organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-(2*H*-Benzotriazol-2-yl)-2-hydroxy-5methylbenzaldehyde

Chen-Yu Li, Chen-Yen Tsai, Chia-Her Lin and Bao-Tsan Ko*

Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan

Correspondence e-mail: btko@cycu.edu.tw

Received 21 February 2010; accepted 25 February 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.045; wR factor = 0.146; data-to-parameter ratio = 17.1.

In the title compound, $C_{14}H_{11}N_3O_2$, the dihedral angle between the mean planes of the benzotriazole ring system and the benzene ring of the salicylaldehyde group is 2.4 (2)°. There is an intramolecular $O-H\cdots N$ hydrogen bond which may influence the molecular conformation.

Related literature

For the application of N,N,O-tridentate Schiff-base metal complexes in the catalytic ring-opening polymerization of Llactide, see: Wu *et al.* (2005); Chen *et al.* (2006). For a related structure, see: Li *et al.* (2009).

Experimental

Crystal data C₁₄H₁₁N₃O₂

 $M_r = 253.26$

Monoclinic, $P2_1/c$	Z = 4
a = 12.2724 (5) Å	Mo $K\alpha$ radiation
b = 14.5018(5)Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 6.8897 (3) Å	T = 296 K
$\beta = 91.571 \ (2)^{\circ}$	$0.34 \times 0.31 \times 0.23 \text{ mm}$
V = 1225.71 (8) Å ³	
Data collection	
Bruker APEXII CCD	13912 measured reflections
diffractometer	2946 independent reflections
Absorption correction: multi-scan	1657 reflections with $I > 2\sigma(I)$
(SADABS: Bruker 2008)	$R_{\rm c} = 0.070$
$T_{\rm min} = 0.972, \ T_{\rm max} = 0.977$	int and a
- min max	
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.045$	172 parameters
$wR(F^2) = 0.146$	H-atom parameters constrained
S = 1.01	$\Delta \rho = 0.21 \text{ e} \text{ Å}^{-3}$
0 - 1.01	$\Delta p_{\rm max} = 0.21 \circ 11$

Table 1

2946 reflections

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1A\cdots N1$	0.85	1.94	2.588 (2)	132

 $\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT-Plus* (Bruker, 2008); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We gratefully acknowledge the financial support in part from the National Science Council, Taiwan (NSC97-2113-M-033-005-MY2) and in part from the project of the specific research fields in Chung Yuan Christian University, Taiwan (No. CYCU-98-CR-CH).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5003).

References

Bruker (2008). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, H.-Y., Tang, H.-Y. & Lin, C.-C. (2006). *Macromolecules*, **39**, 3745–3752. Li, J.-Y., Liu, Y.-C., Lin, C.-H. & Ko, B.-T. (2009). *Acta Cryst.* E**65**, o2475.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wu, J.-C., Huang, B.-H., Hsueh, M.-L., Lai, S.-L. & Lin, C.-C. (2005). Polymer, 46, 9784–9792.

supporting information

Acta Cryst. (2010). E66, o726 [doi:10.1107/S1600536810007233]

3-(2H-Benzotriazol-2-yl)-2-hydroxy-5-methylbenzaldehyde

Chen-Yu Li, Chen-Yen Tsai, Chia-Her Lin and Bao-Tsan Ko

S1. Comment

Recently, NNO-tridentate Schiff-base zinc (Zn) and magnesium (Mg) complexes have been attracting considerable attention, mainly due to their applications in the catalytic ring-opening polymerization of L-lactide (Wu *et al.*, 2005; Chen *et al.*, 2006). These NNO-tridentate Schiff-base ligands were easily prepared by condensation from primary amine with the pendant arm of the amino group and various substituted salicylaldehyde derivatives in the presence of MgSO₄. The additional amino group can be able to provide strong coordination to stabilize Zn or Mg atom and thereby stabilizes the zinc or magnesium alkoxide complex, without further disproportionation. Most recently, our group has successfully synthesized and structural characterized the amino-phenolate ligand derived from 4-methyl-2-(*2H*-benzotriazol-2-yl)-phenol (BTP-H) (Li *et al.*, 2009). In order to develop more useful ligands originated from BTP derivates, our group is interested in the preparation of the multidentate Schiff-base ligand containing the benzotriazol group. Herein, we report the synthesis and crystal structure of the title compound, (**I**), a potential precursor for the preparation of the multidentate Schiff-base BTP ligands.

The molecular structure of (**I**) reveals the 5-methylsalicylaldehyde configuration with one benzotriazole functionalized group on the C2-position (Fig. 1). The dihedral angle between the planes of the benzotriazole unit and the benzene ring of the salicylaldehyde group is 2.4 (2)°. There is an intramolecular O—H…N hydrogen bond between the phenol and benzotriazole groups (Table 1). The distance of N1…H1A is substantially shorter than the van der Waals distance of 2.75 Å for the N and H distance. The distances in the benzotriazole-phenolate group are similar to those found in the crystal structure of 2-(2*H*-benzotriazol-2-yl)-6-((diethylamino)methyl)-4-methylphenol (Li *et al.*, 2009).

S2. Experimental

The title compound (**I**) was synthesized by the following procedures (Fig. 2): In a 100 ml round bottom flask was placed with 4-methyl-2-(2*H*-benzotriazol-2-yl)phenol (4.50 g, 20.0 mmol) and hexamethylenetetramine (5.60 g, 40 mmol). To this was added trifluoroacetic acid (24 ml, 0.30 mol) and the yellow solution became hot. The resulting mixture was heated to 418 K under reflux for 18 h, during which time the solution colour turned the yellow to dark brown/black. The hot solution was poured into 4 N HCl_(aq) (40 ml) and stirred for another 2 h, during which time the solids were formed. The mixture was placed at 253 K overnight and the solids were filtered. The mixture was then extracted with dichloromethane (3 x 150 ml) and the organic layers were dried over MgSO₄. The final solution was removed the solvent under vacuum to give yellow solids. Yield: 4.40 g (87 %). Single crystals suitable for X-ray diffraction were obtained from a saturated solution of the title compound in Et₂O.

S3. Refinement

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C–H = 0.93 Å with $U_{iso}(H) = 1.2 U_{eq}(C)$ for phenyl hydrogen; 0.96 Å with $U_{iso}(H) = 1.5 U_{eq}(C)$ for CH₃ group; 0.93 Å with $U_{iso}(H) = 1.2$

 $U_{eq}(C)$ for CHO group; O–H = 0.85 Å with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

The molecular structure of (I) with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The dashed lines indicates a hydrogen bond.

Figure 2

The synthetic procedure of the title compound I.

3-(2H-Benzotriazol-2-yl)-2-hydroxy-5-methylbenzaldehyde

Crystal data

C₁₄H₁₁N₃O₂ $M_r = 253.26$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 12.2724 (5) Å b = 14.5018 (5) Å c = 6.8897 (3) Å $\beta = 91.571$ (2)° V = 1225.71 (8) Å³ Z = 4 F(000) = 528 $D_x = 1.372 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1657 reflections $\theta = 1.7-28.3^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 296 KColumnar, yellow $0.34 \times 0.31 \times 0.23 \text{ mm}$ Data collection

Bruker APEXII CCD	13912 measured reflections
Padiation source: fine focus sealed tube	1657 reflections with $L > 2\sigma(I)$
Granhite monochromator	P = 0.070
Detector resolution: 8 2222 nivels mm ⁻¹	$A_{\text{int}} = 0.070$ $A_{\text{int}} = -29.2^{\circ} A_{\text{int}} = 1.7^{\circ}$
Detector resolution: 8.5555 pixels min	$\sigma_{\rm max} = 28.5$, $\sigma_{\rm min} = 1.7$
φ and ω scans	$h = -16 \rightarrow 16$
Absorption correction: multi-scan	$k = -19 \rightarrow 19$
(SADABS; Bruker, 2008)	$l = -7 \rightarrow 9$
$T_{\min} = 0.972, \ T_{\max} = 0.977$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from
$wR(F^2) = 0.146$	neighbouring sites
S = 1.01	H-atom parameters constrained
2946 reflections	$w = 1/[\sigma^2(F_0^2) + (0.075P)^2]$
172 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$
	•

Special details

Experimental. ¹H NMR (CDCl3, ppm): *δ* 11.88 (s, 1H, PhOH),10.51 (s, 1H, PhCHO), 8.36 (s, 1H, PhH), 7.94 (d, 2H, PhH), 7.68 (s, 1H, PhH), 7.50 (d, 2H, PhH), 2.41 (s, 3H, PhCH3).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.50858 (9)	0.36518 (6)	0.26655 (17)	0.0578 (3)	
H1A	0.5768	0.3681	0.2490	0.069*	
O2	0.18809 (10)	0.37151 (8)	0.3322 (2)	0.0816 (4)	
N1	0.68476 (10)	0.27325 (8)	0.20289 (19)	0.0488 (3)	
N2	0.62690 (10)	0.19539 (8)	0.22480 (18)	0.0458 (3)	
N3	0.68234 (10)	0.11695 (8)	0.21302 (19)	0.0517 (4)	
C1	0.45880 (12)	0.28244 (9)	0.2757 (2)	0.0435 (4)	
C2	0.51319 (12)	0.19766 (9)	0.2580 (2)	0.0428 (4)	
C3	0.45656 (12)	0.11543 (10)	0.2707 (2)	0.0471 (4)	
H3B	0.4938	0.0600	0.2579	0.057*	
C4	0.34523 (12)	0.11386 (10)	0.3022 (2)	0.0490 (4)	
C5	0.29195 (12)	0.19740 (10)	0.3180 (2)	0.0493 (4)	
H5A	0.2173	0.1977	0.3381	0.059*	
C6	0.34674 (12)	0.28099 (10)	0.3048 (2)	0.0456 (4)	

C7	0.78649 (11)	0.24258 (10)	0.1756 (2)	0.0476 (4)	
C8	0.88414 (13)	0.29132 (12)	0.1448 (2)	0.0578 (5)	
H8A	0.8858	0.3554	0.1408	0.069*	
C9	0.97489 (13)	0.24055 (13)	0.1215 (2)	0.0637 (5)	
H9A	1.0405	0.2706	0.1011	0.076*	
C10	0.97342 (14)	0.14307 (13)	0.1272 (3)	0.0672 (5)	
H10A	1.0382	0.1111	0.1099	0.081*	
C11	0.88075 (13)	0.09447 (12)	0.1571 (2)	0.0622 (5)	
H11A	0.8806	0.0304	0.1608	0.075*	
C12	0.78537 (12)	0.14584 (11)	0.1820 (2)	0.0491 (4)	
C13	0.28498 (14)	0.02373 (11)	0.3176 (3)	0.0687 (5)	
H13A	0.2093	0.0356	0.3392	0.103*	
H13B	0.3153	-0.0114	0.4241	0.103*	
H13C	0.2919	-0.0105	0.1993	0.103*	
C14	0.28544 (14)	0.36772 (11)	0.3179 (2)	0.0578 (5)	
H14A	0.3241	0.4228	0.3150	0.069*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0533 (6)	0.0414 (6)	0.0792 (9)	-0.0065 (5)	0.0092 (5)	-0.0014 (5)
O2	0.0565 (8)	0.0613 (8)	0.1276 (13)	0.0086 (6)	0.0154 (7)	-0.0057 (7)
N1	0.0475 (7)	0.0449 (7)	0.0540 (9)	-0.0062 (6)	0.0031 (6)	0.0029 (6)
N2	0.0458 (7)	0.0421 (7)	0.0495 (9)	-0.0022(5)	0.0021 (6)	0.0019 (5)
N3	0.0477 (7)	0.0449 (7)	0.0629 (10)	0.0010 (6)	0.0044 (6)	-0.0005 (6)
C1	0.0505 (9)	0.0395 (7)	0.0405 (9)	-0.0044 (6)	0.0012 (7)	-0.0002 (6)
C2	0.0433 (8)	0.0437 (8)	0.0414 (9)	-0.0004 (6)	0.0013 (6)	0.0014 (6)
C3	0.0482 (9)	0.0399 (8)	0.0532 (10)	0.0018 (6)	0.0012 (7)	0.0019 (6)
C4	0.0491 (9)	0.0438 (8)	0.0542 (11)	-0.0018 (6)	0.0017 (7)	0.0028 (7)
C5	0.0444 (8)	0.0508 (9)	0.0530 (10)	-0.0006 (6)	0.0046 (7)	0.0009 (7)
C6	0.0484 (9)	0.0435 (8)	0.0448 (10)	0.0002 (6)	0.0018 (7)	0.0000 (6)
C7	0.0466 (9)	0.0543 (9)	0.0420 (9)	-0.0041 (7)	0.0025 (7)	-0.0001 (7)
C8	0.0539 (10)	0.0615 (10)	0.0583 (12)	-0.0110 (8)	0.0053 (8)	0.0019 (8)
C9	0.0510 (10)	0.0747 (12)	0.0657 (13)	-0.0113 (9)	0.0071 (8)	0.0008 (9)
C10	0.0478 (9)	0.0776 (12)	0.0766 (14)	0.0042 (9)	0.0070 (8)	-0.0052 (9)
C11	0.0516 (10)	0.0583 (10)	0.0771 (13)	0.0046 (8)	0.0076 (8)	-0.0044 (8)
C12	0.0463 (9)	0.0514 (9)	0.0497 (10)	-0.0021 (7)	0.0021 (7)	-0.0006 (7)
C13	0.0560 (10)	0.0495 (10)	0.1008 (15)	-0.0060 (8)	0.0074 (9)	0.0064 (9)
C14	0.0567 (10)	0.0478 (9)	0.0693 (12)	-0.0005 (7)	0.0078 (8)	-0.0033 (7)

Geometric parameters (Å, °)

01—C1	1.3488 (15)	C5—H5A	0.9300
O1—H1A	0.8500	C6—C14	1.470 (2)
O2—C14	1.2026 (18)	C7—C12	1.404 (2)
N1—C7	1.3434 (18)	С7—С8	1.412 (2)
N1—N2	1.3445 (16)	C8—C9	1.348 (2)
N2—N3	1.3292 (16)	C8—H8A	0.9300

N2 C2	1 4206 (18)	C9 C10	1 414 (3)
N3 C12	1.4200(10) 1.3545(18)		1.414(3)
N_{3} — C_{12}	1.3343(10) 1.305(2)	C_{2}	0.3300
$C_1 = C_0$	1.393(2)		1.338(2)
C1 - C2	1.4038 (19)		0.9300
C2—C3	1.3842 (18)		1.402 (2)
C3—C4	1.389 (2)	CII—HIIA	0.9300
C3—H3B	0.9300	CI3—HI3A	0.9600
C4—C5	1.3823 (19)	С13—Н13В	0.9600
C4—C13	1.507 (2)	C13—H13C	0.9600
C5—C6	1.3905 (19)	C14—H14A	0.9300
C1	120.0	C12—C7—C8	120 93 (14)
C7—N1—N2	103.50(12)	C9-C8-C7	116.85 (16)
N3—N2—N1	116.04(12)	C9—C8—H8A	121.6
N3_N2_C2	122 44 (11)	C7 - C8 - H8A	121.0
$N_1 = N_2 = C_2$	122.44(11) 121.52(11)	$C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	121.0 122.10(15)
N1 - N2 - C2	121.32(11) 102.00(11)	$C_{0} = C_{0} = C_{10}$	122.10(13)
$N_2 - N_3 - C_{12}$	103.09 (11)	C_{8} C_{9} H_{9} H_{9} H_{9}	119.0
01 - 01 - 00	118.00 (13)	C10—C9—H9A	119.0
01	123.87 (13)		122.29 (16)
C6-C1-C2	118.13 (13)	CII—CI0—HI0A	118.9
C3—C2—C1	120.50 (14)	C9—C10—H10A	118.9
C3—C2—N2	119.17 (12)	C10—C11—C12	116.62 (16)
C1—C2—N2	120.33 (12)	C10—C11—H11A	121.7
C2—C3—C4	121.44 (13)	C12—C11—H11A	121.7
С2—С3—Н3В	119.3	N3—C12—C11	129.87 (15)
C4—C3—H3B	119.3	N3—C12—C7	108.91 (12)
C5—C4—C3	117.86 (13)	C11—C12—C7	121.22 (13)
C5—C4—C13	121.36 (14)	C4—C13—H13A	109.5
C3—C4—C13	120.78 (13)	C4—C13—H13B	109.5
C4—C5—C6	121.88 (14)	H13A—C13—H13B	109.5
C4—C5—H5A	119.1	C4—C13—H13C	109.5
C6—C5—H5A	119.1	H13A—C13—H13C	109.5
C5-C6-C1	120 19 (13)	H13B-C13-H13C	109.5
C_{5} C_{6} C_{14}	11952(14)	$0^{2}-C^{1}4-C^{6}$	109.5
$C_1 C_2 C_1 C_2 C_1 C_2 C_2 C_1 C_2 C_2 $	119.32(14) 120.28(13)	$O_2 C_1 H_1 A_1$	118.1
\mathbb{N}_{1} \mathbb{C}_{7} \mathbb{C}_{12}	120.20(13) 108.46(12)	$C_{14} = H_{14}$	118.1
N1 = C7 = C8	100.40(12) 120.62(15)	C0C141114A	110.1
NI	130.02 (13)		
C7—N1—N2—N3	-0.35 (17)	C2—C1—C6—C5	0.8 (2)
C7—N1—N2—C2	179.82 (12)	O1—C1—C6—C14	2.1 (2)
N1—N2—N3—C12	0.42 (17)	C2-C1-C6-C14	-178.04 (13)
C2—N2—N3—C12	-179.75 (12)	N2—N1—C7—C12	0.12 (15)
O1—C1—C2—C3	179.41 (13)	N2—N1—C7—C8	-179.78 (15)
C6—C1—C2—C3	-0.5 (2)	N1—C7—C8—C9	-179.89 (14)
01—C1—C2—N2	-1.3(2)	C12—C7—C8—C9	0.2 (2)
C6-C1-C2-N2	178.88 (12)	C7—C8—C9—C10	0.1(2)
N3—N2—C2—C3	-2.7(2)	C8-C9-C10-C11	-0.2(3)
N1 - N2 - C2 - C3	177 08 (13)	C9-C10-C11-C12	0.1(2)
111 112 02 03	1,1.00 (15)	0, 010, 011 - 012	··· (2)

N3—N2—C2—C1	177.91 (13)	N2—N3—C12—C11	-179.89 (15)
N1—N2—C2—C1	-2.3 (2)	N2—N3—C12—C7	-0.30 (16)
C1—C2—C3—C4	-0.4 (3)	C10-C11-C12-N3	179.71 (16)
N2—C2—C3—C4	-179.71 (13)	C10—C11—C12—C7	0.2 (2)
C2—C3—C4—C5	0.8 (2)	N1—C7—C12—N3	0.12 (16)
C2—C3—C4—C13	-179.41 (15)	C8—C7—C12—N3	-179.97 (14)
C3—C4—C5—C6	-0.5 (2)	N1-C7-C12-C11	179.75 (14)
C13—C4—C5—C6	179.77 (14)	C8—C7—C12—C11	-0.3 (2)
C4C5C6C1	-0.4 (3)	C5-C6-C14-O2	-3.1 (3)
C4—C5—C6—C14	178.51 (14)	C1-C6-C14-O2	175.78 (16)
O1—C1—C6—C5	-179.06 (13)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
01—H1A…N1	0.85	1.94	2.588 (2)	132