 392 (3)
$C_{131} - C_{132}$	1 397 (3)	C232—H232	0.95
$C_{131} - C_{136}$	1.397(3) 1.401(3)	$C_{232} = C_{1232}$	1 391 (3)
C131 P1	1.401(3) 1.825(2)	C233 H233	0.05
$C_{131} - 11$	1.025(2) 1.380(3)	$C_{233} = 11233$	1.307(3)
$C_{132} = C_{133}$	1.369 (3)	$C_{234} = C_{235}$	1.397(3)
C_{132} $$	0.93	$C_{234} - C_{237}$	1.309(3)
C135—C134	1.397 (3)	$C_{235} - C_{236}$	1.380 (3)
С133—Н133	0.95	С235—Н235	0.95
C134—C135	1.395 (3)	C236—H236	0.95
C134—C137	1.507 (3)	C237—H23A	0.98
C135—C136	1.391 (3)	С237—Н23В	0.98
С135—Н135	0.95	С237—Н23С	0.98
С136—Н136	0.95	N—Ag	2.3519 (18)
С137—Н13А	0.98	S—Ag ⁱ	2.6062 (6)
C137—H13B	0.98	Ag—P1	2.4516 (5)
C137—H13C	0.98	Ag—P2	2.4987 (5)
C211—C212	1.382 (3)	Ag—S ⁱ	2.6062 (6)
C211—C216	1.392 (3)		
N—C—S	178.0 (2)	C213—C214—C217	121.2 (2)
C116—C111—C112	118.43 (18)	C215—C214—C217	120.8 (2)
C116—C111—P1	123.51 (16)	C214—C215—C216	121.3 (2)
C112—C111—P1	117.43 (15)	C214—C215—H215	119.3
C113—C112—C111	120.79 (19)	C216—C215—H215	119.3
C113—C112—H112	119.6	C211—C216—C215	120.0 (2)
C111—C112—H112	119.6	C211—C216—H216	120
C112—C113—C114	121.0 (2)	C215—C216—H216	120
C112—C113—H113	119.5	C214—C217—H21A	109.5
C114—C113—H113	119.5	C214—C217—H21B	109.5
C115—C114—C113	118 09 (19)	H21A—C217—H21B	109.5
$C_{115} - C_{114} - C_{117}$	122 0 (2)	$C_{214} C_{217} H_{21C}$	109.5
C113—C114—C117	1199(2)	$H_{21}A = C_{21}T = H_{21}C$	109.5
C114 - C115 - C116	121 5 (2)	$H_{21R} = C_{217} = H_{21C}$	109.5
$C_{114} = C_{115} = C_{116}$	110 3	$C_{226} C_{221} - C_{222} C_{222}$	118 1 (2)
$C_{114} - C_{115} - H_{115}$	119.5	$C_{220} - C_{221} - C_{222}$	110.1(2) 11827(15)
	117.5	$C_{220} - C_{221} - r_2$	110.3/(13)
	120.2 (2)	C_{222} — C_{221} — r_2	123.34 (16)
C115—C116—H116	119.9	C223—C222—C221	120.5 (2)

	110.0	G222 G222 H222	110.0
CIII—CII6—HII6	119.9	C223—C222—H222	119.8
CII4—CII7—HIIA	109.5	C221—C222—H222	119.8
CII4—CII7—HIIB	109.5	C222—C223—C224	121.5 (2)
H11A—C117—H11B	109.5	C222—C223—H223	119.3
C114—C117—H11C	109.5	C224—C223—H223	119.3
H11A—C117—H11C	109.5	C223—C224—C225	117.9 (2)
H11B—C117—H11C	109.5	C223—C224—C227	122.0 (2)
C126—C121—C122	118.87 (18)	C225—C224—C227	120.1 (2)
C126—C121—P1	117.34 (15)	C226—C225—C224	121.0 (2)
C122—C121—P1	123.70 (15)	С226—С225—Н225	119.5
C123—C122—C121	120.1 (2)	С224—С225—Н225	119.5
C123—C122—H122	120	C225—C226—C221	121.07 (19)
C121—C122—H122	120	C225—C226—H226	119.5
C124—C123—C122	121.2 (2)	C221—C226—H226	119.5
C124—C123—H123	119.4	C224—C227—H22A	109.5
C122—C123—H123	119.4	C224—C227—H22B	109.5
C_{123} C_{124} C_{125}	118 55 (19)	H22A—C227—H22B	109.5
C_{123} C_{124} C_{127}	1217(2)	C_{224} C_{227} H_{22C}	109.5
$C_{125} = C_{124} = C_{127}$	121.7(2) 119.8(2)	$H_{224} = C_{227} = H_{22C}$	109.5
$C_{123} - C_{124} - C_{127}$	119.8(2) 120.8(2)	$H_{22} = C_{22} = H_{22} = H_{22} = H_{22} = C_{22} = H_{22} = C_{22} = H_{22} = C_{22} = H_{22} = C_{22} = C$	109.5
$C_{124} = C_{125} = C_{120}$	120.8 (2)	1122D - C227 - 1122C	109.3 118 20 (10)
$C_{124} = C_{125} = H_{125}$	119.0	$C_{232} = C_{231} = C_{230}$	110.39(19)
C126—C125—F125	119.0	$C_{232} = C_{231} = P_2$	124.08 (10)
C125 - C126 - C121	120.49 (19)	$C_{230} = C_{231} = P_2$	117.53 (16)
C125—C126—H126	119.8	C233—C232—C231	120.4 (2)
C121—C126—H126	119.8	C233—C232—H232	119.8
C124—C127—H12A	109.5	C231—C232—H232	119.8
C124—C127—H12B	109.5	C232—C233—C234	121.4 (2)
H12A—C127—H12B	109.5	С232—С233—Н233	119.3
C124—C127—H12C	109.5	С234—С233—Н233	119.3
H12A—C127—H12C	109.5	C233—C234—C235	118.0 (2)
H12B—C127—H12C	109.5	C233—C234—C237	121.4 (2)
C132—C131—C136	118.36 (19)	C235—C234—C237	120.6 (2)
C132—C131—P1	122.71 (15)	C236—C235—C234	120.9 (2)
C136—C131—P1	118.84 (15)	С236—С235—Н235	119.5
C133—C132—C131	120.69 (19)	C234—C235—H235	119.5
C133—C132—H132	119.7	C235—C236—C231	120.9 (2)
C131—C132—H132	119.7	C235—C236—H236	119.6
$C_{132} - C_{133} - C_{134}$	121 21 (19)	$C_{231} - C_{236} - H_{236}$	119.6
C_{132} C_{133} H_{133}	119.4	C_{234} C_{237} H_{23A}	109.5
C134—C133—H133	119.4	$C_{234} = C_{237} = H_{23R}$	109.5
$C_{134}^{134} = C_{135}^{135} = 11155$	119.4	$H_{23A} = C_{237} = H_{23B}$	109.5
$C_{133} = C_{134} = C_{135}$	110.0(2) 121.1(2)	1123A - C237 - 1123B	109.5
$C_{133} - C_{134} - C_{137}$	121.1(2) 120.0(2)	$U_{23} + U_{23} - U_{23} + U$	109.5
$C_{133} - C_{134} - C_{137}$	120.9(2)	$\Pi 23A - U23 / - \Pi 23U$	109.3
C130 - C135 - C134	121.3 (2)	$H_{23}B - C_{23}/-H_{23}C$	109.5
C135—C135—H135	119.4	C—N—Ag	142.81 (16)
С134—С135—Н135	119.4	$C - S - Ag^{i}$	97.85 (7)
C135—C136—C131	120.51 (19)	N—Ag—P1	115.23 (5)
C135—C136—H136	119.7	N—Ag—P2	91.90 (5)

C131—C136—H136	119.7	P1—Ag—P2	119.826 (18)
C134—C137—H13A	109.5	N—Ag—S ⁱ	105.61 (5)
C134—C137—H13B	109.5	P1—Ag—S ⁱ	111.461 (18)
H13A—C137—H13B	109.5	P2—Ag—S ⁱ	110.655 (19)
C134—C137—H13C	109.5	C111—P1—C121	104.99 (9)
H13A—C137—H13C	109.5	C111—P1—C131	105.85 (9)
H13B—C137—H13C	109.5	C121—P1—C131	102.91 (9)
C212—C211—C216	118.4 (2)	C111—P1—Ag	110.53 (6)
C212—C211—P2	117.33 (17)	C121—P1—Ag	114.81 (7)
C216—C211—P2	124.24 (18)	C131—P1—Ag	116.68 (7)
C211—C212—C213	120.9 (2)	C231—P2—C211	103.99 (10)
C211—C212—H212	119.5	C_{231} = P_{2} = C_{221}	105.56 (9)
C_{213} C_{212} H_{212}	119.5	$C_{211} = P_{2} = C_{221}$	102.21(11)
$C_{213} = C_{212} = C_{212}$	121 2 (2)	C_{231} P_{2} A_{g}	102.21(11) 111(11(7))
$C_{214} - C_{213} - H_{213}$	119.4	C_{211} P_{2} A_{g}	117 23 (8)
C212_C213_H213	119.4	$C_{211} = P_2 = A_{g}$	117.23(0) 115.42(7)
$C_{212} = C_{213} = H_{213}$	117.99 (19)	C221—12—Ag	115.42 (7)
0215-0214-0215	117.99 (19)		
C116—C111—C112—C113	1.2 (3)	P2-C231-C236-C235	179.95 (16)
P1—C111—C112—C113	-170.13 (16)	C—N—Ag—P1	175.2 (3)
C111—C112—C113—C114	0.5 (3)	C - N - Ag - P2	-60.3(3)
C112—C113—C114—C115	-1.7(3)	$C - N - Ag - S^i$	51.7 (3)
C112—C113—C114—C117	176.8 (2)	C116—C111—P1—C121	122.96 (17)
C_{113} $-C_{114}$ $-C_{115}$ $-C_{116}$	14(3)	C_{112} C_{111} P_{1} C_{121}	-66.24(17)
C117 - C114 - C115 - C116	-1771(2)	C116—C111—P1—C131	1451(19)
C114-C115-C116-C111	0.3(3)	C_{112} C_{111} P_{1} C_{131}	-17469(15)
C112 - C111 - C116 - C115	-15(3)	C_{116} C_{111} P_{1} A_{σ}	$-112\ 70\ (16)$
P1C115C115	169 17 (16)	C_{112} C_{111} P_1 A_g	58 10 (16)
C_{126} C_{121} C_{122} C_{123}	13(3)	C_{126} C_{121} P_{1} C_{111}	160.41(16)
$P_1 = C_{121} = C_{122} = C_{123}$	-175.01(16)	$C_{120} = C_{121} = P_1 = C_{111}$	-232(2)
$C_{121} = C_{122} = C_{123} = C_{124}$	-0.1(3)	$C_{122} = C_{121} = P_1 = C_{131}$	-89.01(17)
C121 - C122 - C123 - C124 C122 - C123 - C124	-1.1(3)	$C_{120} - C_{121} - C_{131} - C_{131}$	87.30 (10)
$C_{122} = C_{123} = C_{124} = C_{123}$	1.1(3) 1787(2)	$C_{122} - C_{121} - P_1 - C_{131}$	37.39(19)
C122 - C123 - C124 - C127	1/0.7(2)	C_{120} C_{121} P_1 A_{α}	30.03(10)
$C_{123} - C_{124} - C_{123} - C_{126}$	1.1(3) 1787(2)	C_{122} C_{121} P_1 C_{111}	-144.77(10)
C12/-C124-C125-C126	-1/8.7(2)	C132— $C131$ — $P1$ — $C111$	84.96 (19)
C124 - C123 - C120 - C121	0.1(3)	C_{130} C_{131} P_1 C_{121}	-98.78(17)
C122 - C121 - C126 - C125	-1.4(3)	C132 - C131 - P1 - C121	-25.0(2)
PI - C121 - C126 - C125	1/5.23 (1/)	C136 $C131$ $P1$ $C121$	151.28 (17)
C136 - C131 - C132 - C133	-0.8(3)	C132— $C131$ — $P1$ —Ag	-151.62 (15)
PI - CI3I - CI32 - CI33	1/5.4/(1/)	CI36—CI3I—PI—Ag	24.63 (19)
C131—C132—C133—C134	-0.1(3)	N—Ag—P1—C111	104.30 (9)
C132—C133—C134—C135	1.4 (3)	P2—Ag—P1—C111	-3.90 (7)
C132—C133—C134—C137	-177.3(2)	S ^L —Ag—P1—C111	-135.37 (7)
C133—C134—C135—C136	-2.0(3)	N—Ag—P1—C121	-137.18 (9)
C137—C134—C135—C136	176.7 (2)	P2—Ag—P1—C121	114.62 (7)
C134—C135—C136—C131	1.1 (3)	S ¹ —Ag—P1—C121	-16.86 (8)
C132—C131—C136—C135	0.3 (3)	N—Ag—P1—C131	-16.66 (9)
P1—C131—C136—C135	-176.14 (17)	P2—Ag—P1—C131	-124.87 (7)

C216—C211—C212—C213	-3.8 (4)	S ⁱ —Ag—P1—C131	103.66 (7)
P2-C211-C212-C213	175.1 (2)	C232—C231—P2—C211	84.7 (2)
C211—C212—C213—C214	1.2 (4)	C236—C231—P2—C211	-95.14 (18)
C212—C213—C214—C215	1.8 (4)	C232—C231—P2—C221	-22.5 (2)
C212—C213—C214—C217	-177.5 (2)	C236—C231—P2—C221	157.67 (16)
C213—C214—C215—C216	-2.2 (4)	C232—C231—P2—Ag	-148.33 (16)
C217—C214—C215—C216	177.1 (2)	C236—C231—P2—Ag	31.86 (17)
C212—C211—C216—C215	3.4 (4)	C212—C211—P2—C231	167.9 (2)
P2-C211-C216-C215	-175.4 (2)	C216—C211—P2—C231	-13.3 (3)
C214—C215—C216—C211	-0.4 (4)	C212—C211—P2—C221	-82.4 (2)
C226—C221—C222—C223	1.0 (3)	C216—C211—P2—C221	96.4 (3)
P2—C221—C222—C223	179.46 (17)	C212—C211—P2—Ag	44.8 (3)
C221—C222—C223—C224	-0.2 (3)	C216—C211—P2—Ag	-136.4 (2)
C222—C223—C224—C225	-0.4 (3)	C226—C221—P2—C231	-105.37 (17)
C222—C223—C224—C227	179.2 (2)	C222—C221—P2—C231	76.19 (19)
C223—C224—C225—C226	0.1 (3)	C226—C221—P2—C211	146.15 (17)
C227—C224—C225—C226	-179.4 (2)	C222—C221—P2—C211	-32.3 (2)
C224—C225—C226—C221	0.7 (3)	C226—C221—P2—Ag	17.74 (18)
C222—C221—C226—C225	-1.2 (3)	C222—C221—P2—Ag	-160.69 (16)
P2-C221-C226-C225	-179.76 (16)	N—Ag—P2—C231	-84.01 (8)
C236—C231—C232—C233	0.6 (3)	P1—Ag—P2—C231	36.69 (7)
P2-C231-C232-C233	-179.18 (16)	S ⁱ —Ag—P2—C231	168.51 (7)
C231—C232—C233—C234	-1.1 (3)	N—Ag—P2—C211	35.34 (11)
C232—C233—C234—C235	0.8 (3)	P1—Ag—P2—C211	156.04 (10)
C232—C233—C234—C237	-179.3 (2)	S ⁱ —Ag—P2—C211	-72.14 (10)
C233—C234—C235—C236	0.0 (3)	N—Ag—P2—C221	155.87 (9)
C237—C234—C235—C236	-180.0 (2)	P1—Ag—P2—C221	-83.43 (7)
C234—C235—C236—C231	-0.4 (3)	S ⁱ —Ag—P2—C221	48.39 (7)
C232—C231—C236—C235	0.1 (3)		

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

Cg1 and Cg6 are the centroids of the C111–C116 and C231–C236 benzene rings, respectively.

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
С135—Н135…Сдб ^{іі}	0.95	2.86	3.772 (2)	161
C225—H225····Cg1 ⁱⁱⁱ	0.95	2.73	3.568 (2)	147

Symmetry codes: (ii) -x, -y+1, -z+1; (iii) -x, -y+1, -z.