organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(35,45)-1-Benzylpyrrolidine-3,4-diol

Li-Hua Lu, Xiao-Li Sun and Ping-An Wang*

Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Changle West Road 17, 710032, Xi-An, People's Republic of China Correspondence e-mail: ping_an1718@yahoo.com.cn

Received 4 November 2009; accepted 24 December 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.032; wR factor = 0.105; data-to-parameter ratio = 11.5.

In the title compound, $C_{11}H_{15}NO_2$, the pyrrolidine ring adapts a twisted envelope conformation and the two hydroxyl groups are arranged in a *trans* conformation. The crystal packing is stabilized by intermolecular $O-H\cdots N$ and $O-H\cdots O$ hydrogen bonds. A weak $C-H\cdots \pi$ interaction also occurs.

Related literature

For the preparation of the title compound, see: Nagel *et al.* (1984); Inoguchi *et al.* (1990). The title compound is used in the preparation of the chiral phosphine ligand DEGphos, (+)-(3R,4R)-N-benzyl-3,4-bis(diphenylphosphino)pyrrolidine, (Nagel *et al.*, 1984), an efficient ligand for Rh-catalysed asymmetric hydrogenation (Tang & Zhang, 2003).

Experimental *Crystal data*

erystat aata
C ₁₁ H ₁₅ NO ₂
$M_r = 193.24$
Monoclinic, P21
a = 6.0244 (10) Å
b = 8.1033 (14) Å
c = 10.3981 (18) Å
$\beta = 96.016 \ (2)^{\circ}$

 $V = 504.81 (15) \text{ Å}^{3}$ Z = 2Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 293 K $0.31 \times 0.27 \times 0.14 \text{ mm}$

Data collection

```
Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
T_{min} = 0.973, T_{max} = 0.987
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.105$ S = 1.031440 reflections 125 parameters

Table 1

Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C1-C6 ring.

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O1 - H1 \cdots N1^{i} \\ O2 - H2 \cdots O1^{ii} \\ C10 - H10 \cdots Cg2^{iii} \end{array}$	0.82	2.13	2.918 (2)	162
	0.82	2.14	2.914 (2)	157
	0.98	2.86	3.771 (2)	155

1440 measured reflections

1 restraint

 $\Delta \rho_{\text{max}} = 0.15 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.11 \text{ e} \text{ Å}^{-3}$

1440 independent reflections

1348 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, -z; (ii) x + 1, y, z; (iii) x, y - 1, z.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *Mercury* (Macrae *et al.*, 2006) and *CAMERON* (Watkin *et al.*, 1996).

We thank the Natural Science Foundation of China (grant No. 20802092) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2016).

References

- Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Inoguchi, K. & Achiwa, K. (1990). Chem. Pharm. Bull. 38, 818-820.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Nagel, U. (1984). Angew. Chem. Int. Ed. 23, 435-436.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tang, W. & Zhang, X. (2003). Chem. Rev. 103, 3029–3069.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

supporting information

Acta Cryst. (2010). E66, o928 [doi:10.1107/S1600536809055391]

(3S,4S)-1-Benzylpyrrolidine-3,4-diol

Li-Hua Lu, Xiao-Li Sun and Ping-An Wang

S1. Comment

The title compound (+)-(3S,4S)-1-benzylpyrrolidine-3,4-diol was obtained from *L*-tartaric acid by condensation with benzylamine followed by reduction with NaBH₄—BF₃.Et₂O. This is used for preparation of the chiral phosphine ligand DEGphos ((+)-(3R,4R)-*N*-benzyl-3,4- bis(diphenylphosphino)pyrrolidine, (Nagel *et al.*, 1984), an efficient ligand for Rh-catalyzed asymmetric hydrogenations (Tang & Zhang, 2003).

In the title compound, $C_{11}H_{15}NO_2$, the pyrrolidine ring adapts a twisted envelope formation. The two hydroxyl groups at C9 and C10 are arranged in a *trans*- conformation. The dihedral angle between the mean planes of the pyrrolidine phenyl rings is 62.4 (2)°. Crystal packing is stabilized by intermolecular O—H…N and O—H…O hydrogen bonds interactions. A weak C—H…Cg2 π ring intermolecular intereaction is also observed, where Cg2 = C1–C6.

S2. Experimental

The synthesis of the title compound is described by Nagel *et al.* (1984). Crystals were grown from its solution in acetone; m.p. 371–373 K.

S3. Refinement

The absolute structure could not be established from the dffraction data and was assigned based on L-tartaric acid the starting material.

All the H atoms were located in difference Fourier maps. However, they were constrained by riding model approximation. C—H_{methyl}=0.97 Å; C—H_{aryl}=0.93 Å; U_{iso} H_{methyl} and U_{iso} H_{aryl} are both 1.2 U _{eq}(C). O—H is 0.82Å with U_{iso} (H)=1.5 U_{eq} (O).

Figure 1

The molecular structure of (I) showing displacement ellipsoids drawn at the 50% probability level. The hydrogen atoms are drawn as spheres of arbitrary radius.

Figure 2

The packing of (I) viewed down the b axis. Dashed lines indicate hydrogen bonds.

(3S,4S)-1-benzylpyrrolidine-3,4-diol

Crystal data

 $C_{11}H_{15}NO_2$ $M_r = 193.24$ Monoclinic, $P2_1$ Hall symbol: P 2yb a = 6.0244 (10) Å b = 8.1033 (14) Å c = 10.3981 (18) Å $\beta = 96.016$ (2)° V = 504.81 (15) Å³ Z = 2

Data collection

Bruker APEXII CCD	1440 measured reflections
diffractometer	1440 independent reflections
Radiation source: fine-focus sealed tube	1348 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{ m int}=0.000$
φ and ω scans	$\theta_{\rm max} = 25.1^{\circ}, \theta_{\rm min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -7 \rightarrow 7$
(SADABS; Bruker, 2005)	$k = -8 \rightarrow 9$
$T_{\min} = 0.973, \ T_{\max} = 0.987$	$l = 0 \rightarrow 12$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.080P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.15 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.11 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 208

 $\theta = 3.2-25.6^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$

Block, colorless

 $0.31 \times 0.27 \times 0.14 \text{ mm}$

T = 293 K

 $D_{\rm x} = 1.271 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1279 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.5935 (2)	-0.00443 (18)	0.18867 (14)	0.0358 (4)	
0.3213 (2)	-0.36878 (18)	0.06145 (13)	0.0451 (4)	
0.3166	-0.4139	-0.0094	0.068*	
0.8566 (2)	-0.2626 (2)	0.03312 (13)	0.0556 (5)	
	x 0.5935 (2) 0.3213 (2) 0.3166 0.8566 (2)	xy $0.5935(2)$ $-0.00443(18)$ $0.3213(2)$ $-0.36878(18)$ 0.3166 -0.4139 $0.8566(2)$ $-0.2626(2)$	xyz $0.5935(2)$ $-0.00443(18)$ $0.18867(14)$ $0.3213(2)$ $-0.36878(18)$ $0.06145(13)$ 0.3166 -0.4139 -0.0094 $0.8566(2)$ $-0.2626(2)$ $0.03312(13)$	xyz U_{iso}^*/U_{eq} 0.5935 (2)-0.00443 (18)0.18867 (14)0.0358 (4)0.3213 (2)-0.36878 (18)0.06145 (13)0.0451 (4)0.3166-0.4139-0.00940.068*0.8566 (2)-0.2626 (2)0.03312 (13)0.0556 (5)

H2	0.9802	-0.2956	0.0628	0.083*
C1	0.7231 (4)	0.3493 (3)	0.42248 (18)	0.0511 (6)
H1A	0.6080	0.3348	0.4744	0.061*
C2	0.8766 (4)	0.4734 (3)	0.4518 (2)	0.0602 (6)
H2A	0.8637	0.5423	0.5221	0.072*
C3	1.0500 (4)	0.4951 (3)	0.3760 (2)	0.0582 (6)
H3	1.1551	0.5777	0.3958	0.070*
C4	1.0660 (4)	0.3935 (3)	0.2711 (2)	0.0485 (5)
H4	1.1814	0.4084	0.2195	0.058*
C5	0.9109 (3)	0.2693 (3)	0.24219 (17)	0.0420 (5)
Н5	0.9242	0.2010	0.1715	0.050*
C6	0.7361 (3)	0.2451 (3)	0.31701 (16)	0.0387 (4)
C7	0.5566 (3)	0.1179 (3)	0.28805 (19)	0.0469 (5)
H7A	0.5373	0.0596	0.3676	0.056*
H7B	0.4178	0.1750	0.2615	0.056*
C8	0.3888 (3)	-0.0952 (3)	0.14674 (19)	0.0395 (5)
H8A	0.2820	-0.0258	0.0956	0.047*
H8B	0.3203	-0.1384	0.2201	0.047*
C9	0.4714 (3)	-0.2340 (2)	0.06555 (16)	0.0359 (4)
H9	0.4813	-0.1938	-0.0226	0.043*
C10	0.7077 (3)	-0.2710 (2)	0.13021 (16)	0.0371 (4)
H10	0.7130	-0.3806	0.1702	0.045*
C11	0.7500 (3)	-0.1372 (3)	0.23333 (17)	0.0408 (5)
H11A	0.7195	-0.1779	0.3174	0.049*
H11B	0.9032	-0.0987	0.2389	0.049*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0299 (8)	0.0321 (8)	0.0458 (8)	-0.0001 (7)	0.0055 (6)	-0.0030 (6)
01	0.0388 (8)	0.0407 (8)	0.0567 (7)	-0.0100 (6)	0.0099 (6)	-0.0062 (6)
O2	0.0317 (7)	0.0791 (12)	0.0574 (8)	0.0028 (8)	0.0111 (6)	-0.0130 (8)
C1	0.0573 (13)	0.0502 (14)	0.0466 (11)	0.0031 (11)	0.0097 (9)	-0.0049 (9)
C2	0.0732 (16)	0.0519 (15)	0.0531 (12)	0.0015 (12)	-0.0049 (11)	-0.0135 (11)
C3	0.0554 (14)	0.0422 (13)	0.0724 (13)	-0.0059 (11)	-0.0154 (11)	-0.0048 (11)
C4	0.0393 (11)	0.0412 (12)	0.0639 (11)	-0.0001 (9)	0.0010 (9)	0.0071 (10)
C5	0.0413 (11)	0.0373 (11)	0.0479 (9)	0.0021 (9)	0.0068 (8)	-0.0020 (8)
C6	0.0412 (10)	0.0329 (10)	0.0419 (8)	0.0043 (9)	0.0038 (7)	-0.0011 (8)
C7	0.0447 (12)	0.0407 (11)	0.0578 (11)	0.0001 (10)	0.0176 (10)	-0.0067 (10)
C8	0.0293 (10)	0.0364 (11)	0.0527 (10)	0.0002 (8)	0.0043 (8)	-0.0003 (8)
C9	0.0307 (9)	0.0342 (11)	0.0430 (8)	-0.0024 (8)	0.0045 (7)	0.0023 (8)
C10	0.0316 (10)	0.0351 (10)	0.0447 (9)	0.0036 (8)	0.0046 (7)	0.0017 (8)
C11	0.0374 (11)	0.0396 (11)	0.0446 (9)	0.0040 (9)	0.0001 (7)	0.0001 (8)

Geometric parameters (Å, °)

N1-C8	1.463 (2)	C4—H4	0.9300
N1—C7	1.466 (2)	C5—C6	1.387 (3)

N1-C11	1.473 (3)	С5—Н5	0.9300
01	1 416 (2)	C6—C7	1 501 (3)
01 11	0.8200		0.0700
	0.8200		0.9700
02-010	1.421 (2)	С/—Н/В	0.9700
O2—H2	0.8200	C8—C9	1.521 (3)
C1—C2	1.379 (3)	C8—H8A	0.9700
C1—C6	1.393 (3)	C8—H8B	0.9700
C1—H1A	0.9300	C9—C10	1.539 (2)
C_{2} —C ₃	1 384 (3)	С9—Н9	0.9800
$C_2 H_2 A$	0.9300	C10-C11	1.528(3)
$C_2 = C_1$	1,278 (2)		0.0200
$C_3 = U_4$	1.378 (3)		0.9800
С3—Н3	0.9300	CII—HIIA	0.9700
C4—C5	1.385 (3)	C11—H11B	0.9700
C8—N1—C7	111 39 (14)	C6-C7-H7B	108.2
C_{0}^{0} N1 C_{1}^{11}	102.61(14)		100.2
	102.01(14)	$\Pi/A - C / - \Pi/B$	107.5
C/—NI—CII	114.28 (14)	NI	102.85 (15)
С9—01—Н1	109.5	N1—C8—H8A	111.2
C10—O2—H2	109.5	С9—С8—Н8А	111.2
C2—C1—C6	121.6 (2)	N1—C8—H8B	111.2
C2—C1—H1A	119.2	C9—C8—H8B	111.2
C6—C1—H1A	119.2	H8A—C8—H8B	109.1
C1 - C2 - C3	1197(2)	01-09-08	109.99(14)
C1 $C2$ $H2A$	120.1	O1 C9 C10	11/ 01 (16)
$C_1 = C_2 = H_2 A$	120.1	$C^{2} = C^{1} = C^{1}$	114.91(10) 104.00(15)
C3—C2—H2A	120.1		104.09 (15)
C4—C3—C2	119.6 (2)	01—С9—Н9	109.2
С4—С3—Н3	120.2	С8—С9—Н9	109.2
С2—С3—Н3	120.2	С10—С9—Н9	109.2
C3—C4—C5	120.3 (2)	O2-C10-C11	113.17 (16)
C3—C4—H4	119.9	O2—C10—C9	107.72 (13)
C5—C4—H4	119.9	C11—C10—C9	104.29 (15)
C4-C5-C6	121.04 (19)	O2-C10-H10	110.5
C4-C5-H5	119.5	C_{11} C_{10} H_{10}	110.5
C6 C5 H5	110.5	C_{1} C_{10} H_{10}	110.5
	117.0 (10)		110.3
	117.69 (19)		104.06 (13)
C5-C6-C7	123.90 (17)	NI-CII-HIIA	110.9
C1—C6—C7	118.38 (16)	C10—C11—H11A	110.9
N1—C7—C6	116.51 (14)	N1—C11—H11B	110.9
N1—C7—H7A	108.2	C10-C11-H11B	110.9
С6—С7—Н7А	108.2	H11A—C11—H11B	109.0
N1—C7—H7B	108.2		
C6—C1—C2—C3	-0.7 (3)	C'/—N1—C8—C9	-169.66 (15)
C1—C2—C3—C4	0.7 (4)	C11—N1—C8—C9	-46.96 (17)
C2—C3—C4—C5	-0.6 (3)	N1—C8—C9—O1	155.98 (15)
C3—C4—C5—C6	0.5 (3)	N1-C8-C9-C10	32.37 (18)
C4—C5—C6—C1	-0.4 (3)	O1—C9—C10—O2	112.90 (17)
C4-C5-C6-C7	177 2 (2)	C8-C9-C10-O2	-12676(16)
	.,,	00 07 010 02	120.70 (10)

supporting information

C2—C1—C6—C5	0.5 (3)	O1—C9—C10—C11	-126.60 (16)
C2—C1—C6—C7	-177.25 (19)	C8-C9-C10-C11	-6.25 (19)
C8—N1—C7—C6	-166.25 (16)	C8—N1—C11—C10	42.96 (18)
C11—N1—C7—C6	78.0 (2)	C7—N1—C11—C10	163.69 (15)
C5—C6—C7—N1	11.1 (3)	O2-C10-C11-N1	94.90 (18)
C1—C6—C7—N1	-171.29 (17)	C9—C10—C11—N1	-21.88 (18)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O1—H1…N1 ⁱ	0.82	2.13	2.918 (2)	162
O2—H2···O1 ⁱⁱ	0.82	2.14	2.914 (2)	157
C10—H10…Cg2 ⁱⁱⁱ	0.98	2.86	3.771 (2)	155

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*; (ii) *x*+1, *y*, *z*; (iii) *x*, *y*-1, *z*.