Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(ethylenediammonium) tetradecaborate

Guo-Ming Wang,* Pei Wang, Zeng-Xin Li, Hui Li and Hui-Luan Liu

Department of Chemistry, Teachers College of Qingdao University, Qingdao, Shandong 266071, People's Republic of China Correspondence e-mail: gmwang_pub@163.com

Received 25 February 2010; accepted 5 March 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.043; wR factor = 0.107; data-to-parameter ratio = 11.7.

The title compound, $2C_2H_{10}N_2^{2+}\cdot B_{14}O_{20}(OH)_6^{4-}$, consists of a centrosymmetric tetradecaborate anion and two ethylenediammonium cations. The anions are interconnected through strong $O-H\cdots O$ hydrogen bonds into a threedimensional supramolecular network with channels along [100], [010], [001] and [111]. The diprotonated cations reside in the channels and interact with the inorganic framework by extensive $N-H\cdots O$ hydrogen bonds.

Related literature

For general background to the structures and applications of inorganic borates, see: Burns *et al.* (1995); Chen *et al.* (1995); Grice *et al.* (1999); Touboul *et al.* (2003); Wang *et al.* (2007). For some typical examples of organically templated non-metal borates, see: Li *et al.* (2008); Liu *et al.* (2006); Pan *et al.* (2007); Wang *et al.* (2004). For two typical examples of crystalline aluminoborates, see: Wang *et al.* (2008*a,b*).

Experimental

Crystal data $2C_2H_{10}N_2^{2+}\cdot B_{14}H_6O_{26}^{4-}$ $M_r = 697.63$ Triclinic, $P\overline{1}$ a = 8.4849 (3) Å b = 8.8387 (3) Å c = 10.0406 (2) Å $\alpha = 95.085$ (2)° $\beta = 96.942$ (3)°

 $\gamma = 116.856 (4)^{\circ}$ $V = 658.08 (3) \text{ Å}^3$ Z = 1Mo K\alpha radiation $\mu = 0.16 \text{ mm}^{-1}$ T = 293 K $0.28 \times 0.13 \times 0.04 \text{ mm}$

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.956, T_{\rm max} = 0.994$

Refinement

R w

S

24

$[F^2 > 2\sigma(F^2)] = 0.043$	217 parameters
$R(F^2) = 0.107$	H-atom parameters constrained
= 1.03	$\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$
541 reflections	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

5101 measured reflections

 $R_{\rm int} = 0.028$

2541 independent reflections

2033 reflections with $I > 2\sigma(I)$

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1 - H1F \cdots O8^{i}$	0.82	2.11	2.909 (2)	165
$O8-H8A\cdots O9^{ii}$	0.82	1.83	2.6433 (19)	176
O13−H13A···O7 ⁱⁱⁱ	0.82	1.79	2.6030 (18)	172
$N1 - H1C \cdot \cdot \cdot O13^{iv}$	0.89	1.87	2.755 (2)	172
$N1 - H1D \cdots O10^{v}$	0.89	2.04	2.919 (2)	168
$N1 - H1E \cdot \cdot \cdot O2^{v}$	0.89	2.09	2.892 (2)	150
$N2-H2C\cdots O6^{vi}$	0.89	1.89	2.777 (2)	174
$N2-H2D\cdots O1^{vii}$	0.89	2.18	2.926 (2)	141
$N2-H2E\cdots O5^{iii}$	0.89	2.08	2.951 (2)	168

Symmetry codes: (i) -x - 1, -y - 1, -z + 1; (ii) -x, -y, -z + 1; (iii) x + 1, y, z; (iv) -x + 1, -y, -z + 1; (v) x + 1, y + 1, z; (vi) -x + 1, -y, -z + 2; (vii) x + 2, y + 1, z.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT-Plus* (Bruker, 2007); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (No. 20901043), the Young Scientist Foundation of Shandong Province (No. BS2009CL041) and the Qingdao University Research Fund (No. 063-06300522).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2288).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

- Burns, P. C., Grice, J. D. & Hawthorne, F. C. (1995). Can. Mineral. 33, 1131– 1151.
- Chen, C., Wang, Y., Wu, B., Wu, K., Zeng, W. & Yu, L. (1995). *Nature* (London), **373**, 322–324.
- Grice, J. D., Burns, P. C. & Hawthorne, F. C. (1999). Can. Mineral. 37, 731–761.
- Li, H., Wang, G.-M., Xue, S.-Y. & Liang, Q. (2008). Acta Cryst. E64, m1269–m1270.
- Liu, Z.-H., Li, L.-Q. & Zhang, W.-J. (2006). Inorg. Chem. 45, 1430–1432.
- Pan, C.-Y., Wang, G.-M., Zheng, S.-T. & Yang, G.-Y. (2007). Z. Anorg. Allg. Chem. 633, 336–340.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Touboul, M., Penin, N. & Nowogrocki, G. (2003). Solid State Sci. 5, 1327-1342.

- Wang, M.-S., Guo, G.-C., Chen, W.-T., Xu, G., Zhou, W.-W., Wu, K.-J. & Huang, J.-S. (2007). Angew. Chem. Int. Ed. 46, 3909–3911.
- Wang, G.-M., Li, J.-H., Huang, H.-L., Li, H. & Zhang, J. (2008a). Inorg. Chem. 47, 5039–5041.
- Wang, G.-M., Li, J.-H., Li, Z.-X., Huang, H.-L., Xue, S.-Y. & Liu, H.-L. (2008b). *Inorg. Chem.* 47, 1270–1272.
- Wang, G.-M., Sun, Y.-Q. & Yang, G.-Y. (2004). J. Solid State Chem. 177, 4648–4654.

supporting information

Acta Cryst. (2010). E66, o798-o799 [doi:10.1107/S1600536810008494]

Bis(ethylenediammonium) tetradecaborate

Guo-Ming Wang, Pei Wang, Zeng-Xin Li, Hui Li and Hui-Luan Liu

S1. Comment

Borate materials have attracted considerable attention in the past decades owing to their fascinating structural diversities and promising applications in mineralogy, luminescence and nonlinear optical properties (Burns *et al.*, 1995; Chen *et al.*, 1995; Grice *et al.*, 1999; Touboul *et al.*, 2003; Wang *et al.*, 2007). From a structural chemistry point of view, the ability of boron to adopt both BO_4 and BO_3 coordination modes, coupled with the tendency of such units to polymerize into a large range of polyanions, has made inorganic borates into a rapidly growing family. To date, borate materials with various alkali metal, alkaline earth metal, rare earth and transition metal, traditionally prepared under high temperature/pressure solid-state conditions, have been extensively studied. In contrast, the template synthesis of nonmetal borates is still a relatively undeveloped area. Recently, solvothermal method has been proved to be very effective in isolating such borates by employing various organic molecules as templates or structure-directing agents (Li *et al.*, 2008; Liu *et al.*, 2006; Pan *et al.*, 2007; Wang *et al.*, 2004). Our interest is to explore the introduction of aluminium into borate system, constructing novel microporous aluminoborate materials templated by organic agents with different shape and size (Wang *et al.*, 2008a, b). Interestingly, the title compound was obtained, which is a new organically templated nonmetal tetradecaborate.

As shown in Fig. 1, the asymmetric unit of the title compound consists of one $[B_7O_{10}(OH)_3]^{2-}$ anionic unit and one $[C_2H_{10}N_2]^{2+}$ cation. The anionic unit is composed of two BO₄ tetrahedra [B3 and B5], two BO₃ [B2 and B6] and three BO₂(OH) [B1, B4 and B7] trigonal units, which forms three classic B₃O₃ cycles linked by two common BO₄ tetrahedra. Two such $[B_7O_{10}(OH)_3]^{2-}$ units are further jointed together through the exocyclic O atoms [O4 and O4ⁱ, symmetry code: (i) -x, -y, 2-z], generating the FBBs (Fundamental Building Blocks), a large isolated $[B_{14}O_{20}(OH)_6]^{4-}$ polyanion. Thus, the borate FBBs, featuring one cyclic 8-membered ring (MR) and six 3-MRs, is made up of four BO₄ and ten BO₃ and BO₂(OH) units. The B—O bond distances lie in the range 1.337 (3)–1.386 (3) Å for the BO₃ triangles (av. 1.361 Å) and 1.430 (3)–1.489 (3) Å for the BO₄ tetrahedra (av. 1.466 Å), in good agreement with those reported previously for other borate materials. The O—B—O bond angles of the BO₄ tetrahedra lie in the range of 106.7 (2)–112.6 (2)° and those of the BO₃ triangles span from 115.4 (2) to 123.4 (2)°; the averages for the corresponding angles are very close to 109.5 and 120°, respectively.

The FBBs, $[B_{14}O_{20}(OH)_6]^4$, are connected with each other through strong intermolecular O—H···O hydrogen bonds (Table 1), forming a three-dimensional framework with channels along [100], [010], [001] and [111] directions. The diprotonated $[C_2H_{10}N_2]^{2+}$ cations reside in the channels, interacting with the framework through N—H···O hydrogen bonds (Fig. 2).

S2. Experimental

A mixture of H_3BO_3 (0.217 g), Al_2O_3 (0.104 g), ethylenediamine (0.42 ml), pyridine (5.0 ml) and H_2O (0.90 ml) was sealed in a Teflon-lined steel autoclave, heated at 443 K for 10 d, and then cooled to room temperature. The colorless prism-shaped crystals were separated from the solution by filtration, washed with distilled water and dried in air.

S3. Refinement

All H atoms were positioned geometrically and treated as riding atoms, with O—H = 0.82, N—H = 0.89 and C—H = 0.97 Å and with $U_{iso}(H) = 1.2U_{eq}(C,N)$ or $1.5U_{eq}(O)$.

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x, -y, 2-z.]

Figure 2

Different views (a) along [100] and (b) along [111] of the three-dimensional framework constructed from $[B_{14}O_{20}(OH)_6]^{4-1}$ anions, with $[C_2H_{10}N_2]^{2+1}$ cations occupying channels. Hydrogen bonds are shown as dashed lines.

Bis(ethylenediammonium) tetradecaborate

Crystal data	
$2C_2H_{10}N_2^{2^+}\cdot B_{14}H_6O_{26}^{4^-}$	$\gamma = 116.856 \ (4)^{\circ}$
$M_r = 697.63$	$V = 658.08 (3) \text{ Å}^3$
Triclinic, $P\overline{1}$	Z = 1
Hall symbol: -P 1	F(000) = 356
a = 8.4849 (3) Å	$D_{\rm x} = 1.760 {\rm ~Mg} {\rm ~m}^{-3}$
b = 8.8387 (3) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
c = 10.0406 (2) Å	Cell parameters from 5101 reflections
$\alpha = 95.085 \ (2)^{\circ}$	$\theta = 2.1 - 26.0^{\circ}$
$\beta = 96.942 \ (3)^{\circ}$	$\mu = 0.16 \text{ mm}^{-1}$

T = 293 KPrism, colorless

Data collection

Bruker SMART APEX CCD diffractometer	5101 measured reflections 2541 independent reflections
Radiation source: fine-focus sealed tube	2033 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.028$
φ and ω scans	$\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 2.1^\circ$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(SADABS; Sheldrick, 1996)	$k = -10 \rightarrow 10$
$T_{\min} = 0.956, \ T_{\max} = 0.994$	$l = -12 \rightarrow 12$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from
$wR(F^2) = 0.107$	neighbouring sites
S = 1.03	H-atom parameters constrained
2541 reflections	$w = 1/[\hat{\sigma^2}(F_o^2) + (0.0518P)^2 + 0.1264P]$
217 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.24 \ { m e} \ { m \AA}^{-3}$

 $0.28 \times 0.13 \times 0.04 \text{ mm}$

 $\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
B1	-0.5849 (3)	-0.5170 (3)	0.8129 (2)	0.0190 (5)	
B2	-0.4605 (3)	-0.2456 (3)	0.9547 (2)	0.0180 (5)	
B3	-0.2914 (3)	-0.2948 (3)	0.7854 (2)	0.0166 (5)	
B4	-0.2007 (3)	-0.1473 (3)	0.5881 (2)	0.0166 (5)	
B5	0.0303 (3)	-0.1771 (3)	0.7443 (2)	0.0175 (5)	
B6	0.3485 (3)	0.0104 (3)	0.8520 (2)	0.0174 (5)	
B7	0.2775 (3)	-0.2278 (3)	0.6835 (2)	0.0189 (5)	
01	-0.73216 (19)	-0.67207 (18)	0.76829 (15)	0.0286 (4)	
H1F	-0.7172	-0.7203	0.7011	0.043*	
O2	-0.42739 (18)	-0.47558 (17)	0.77218 (13)	0.0203 (3)	
O3	-0.60553 (17)	-0.40525 (18)	0.90605 (14)	0.0232 (3)	
O4	-0.48111 (18)	-0.15100 (18)	1.06075 (14)	0.0211 (3)	
05	-0.31106 (17)	-0.18999 (17)	0.90041 (13)	0.0188 (3)	
O6	-0.11436 (17)	-0.27927 (17)	0.80925 (13)	0.0175 (3)	
07	-0.32891 (17)	-0.23425 (18)	0.65880 (13)	0.0218 (3)	
08	-0.25158 (18)	-0.10364 (18)	0.46895 (14)	0.0245 (4)	
H8A	-0.1620	-0.0404	0.4401	0.037*	
09	-0.02594 (18)	-0.10073 (19)	0.63517 (14)	0.0246 (4)	
O10	0.10144 (17)	-0.28587 (18)	0.68168 (14)	0.0230 (3)	
011	0.17413 (17)	-0.03462 (17)	0.84417 (13)	0.0196 (3)	
012	0.40563 (17)	-0.08058 (18)	0.76988 (14)	0.0221 (3)	
013	0.33259 (18)	-0.31501 (19)	0.59850 (14)	0.0248 (4)	
H13A	0.4399	-0.2832	0.6234	0.037*	

C1	0.8308 (3)	0.2448 (3)	0.7230 (2)	0.0251 (5)
H1A	0.9116	0.2282	0.6699	0.030*
H1B	0.7200	0.1376	0.7087	0.030*
C2	0.9149 (3)	0.2927 (3)	0.8712 (2)	0.0248 (5)
H2A	1.0184	0.4058	0.8868	0.030*
H2B	0.8291	0.2977	0.9248	0.030*
N1	0.7928 (3)	0.3808 (2)	0.67745 (18)	0.0284 (4)
H1C	0.7433	0.3510	0.5897	0.043*
H1D	0.8947	0.4789	0.6897	0.043*
H1E	0.7173	0.3948	0.7254	0.043*
N2	0.9717 (2)	0.1666 (2)	0.91544 (17)	0.0236 (4)
H2C	1.0208	0.1977	1.0033	0.035*
H2D	1.0518	0.1633	0.8673	0.035*
H2E	0.8765	0.0631	0.9024	0.035*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
B1	0.0211 (12)	0.0190 (12)	0.0172 (12)	0.0090 (10)	0.0043 (10)	0.0053 (10)
B2	0.0159 (11)	0.0207 (12)	0.0179 (11)	0.0094 (9)	0.0017 (9)	0.0020 (9)
B3	0.0139 (11)	0.0185 (11)	0.0171 (11)	0.0069 (9)	0.0044 (9)	0.0032 (9)
B4	0.0171 (11)	0.0167 (11)	0.0167 (11)	0.0083 (9)	0.0042 (9)	0.0019 (9)
B5	0.0131 (11)	0.0209 (12)	0.0183 (12)	0.0076 (9)	0.0030 (9)	0.0035 (9)
B6	0.0175 (11)	0.0228 (12)	0.0138 (11)	0.0103 (10)	0.0045 (9)	0.0054 (9)
B7	0.0158 (11)	0.0266 (12)	0.0158 (11)	0.0112 (10)	0.0024 (9)	0.0036 (10)
01	0.0228 (8)	0.0213 (8)	0.0322 (9)	0.0024 (6)	0.0106 (7)	-0.0046 (7)
02	0.0184 (7)	0.0178 (7)	0.0222 (8)	0.0061 (6)	0.0065 (6)	0.0002 (6)
O3	0.0155 (7)	0.0220 (8)	0.0262 (8)	0.0042 (6)	0.0069 (6)	-0.0024 (6)
04	0.0150 (7)	0.0232 (8)	0.0213 (8)	0.0072 (6)	0.0033 (6)	-0.0041 (6)
05	0.0158 (7)	0.0186 (7)	0.0197 (7)	0.0063 (6)	0.0051 (6)	-0.0010 (6)
O6	0.0141 (7)	0.0220 (7)	0.0173 (7)	0.0085 (6)	0.0040 (6)	0.0051 (6)
07	0.0133 (7)	0.0334 (8)	0.0201 (7)	0.0107 (6)	0.0048 (6)	0.0096 (6)
08	0.0175 (7)	0.0308 (8)	0.0231 (8)	0.0081 (6)	0.0045 (6)	0.0115 (6)
09	0.0146 (7)	0.0334 (8)	0.0254 (8)	0.0085 (6)	0.0063 (6)	0.0147 (7)
O10	0.0150 (7)	0.0255 (8)	0.0251 (8)	0.0086 (6)	0.0020 (6)	-0.0056 (6)
011	0.0141 (7)	0.0216 (7)	0.0221 (8)	0.0085 (6)	0.0036 (6)	-0.0025 (6)
O12	0.0140 (7)	0.0267 (8)	0.0233 (8)	0.0091 (6)	0.0027 (6)	-0.0045 (6)
O13	0.0149 (7)	0.0349 (9)	0.0233 (8)	0.0133 (7)	-0.0001 (6)	-0.0064 (7)
C1	0.0281 (12)	0.0204 (11)	0.0263 (12)	0.0123 (9)	0.0008 (9)	0.0005 (9)
C2	0.0277 (12)	0.0251 (12)	0.0238 (12)	0.0141 (10)	0.0047 (9)	0.0039 (9)
N1	0.0355 (11)	0.0266 (10)	0.0234 (10)	0.0175 (9)	-0.0022 (8)	-0.0021 (8)
N2	0.0239 (10)	0.0296 (10)	0.0188 (9)	0.0133 (8)	0.0046 (7)	0.0054 (8)

Geometric parameters (Å, °)

B1—O2	1.343 (3)	B7—O10	1.340 (3)
B1—O1	1.360 (3)	B7—O13	1.359 (3)
B1—O3	1.383 (3)	B7—O12	1.386 (3)

B2—O5	1.341 (3)	O1—H1F	0.8200
B2	1.372 (3)	O4—B6 ⁱ	1.372 (3)
B2-03	1.381(3)	08—H8A	0.8200
B3—06	1 433 (3)	013—H13A	0.8200
B3-02	1 471 (3)	C1—N1	1474(3)
B3-07	1 476 (3)	C1 - C2	1.171(3)
B3-05	1 489 (3)	C1—H1A	0.9700
B4-07	1.109(3) 1.344(3)	C1—H1B	0.9700
B409	1 355 (3)	$C_2 N_2$	1.481(3)
B4	1 369 (3)	$C_2 = H_2 \Delta$	0.9700
B5	1.309(3)	C2H2B	0.9700
B5011	1.450(3) 1.474(3)	N1_H1C	0.9700
B50	1.477(3)	N1 H1D	0.8900
B5010	1.477(3) 1.480(3)	NI_HIE	0.8900
B6_011	1.400(3) 1.337(3)	NI-IIIE N2 H2C	0.8900
$B6 - O^{4i}$	1.337(3) 1.372(3)	N2 H2D	0.8900
B6-012	1.372(3) 1.276(2)	N2—H2D	0.8900
B0-012	1.570 (5)	N2—N2E	0.8900
O2—B1—O1	122.44 (19)	B5—O6—B3	125.67 (16)
O2—B1—O3	121.71 (19)	B4—O7—B3	122.80 (16)
O1—B1—O3	115.84 (18)	B4—O8—H8A	109.5
O5—B2—O4	123.39 (19)	B4—O9—B5	122.54 (16)
O5—B2—O3	121.17 (18)	B7—O10—B5	121.89 (17)
Q4—B2—Q3	115.44 (18)	B6—O11—B5	123.54 (16)
O6—B3—O2	110.41 (17)	B6—O12—B7	118.51 (17)
O6—B3—O7	112.48 (16)	B7—O13—H13A	109.5
O2—B3—O7	106.77 (16)	N1—C1—C2	110.38 (17)
Q6—B3—Q5	109.26 (16)	N1—C1—H1A	109.6
02—B3—O5	109.91 (16)	C2-C1-H1A	109.6
07—B3—05	107.96 (16)	N1—C1—H1B	109.6
07—B4—09	120.90 (18)	C2—C1—H1B	109.6
07—B4—08	117.95 (18)	H1A—C1—H1B	108.1
09—B4—08	121.13 (18)	N2-C2-C1	111.20 (17)
06—B5—011	110 14 (16)	N2-C2-H2A	109.4
06—B5—09	112.55 (16)	C1-C2-H2A	109.4
011	107 35 (16)	N2-C2-H2B	109.4
06-B5-010	109 49 (17)	C1-C2-H2B	109.4
011 - B5 - 010	109.92(16)	$H^2A - C^2 - H^2B$	108.0
09-B5-010	107.33(16)	C1—N1—H1C	109.5
$011 - B6 - 04^{i}$	122 59 (19)	C1—N1—H1D	109.5
011 - B6 - 012	121.46 (19)	H1C—N1—H1D	109.5
$O4^{i}$ B6 $O12$	115.93 (18)	C1—N1—H1F	109.5
010 - B7 - 013	119.34 (19)	H1C—N1—H1F	109.5
010 - B7 - 012	121 74 (19)	H1D—N1—H1F	109.5
013—B7—012	118 91 (18)	$C_2 - N_2 - H_2C$	109.5
B1—O1—H1F	109 5	$C_2 = N_2 = H_2 D$	109.5
B1	120 65 (17)	$H_2C - N_2 - H_2D$	109.5
B2-03-B1	118 42 (16)	$C_2 N_2 H_2 F$	109.5
	110,72 (10)	V2 112 112L	107.5

B2	127.25 (17)	H2C—N2—H2E	109.5
B2—O5—B3	122.53 (16)	H2D—N2—H2E	109.5

Symmetry code: (i) -x, -y, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
01—H1 <i>F</i> ···O8 ⁱⁱ	0.82	2.11	2.909 (2)	165
O8—H8A···O9 ⁱⁱⁱ	0.82	1.83	2.6433 (19)	176
O13—H13 <i>A</i> ···O7 ^{iv}	0.82	1.79	2.6030 (18)	172
N1—H1 <i>C</i> ···O13 ^v	0.89	1.87	2.755 (2)	172
$N1$ — $H1D$ ···O 10^{vi}	0.89	2.04	2.919 (2)	168
N1—H1 <i>E</i> ···O2 ^{vi}	0.89	2.09	2.892 (2)	150
N2—H2 <i>C</i> ···O6 ^{vii}	0.89	1.89	2.777 (2)	174
N2—H2D····O1 ^{viii}	0.89	2.18	2.926 (2)	141
N2—H2 E ···O5 ^{iv}	0.89	2.08	2.951 (2)	168

Symmetry codes: (ii) -*x*-1, -*y*-1, -*z*+1; (iii) -*x*, -*y*, -*z*+1; (iv) *x*+1, *y*, *z*; (v) -*x*+1, -*y*, -*z*+1; (vi) *x*+1, *y*+1, *z*; (vii) -*x*+1, -*y*, -*z*+2; (viii) *x*+2, *y*+1, *z*.