Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N -(4-Chlorophenyl)ethanimidamide

Nubia Boechat, ${ }^{\text {a }}$ Warner B. Kover, ${ }^{\text {b }}$ Sabrina B. Ferreira, ${ }^{\text {a }}$ Solange M. S. V. Wardell, ${ }^{\text {c }}$ James L. Wardell ${ }^{\text {d }} \ddagger$ and Edward R. T. Tiekink ${ }^{\text {e }}$

${ }^{\text {a }}$ Fundaçao Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Departamento de Síntese Orgânica, Manguinhos, CEP 21041250 Rio de Janeiro, RJ, Brazil,
${ }^{\text {b }}$ Universidade Federal do Rio de Janeiro, Departamento de Química Orgânica, Instituto de Química, Cidade Universitária, 21949-900 Rio de Janeiro, RJ, Brazil, ${ }^{c}$ CHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, ${ }^{\text {d }}$ Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and ${ }^{\text {e}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
Correspondence e-mail: edward.tiekink@gmail.com
Received 24 March 2010; accepted 24 March 2010
Key indicators: single-crystal X-ray study; $T=120 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.047 ; w R$ factor $=0.150 ;$ data-to-parameter ratio $=18.0$.

A twisted conformation is found in the title compound, $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{ClN}_{2}$, with the ethanimidamide residue being twisted substantially to the benzene ring [dihedral angle $=$ $\left.66.54(14)^{\circ}\right]$. The conformation about the $\mathrm{C}=\mathrm{N}$ double bond [1.299 (3) A] is Z. A two-dimensional array with a zigzag topology is formed in the crystal structure via $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen-bonding interactions.

Related literature

For background to the synthesis of N-(p-chlorophenyl)acetamidine and related N-arylacetamidines used as reagents in the formation of anti-leishmanial compounds, see: Shearer et al. (1997); Rousselet et al. (1993); Patai (1975). For background to leismaniasis, see: Ouellette et al. (2004); Croft et al. (2006); Ferreira et al. (2007); World Health Organization (2010).

Experimental

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{ClN}_{2}$	$b=9.0192$ (4) \AA 。
$M_{r}=168.62$	$c=19.3281$ (5) \AA
Orthorhombic, Pbca	$V=1681.53$ (18) \AA^{3}
$a=9.6460$ (9) \AA	$Z=8$

\ddagger Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Mo $K \alpha$ radiation
$\mu=0.39 \mathrm{~mm}^{-1}$
Data collection
Nonius KappaCCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) $T_{\min }=0.792, T_{\max }=1.000$

Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.150$
$S=1.05$
1924 reflections
107 parameters
$T=120 \mathrm{~K}$
$0.35 \times 0.20 \times 0.10 \mathrm{~mm}$

14006 measured reflections 1924 independent reflections 1185 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.081$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.34 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.33$ e \AA^{-3}

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 1 \mathrm{n} \cdots \mathrm{N} 1^{\mathrm{i}}$	$0.88(3)$	$2.08(3)$	$2.965(3)$	$176(3)$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{n} \cdots \mathrm{Cl}^{\mathrm{ii}}$	$0.80(3)$	$2.83(3)$	$3.464(2)$	$138(3)$

Symmetry codes: (i) $x-\frac{1}{2}, y,-z+\frac{3}{2}$; (ii) $x-\frac{1}{2},-y+\frac{1}{2},-z+1$.
Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski \& Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES and FAPEMIG (Brazil).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2664).

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Croft, S. L., Sundar, S. \& Fairlamb, A. H. (2006). Clin. Microbiol. Rev. 19, 111126.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Ferreira, S. B., Costa, M. S., Boechat, B., Bezerra, R. J. S., Genestra, M. S., Canto-Cavalheiro, M. M., Kover, W. B. \& Ferreira, V. F. (2007). Eur. J. Med. Chem. 42, 1388-1395.
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Ouellette, M., Drummelsmith, J. \& Papadopoulou, B. (2004). Drug Resist. Update, 7, 257-266.
Patai, S. (1975). In The Chemistry of Amidines and Imidates. New York: Wiley.
Rousselet, G., Capdevielle, P. \& Maumy, M. (1993). Tetrahedron Lett. 34, 6395-6398.
Shearer, B. G., Oplinger, J. A. \& Lee, S. (1997). Tetrahedron Lett. 38, 179-182.
Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). publCIF. In preparation.
World Health Organization (2010). http://www.who.int/mediacentre/news/ releases/2010/drug_resistant_tb_20100318/en/index.html.

supporting information

Acta Cryst. (2010). E66, o958 [doi:10.1107/S1600536810011013]

N -(4-Chlorophenyl)ethanimidamide

Nubia Boechat, Warner B. Kover, Sabrina B. Ferreira, Solange M. S. V. Wardell, James L. Wardell and Edward R. T. Tiekink

S1. Comment

N-(p-Chlorophenyl)acetamidine and related N-arylacetamidines (Shearer et al. 1997; Rousselet et al. 1993; Patai, 1975) were synthesized for use as reagents in the formation of 5-(difluoromethyl)-2-methyl-1-(substituted-phenyl)-1 H imidazoles, which are active anti-leishmanial compounds (Ferreira et al., 2007). Leishmaniasis is caused by several species of protozoan parasites transmitted by the bite of the female phlebotomine sand fly. This neglected disease is currently prevalent in four continents, being endemic in 88 countries, 72 of which are developing countries, threatening 350 millions worldwide (World Health Organization, 2010). The treatment of Leishmaniasis, currently, is dependent on old and highly toxic drugs (Croft et al., 2006). In addition, the development of clinical resistance and the increase of coinfections leishmaniasis AIDS, in some countries is causing further worries. Thus, the development of new, efficient, and safe drugs for the treatment of this disease is imperative (Ouellette et al., 2004; Croft et al., 2006; Ferreira et al., 2007). This contribution describes the synthesis and crystallographic characterisation of an N-(p-chlorophenyl)acetamidine derivative, (I).
The molecular structure of (I), Fig. 1, is twisted about the C1-N1 bond as seen in the value of the C2-C1-N1-C7 torsion angle of $-118.6(2)^{\circ}$; the dihedral angle formed between the benzene ring and ethanimidamide residue is 66.54 (14) ${ }^{\circ}$. The molecule has approximate mirror symmetry with the non-hydrogen atoms of the ethanimidamide lying on the putative plane and the benzene ring being bisected by the plane. The conformation about the $\mathrm{C} 7=\mathrm{N} 1$ double bond [1.299 (3) $\AA]$ is Z.

The crystal packing is dominated by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding interactions, Table 1 . These lead to the formation of 22-membered $\left\{\cdots \mathrm{HNH} \cdots \mathrm{ClC}_{4} \mathrm{NCNH} \cdots \mathrm{ClC}_{4} \mathrm{~N} \cdots \mathrm{HNCN}\right\}_{2}$ synthons that are connected into supramolecular arrays in the $a c$ plane, Fig. 2; these have a zig-zag topology.

S2. Experimental

To a stirred solution of p-chloroaniline $(10.75 \mathrm{mmol})$ in acetonitrile $(40 \mathrm{ml})$ was bubbled hydrogen chloride. A precipitate was formed immediately. The resulting suspension was refluxed and became homogeneous. Upon complete reaction, as shown by TLC, the mixture was rotary evaporated and the residue partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and saturated aqueous NaHCO_{3}. The aqueous layer was washed (3 times) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were dried over sodium sulfate, filtered, and the filtrate concentrated under reduced pressure to yield a white solid; yield 96\%, m.p. 389-390 K. The sample used in the X-ray study was slowly grown from an ethanol solution of (I). IR (KBr, cm^{-1}): 3451, 3295, 3079, $1640,1586,1482 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.99\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 4.53(\mathrm{br} s, 2 \mathrm{H}, 2) ; 6.77(d, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}) ; 7.24(d$, $2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz})$ p.p.m. ${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.59\left(\mathrm{CH}_{3}\right) ; 122.5121 .1 ; 128.6 ; 144.6 ; 155.3\left(\mathrm{H}_{2} \mathrm{~N} — \mathrm{C}=\mathrm{N}\right)$ p.p.m. EI—MS (m/z): $168\left(\mathrm{M}^{+}, 68 \%\right) ; 153\left(\mathrm{M}^{+}-15,38 \%\right) ; 127\left(\mathrm{M}^{+}-41,100 \%\right) ; 111\left(\mathrm{M}^{+}-57,54 \%\right) ; 75\left(\mathrm{M}^{+}-93,42 \%\right)$.

S3. Refinement

The C-bound H atoms were geometrically placed $(\mathrm{C}-\mathrm{H}=0.95-0.98 \AA)$ and refined as riding with $U_{\text {iso }}(\mathrm{H})=$ $1.2-1.5 U_{e q}(\mathrm{C})$. The positions of the $\mathrm{N}-\mathrm{H}$ atoms were refined with $U_{\text {iso }}(\mathrm{H})=1.2 U_{e q}(\mathrm{~N})$.

Figure 1

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 2
A view of a supramolecular array in (I) in the ac plane. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding interactions are shown as orange dashed lines. Colour code: Cl , cyan; N , blue; C , grey; and H , green.

N-(4-Chlorophenyl)ethanimidamide

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{ClN}_{2}$
$M_{r}=168.62$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
$a=9.6460$ (9) Å
$b=9.0192$ (4) \AA
$c=19.3281(5) \AA$
$V=1681.53(18) \AA^{3}$
$Z=8$
$F(000)=704$
$D_{\mathrm{x}}=1.332 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2182 reflections
$\theta=2.9-27.5^{\circ}$
$\mu=0.39 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Block, colourless
$0.35 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Nonius KappaCCD area-detector
diffractometer
Radiation source: Enraf Nonius FR591 rotating anode
10 cm confocal mirrors monochromator
Detector resolution: 9.091 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)

$$
\begin{aligned}
& T_{\min }=0.792, T_{\max }=1.000 \\
& 14006 \text { measured reflections } \\
& 1924 \text { independent reflections } \\
& 1185 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.081 \\
& \theta_{\max }=27.5^{\circ}, \theta_{\min }=3.0^{\circ} \\
& h=-11 \rightarrow 12 \\
& k=-11 \rightarrow 9 \\
& l=-25 \rightarrow 21
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.150$
$S=1.05$
1924 reflections
107 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Cl1	$0.43525(8)$	$0.20450(7)$	$0.43084(3)$	$0.0430(3)$
N1	$0.36389(19)$	$0.4659(2)$	$0.71058(10)$	$0.0308(5)$
N2	$0.1234(2)$	$0.4244(2)$	$0.70948(11)$	$0.0305(5)$
H1N	$0.044(3)$	$0.438(3)$	$0.7313(13)$	0.037^{*}
H2N	$0.124(3)$	$0.379(3)$	$0.6740(14)$	0.037^{*}
C1	$0.3774(2)$	$0.4032(3)$	$0.64327(12)$	$0.0274(6)$
C2	$0.4543(2)$	$0.2746(3)$	$0.63454(14)$	$0.0316(6)$
H2	0.4938	0.2272	0.6738	0.038^{*}
C3	$0.4741(3)$	$0.2144(3)$	$0.56933(13)$	$0.0317(6)$
H3	0.5266	0.1260	0.5638	0.038^{*}
C4	$0.4169(2)$	$0.2837(3)$	$0.51261(13)$	$0.0286(6)$
C5	$0.3428(3)$	$0.4144(3)$	$0.51965(12)$	$0.0342(6)$
H5	0.3054	0.4627	0.4802	0.041^{*}
C6	$0.3243(3)$	$0.4736(3)$	$0.58491(13)$	$0.0348(6)$
H6	0.2745	0.5638	0.5901	0.042^{*}

C7	$0.2408(2)$	$0.4770(3)$	$0.73731(13)$	$0.0269(6)$
C8	$0.2239(3)$	$0.5538(3)$	$0.80540(14)$	$0.0367(6)$
H8A	0.3153	0.5706	0.8261	0.055^{*}
H8B	0.1680	0.4919	0.8364	0.055^{*}
H8C	0.1774	0.6492	0.7983	0.055^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
C11	$0.0537(5)$	$0.0446(5)$	$0.0307(4)$	$0.0051(3)$	$0.0060(3)$	$-0.0034(3)$
N1	$0.0210(11)$	$0.0449(13)$	$0.0264(12)$	$-0.0010(9)$	$-0.0007(9)$	$-0.0032(9)$
N2	$0.0205(11)$	$0.0461(14)$	$0.0248(12)$	$-0.0033(9)$	$0.0019(9)$	$-0.0061(10)$
C1	$0.0171(11)$	$0.0372(14)$	$0.0280(14)$	$-0.0036(10)$	$-0.0002(10)$	$0.0003(11)$
C2	$0.0286(13)$	$0.0340(14)$	$0.0321(15)$	$-0.0010(11)$	$-0.0040(11)$	$0.0052(11)$
C3	$0.0297(13)$	$0.0288(13)$	$0.0367(16)$	$0.0031(10)$	$0.0014(11)$	$0.0001(11)$
C4	$0.0284(13)$	$0.0306(15)$	$0.0266(14)$	$-0.0016(10)$	$0.0072(10)$	$0.0012(10)$
C5	$0.0327(14)$	$0.0437(16)$	$0.0263(14)$	$0.0074(11)$	$0.0018(11)$	$0.0068(11)$
C6	$0.0296(14)$	$0.0403(15)$	$0.0345(15)$	$0.0119(11)$	$0.0047(12)$	$0.0019(11)$
C7	$0.0233(12)$	$0.0329(13)$	$0.0246(14)$	$-0.0026(10)$	$-0.0006(10)$	$0.0029(10)$
C8	$0.0281(13)$	$0.0512(16)$	$0.0307(14)$	$-0.0059(12)$	$0.0014(11)$	$-0.0066(12)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

C11-C4	1.743 (3)	C3-C4	1.377 (4)
N1-C7	1.299 (3)	C3-H3	0.9500
N1-C1	1.425 (3)	C4-C5	1.385 (3)
N2-C7	1.340 (3)	C5-C6	1.381 (3)
N2-H1N	0.89 (3)	C5-H5	0.9500
N2-H2N	0.80 (3)	C6-H6	0.9500
$\mathrm{C} 1-\mathrm{C} 2$	1.387 (3)	C7-C8	1.496 (4)
C1-C6	1.393 (3)	C8-H8A	0.9800
C2-C3	1.386 (4)	C8-H8B	0.9800
C2-H2	0.9500	C8-H8C	0.9800
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1$	118.52 (19)	C6-C5-C4	119.1 (2)
C7-N2-H1N	119.4 (17)	C6-C5-H5	120.5
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	121 (2)	C4-C5-H5	120.5
$\mathrm{H} 1 \mathrm{~N}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	119 (3)	C5-C6-C1	121.0 (2)
C2-C1-C6	118.7 (2)	C5-C6-H6	119.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	119.5 (2)	C1-C6-H6	119.5
C6- $\mathrm{C} 1-\mathrm{N} 1$	121.6 (2)	N1-C7-N2	125.8 (2)
C3-C2-C1	120.8 (2)	N1-C7-C8	119.0 (2)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.6	N2-C7-C8	115.2 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.6	C7-C8-H8A	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	119.4 (2)	C7-C8-H8B	109.5
C4-C3-H3	120.3	H8A-C8-H8B	109.5
C2-C3-H3	120.3	C7-C8-H8C	109.5
C3-C4-C5	121.0 (2)	H8A-C8-H8C	109.5

supporting information

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{Cl1}$	$119.65(19)$	$\mathrm{H} 8 \mathrm{~B}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$	109.5
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{Cl1}$	$119.4(2)$		

Hydrogen-bond geometry ($\AA,{ }^{o}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 1 \mathrm{n} \cdots \mathrm{N} 1^{\mathrm{i}}$	$0.88(3)$	$2.08(3)$	$2.965(3)$	$176(3)$
$\mathrm{N} 2 — \mathrm{H} 2 \mathrm{n} \cdots \mathrm{Cl}^{\mathrm{ii}}$	$0.80(3)$	$2.83(3)$	$3.464(2)$	$138(3)$

Symmetry codes: (i) $x-1 / 2, y,-z+3 / 2$; (ii) $x-1 / 2,-y+1 / 2,-z+1$.

