

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(1*R*,2*R*,3*S*,6*aS*,7*R*,8*R*,9*S*,12*aS*)-1,2,3,7,8,9-Hexahydroxyperhydrodipyrido[1,2-*a*:1',2'-*d*]pyrazine-6,12dione

S. F. Jenkinson,^a* D. Best,^a F. X. Wilson,^b G. W. J. Fleet^a and D. J. Watkin^c

^aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, England, ^bSummit PLC, 91 Milton Park, Abingdon, Oxon OX14 4RY, England, and ^cDepartment of Chemical Crystallography, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, England Correspondence e-mail: sarah.jenkinson@chem.ox.ac.uk

Received 24 February 2010; accepted 10 March 2010

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.004 Å; R factor = 0.042; wR factor = 0.101; data-to-parameter ratio = 8.4.

The crystal structure of the title compound, $C_{12}H_{18}N_2O_8$, exists as $O-H\cdots O$ hydrogen-bonded layers of molecules running parallel to the *ab* plane. Each molecule is a donor and acceptor for six hydrogen bonds. The absolute stereochemistry was determined by the use of D-glucuronolactone as the starting material.

Related literature

For the isolation and biological activity of pipecolic acids, see: Manning *et al.* (1985); di Bello *et al.* (1984). For the synthesis of pipecolic acids, see: Bashyal *et al.* (1986); Bashyal, Chow & Fleet (1987); Bashyal, Chow, Fellows & Fleet (1987).

Experimental

Crystal data

 $\begin{array}{l} C_{12}H_{18}N_2O_8\\ M_r=318.28\\ \text{Orthorhombic, }P2_12_12_1\\ a=7.8711\ (2)\ \text{\AA}\\ b=8.1526\ (2)\ \text{\AA}\\ c=19.5783\ (5)\ \text{\AA} \end{array}$

 $V = 1256.34 (5) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.14 \text{ mm}^{-1}$ T = 150 K $0.40 \times 0.10 \times 0.10 \text{ mm}$ 12748 measured reflections

 $R_{\rm int} = 0.061$

1663 independent reflections

1348 reflections with $I > 2\sigma(I)$

Data collection

Nonius KappaCCD area-detector diffractometer Absorption correction: multi-scan

(DENZO/SCALEPACK; Otwinowski & Minor, 1997) $T_{min} = 0.85, T_{max} = 0.99$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	199 parameters
$wR(F^2) = 0.101$	H-atom parameters constrained
S = 0.93	$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$
1662 reflections	$\Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, $^\circ).$

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O8-H81···O17 ⁱ	0.83	1.95	2.756 (4)	162
$O22-H221\cdots O1^{ii}$	0.83	2.22	2.917 (4)	141
O19−H191···O11 ⁱⁱⁱ	0.82	2.12	2.793 (4)	139
O11-H111O13 ^{iv}	0.83	1.86	2.685 (4)	173
$O17 - H171 \cdot \cdot \cdot O8^{iii}$	0.80	1.87	2.633 (4)	157
$O6-H61\cdots O19^{v}$	0.83	1.97	2.680 (4)	143

Symmetry codes: (i) x + 1, y, z; (ii) x, y - 1, z; (iii) $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (iv) x, y + 1, z; (v) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

Data collection: *COLLECT* (Nonius, 2001); cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS*.

We would like to thank the Chemical Crystallography department and ALT at the University of Oxford for use of the diffractometers.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5005).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435–435.
- Bashyal, B. P., Chow, H.-F., Fellows, L. E. & Fleet, G. W. J. (1987). *Tetrahedron*, **43**, 415–422.
- Bashyal, B. P., Chow, H.-F. & Fleet, G. W. J. (1986). *Tetrahedron Lett.* 27, 3205–3208.
- Bashyal, B. P., Chow, H.-F. & Fleet, G. W. J. (1987). *Tetrahedron*, 43, 423–430.
 Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). *J. Appl. Cryst.* 36, 1487.
- Bello, I. C. di, Dorling, P., Fellows, L. & Winchester, B. (1984). *FEBS Lett.* **176**, 61–64.
- Manning, K. S., Lynn, D. G., Shabanowitz, J., Fellows, L., Singh, M. & Schrire, B. D. (1985). J. Chem. Soc. Chem. Commun. pp. 127–129.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK.

supporting information

Acta Cryst. (2010). E66, o853 [doi:10.1107/S1600536810009165]

(1*R*,2*R*,3*S*,6a*S*,7*R*,8*R*,9*S*,12a*S*)-1,2,3,7,8,9-Hexahydroxyperhydrodipyrido[1,2*a*:1',2'-*d*]pyrazine-6,12-dione

S. F. Jenkinson, D. Best, F. X. Wilson, G. W. J. Fleet and D. J. Watkin

S1. Comment

2*S*,3*R*,4*R*,5*S*-Trihydroxypipecolicacid (BR1) **2** (Fig.1), a sugar mimic of glucuronic acid, has been isolated from the seeds of Baphia racemosa (Manning *et al.*, 1985) and shown to inhibit both glucuronidase and iduronidase activity (di Bello *et al.*, 1984). In a modification of the original synthesis of BR1 from D-glucuronolactone (Bashyal *et al.*, 1986, Bashyal, Chow & Fleet, 1987, Bashyal, Chow, Fellows & Fleet, 1987), reduction of the azide **1** afforded a low yield of **2** together with by-products. One of the components of the mixture was crystallized; the structure of this material was determined unequivocally by X-ray crystallographic analysis and shown to be the diketopiperazine **3** (Fig. 2). The absolute stereochemistry was determined by the use of D-glucuronolactone as the starting material. The structure consists of layers of hydrogen bonded molecules running parallel to the *ab* plane (Fig. 3, Fig. 4). Each molecule is a donor and acceptor for 6 hydrogen bonds. Only classical hydrogen bonding was considered.

S2. Experimental

The title compound was recrystallised by diffusion from a mixture of water and acetonitrile: m.p. 511 K decomposed; $[\alpha]_D^{20} + 29.7$ (*c*, 0.35 in H₂O).

S3. Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material.

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and U_{iso} (H) (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints.

One outlying reflection was omitted from the refinement as it was thought to be partially occluded by the beam stop.

Figure 1

Synthetic Scheme.

Figure 2

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Figure 3

Packing diagram for the title compound projected along the *a*-axis. Hydrogen bonds are shown by dotted lines.

Figure 4

Packing diagram for the title compound projected along the *b* axis. Hydrogen bonds are shown by dotted lines.

(1R,2R,3S,6aS,7R,8R, 9S,12aS)-1,2,3,7,8,9-Hexahydroxyperhydrodipyrido[1,2- a:1',2'-d]pyrazine-6,12-dione

$C_{12}H_{18}N_2O_8$	F(000) = 672
$M_r = 318.28$	$D_{\rm x} = 1.683 {\rm Mg} {\rm m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 1646 reflections
a = 7.8711 (2) Å	$\theta = 5-27^{\circ}$
b = 8.1526 (2) Å	$\mu = 0.14 \text{ mm}^{-1}$
c = 19.5783 (5) Å	T = 150 K
$V = 1256.34(5) \text{ Å}^3$	Plate, colourless
<i>Z</i> = 4	$0.40 \times 0.10 \times 0.10 \text{ mm}$
Data collection	
Nonius KappaCCD area-detector diffractometer	Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor,
Graphite monochromator	1997)
ω scans	$T_{\min} = 0.85, \ T_{\max} = 0.99$

12748 measured reflections	$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 5.1^{\circ}$
1663 independent reflections	$h = -10 \rightarrow 10$
1348 reflections with $I > 2\sigma(I)$	$k = -10 \rightarrow 10$
$R_{\rm int} = 0.061$	$l = -25 \rightarrow 25$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H-atom parameters constrained
$wR(F^2) = 0.101$	Method = Modified Sheldrick $w = 1/[\sigma^2(F^2) +$
<i>S</i> = 0.93	$(0.06P)^2 + 0.76P],$
1662 reflections	where $P = [\max(F_o^2, 0) + 2F_c^2]/3$
199 parameters	$(\Delta/\sigma)_{\rm max} = 0.000342$
0 restraints	$\Delta \rho_{\rm max} = 0.35 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	$\Delta \rho_{\rm min} = -0.43 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	y	Z	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.4593 (3)	0.7922 (2)	0.34949 (10)	0.0245	
C2	0.5380 (4)	0.6635 (3)	0.34006 (13)	0.0181	
N3	0.6870 (3)	0.6583 (3)	0.30476 (12)	0.0186	
C4	0.8001 (3)	0.5165 (3)	0.30769 (13)	0.0178	
C5	0.9227 (3)	0.5430 (3)	0.36900 (14)	0.0187	
O6	1.0531 (3)	0.4227 (2)	0.36945 (10)	0.0233	
C7	1.0081 (4)	0.7115 (3)	0.36672 (14)	0.0191	
O8	1.0852 (2)	0.7438 (2)	0.43187 (9)	0.0238	
C9	0.8851 (4)	0.8502 (3)	0.35308 (14)	0.0196	
C10	0.7767 (4)	0.8115 (4)	0.29066 (15)	0.0202	
O11	0.9812 (3)	0.9966 (2)	0.34507 (10)	0.0247	
C12	0.7057 (4)	0.3552 (3)	0.31154 (14)	0.0192	
013	0.7761 (3)	0.2272 (2)	0.29231 (10)	0.0234	
N14	0.5463 (3)	0.3566 (3)	0.33597 (12)	0.0186	
C15	0.4689 (3)	0.5025 (3)	0.36625 (13)	0.0188	
C16	0.4834 (3)	0.4874 (3)	0.44528 (13)	0.0187	
O17	0.3887 (3)	0.6143 (2)	0.47677 (10)	0.0240	
C18	0.4098 (4)	0.3245 (3)	0.46900 (13)	0.0203	
O19	0.4442 (3)	0.3016 (3)	0.54059 (9)	0.0269	
C20	0.4757 (4)	0.1754 (3)	0.43053 (13)	0.0201	
C21	0.4581 (4)	0.2045 (3)	0.35390 (13)	0.0199	
O22	0.3776 (3)	0.0390 (2)	0.45221 (10)	0.0310	
H41	0.8655	0.5150	0.2656	0.0187*	
H51	0.8535	0.5336	0.4109	0.0227*	
H71	1.0974	0.7116	0.3316	0.0230*	
H91	0.8058	0.8605	0.3927	0.0225*	
H102	0.8459	0.7964	0.2509	0.0230*	
H101	0.6975	0.8990	0.2835	0.0223*	
H151	0.3443	0.5003	0.3557	0.0220*	
H161	0.6054	0.4942	0.4588	0.0216*	

supporting information

H181	0.2825	0.3283	0.4634	0.0238*	
H201	0.5996	0.1598	0.4417	0.0244*	
H212	0.5077	0.1118	0.3286	0.0232*	
H211	0.3349	0.2163	0.3433	0.0228*	
H81	1.1809	0.7027	0.4365	0.0340*	
H221	0.3488	-0.0299	0.4231	0.0459*	
H191	0.4842	0.3832	0.5589	0.0407*	
H111	0.9114	1.0645	0.3311	0.0377*	
H171	0.4338	0.6804	0.5013	0.0351*	
H61	1.0660	0.3593	0.4021	0.0354*	

Atomic displacement parameters $(Å^2)$

0.1				e	•	U
01	0.0253 (11)	0.0201 (10)	0.0280 (11)	0.0043 (9)	0.0024 (9)	-0.0012 (8)
C2	0.0189 (14)	0.0226 (14)	0.0128 (13)	0.0006 (13)	-0.0029 (11)	-0.0002 (10)
N3	0.0185 (12)	0.0171 (11)	0.0203 (13)	0.0000 (10)	0.0012 (10)	0.0030 (9)
C4	0.0153 (12)	0.0194 (13)	0.0186 (13)	0.0024 (12)	0.0012 (10)	0.0011 (11)
C5	0.0174 (13)	0.0198 (13)	0.0188 (13)	0.0017 (11)	0.0017 (11)	0.0014 (10)
O6	0.0206 (10)	0.0224 (10)	0.0270 (10)	0.0069 (9)	-0.0006 (9)	0.0050 (9)
C7	0.0193 (14)	0.0209 (13)	0.0170 (13)	0.0003 (11)	0.0006 (11)	-0.0014 (11)
08	0.0191 (10)	0.0316 (11)	0.0208 (10)	0.0048 (9)	-0.0041 (8)	-0.0056 (8)
C9	0.0191 (14)	0.0192 (14)	0.0205 (14)	-0.0001 (12)	0.0020 (11)	-0.0008 (10)
C10	0.0200 (15)	0.0205 (13)	0.0203 (15)	0.0011 (12)	-0.0010 (11)	0.0004 (11)
O11	0.0265 (10)	0.0169 (10)	0.0307 (10)	0.0000 (10)	-0.0056 (8)	0.0012 (8)
C12	0.0212 (14)	0.0235 (15)	0.0129 (14)	0.0016 (12)	-0.0019 (11)	0.0007 (11)
O13	0.0274 (12)	0.0206 (10)	0.0223 (11)	0.0049 (9)	0.0016 (9)	-0.0027 (8)
N14	0.0182 (12)	0.0180 (12)	0.0197 (12)	-0.0009 (11)	0.0002 (10)	-0.0004 (9)
C15	0.0168 (12)	0.0208 (14)	0.0186 (12)	0.0026 (13)	0.0021 (10)	-0.0015 (12)
C16	0.0151 (12)	0.0214 (14)	0.0197 (12)	0.0014 (12)	0.0006 (10)	-0.0017 (11)
O17	0.0259 (11)	0.0240 (10)	0.0220 (10)	0.0037 (9)	0.0005 (9)	-0.0075 (8)
C18	0.0182 (14)	0.0270 (14)	0.0158 (14)	0.0028 (12)	-0.0007 (11)	0.0015 (11)
O19	0.0392 (12)	0.0261 (10)	0.0153 (9)	0.0003 (10)	-0.0045 (9)	0.0013 (8)
C20	0.0200 (13)	0.0183 (13)	0.0220 (14)	-0.0013 (12)	0.0010 (11)	0.0007 (11)
C21	0.0195 (14)	0.0200 (14)	0.0201 (14)	-0.0034 (12)	0.0015 (12)	-0.0005 (11)
O22	0.0468 (13)	0.0227 (11)	0.0235 (10)	-0.0087 (10)	0.0064 (10)	-0.0005 (8)

Geometric parameters (Å, °)

01—C2	1.232 (3)	O11—H111	0.826	
C2—N3	1.362 (4)	C12—O13	1.240 (3)	
C2—C15	1.510 (4)	C12—N14	1.343 (4)	
N3—C4	1.461 (3)	N14—C15	1.462 (3)	
N3—C10	1.461 (4)	N14—C21	1.464 (3)	
C4—C5	1.555 (4)	C15—C16	1.556 (3)	
C4—C12	1.513 (4)	C15—H151	1.002	
C4—H41	0.972	C16—O17	1.416 (3)	
C5—O6	1.420 (3)	C16—C18	1.521 (4)	

С5—С7	1.530 (4)	C16—H161	0.998
C5—H51	0.988	O17—H171	0.804
O6—H61	0.829	C18—O19	1.440 (3)
C7—O8	1.437 (3)	C18—C20	1.521 (4)
С7—С9	1.513 (4)	C18—H181	1.008
C7—H71	0.983	O19—H191	0.819
O8—H81	0.830	C20—C21	1.525 (4)
C9—C10	1 523 (4)	$C_{20} = 0.22$	1419(3)
C9011	1.323(1) 1.422(3)	C20—H201	1.008
C9H91	1,000	C21_H212	0.984
C10 H102	0.058	C21 H211	0.006
C10_H101	0.958	022 4221	0.990
C10—H101	0.937	022—H221	0.832
01 C2 N2	100.2 (2)	C4 C12 O12	110.9 (2)
01 - 02 - N3	122.3 (3)	C4 - C12 - O13	119.8 (3)
01	120.5 (2)	C4—C12—N14	118.0 (2)
N3—C2—C15	117.1 (2)	O13—C12—N14	122.2 (3)
C2—N3—C4	122.0 (2)	C12—N14—C15	122.7 (2)
C2—N3—C10	119.1 (2)	C12—N14—C21	121.4 (2)
C4—N3—C10	112.9 (2)	C15—N14—C21	113.2 (2)
N3—C4—C5	107.4 (2)	C2-C15-N14	114.8 (2)
N3—C4—C12	113.0 (2)	C2-C15-C16	112.3 (2)
C5—C4—C12	112.8 (2)	N14—C15—C16	108.0 (2)
N3—C4—H41	107.4	C2—C15—H151	107.3
C5—C4—H41	109.1	N14—C15—H151	108.0
C12—C4—H41	106.9	C16—C15—H151	105.9
C4—C5—O6	110.9 (2)	C15—C16—O17	109.7(2)
C4-C5-C7	112.0(2)	C15 - C16 - C18	1102(2)
06-05-07	107.6(2)	017 - 016 - 018	107.7(2)
C_{4} C5 H51	107.0 (2)	C_{15} C_{16} H_{161}	107.7 (2)
06 05 1151	100.8	017 $C16$ $H161$	109.5
C_{7} C_{5} U_{51}	109.8	$C_{10} = C_{10} = 1101$	100.5
$C_{1} = C_{2} = H_{2}$	109.7	С16—С10—Н101	109.5
C5	121.0	C16—01/—H1/1	121.1
$C_{3} = C_{1} = 08$	108.9 (2)	016-018-019	109.8 (2)
C5-C7-C9	113.3 (2)	C16—C18—C20	114.6 (2)
08	106.9 (2)	019—C18—C20	108.3 (2)
С5—С7—Н71	109.6	C16—C18—H181	108.6
O8—C7—H71	108.6	O19—C18—H181	107.2
С9—С7—Н71	109.5	C20-C18-H181	108.0
C7—O8—H81	114.0	C18—O19—H191	113.2
C7—C9—C10	110.2 (2)	C18—C20—C21	109.4 (2)
C7—C9—O11	107.8 (2)	C18—C20—O22	107.0 (2)
C10—C9—O11	112.5 (2)	C21—C20—O22	111.5 (2)
С7—С9—Н91	109.0	C18—C20—H201	108.8
С10—С9—Н91	106.9	C21—C20—H201	108.8
O11—C9—H91	110.3	O22—C20—H201	111.2
C9—C10—N3	107.2 (2)	C20—C21—N14	108.9 (2)
C9—C10—H102	111.1	C20—C21—H212	109.8
N3—C10—H102	108.5	N14—C21—H212	110.0

supporting information

С9—С10—Н101	109.1	C20—C21—H211	107.9
N3-C10-H101	110.5	N14—C21—H211	109.3
H102-C10-H101	110.3	H212—C21—H211	110.9
С9—011—Н111	104.2	C20—O22—H221	118.2

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	D—H···A
C4—H41…O11 ⁱ	0.97	2.48	3.455 (4)	176
C15—H151···O6 ⁱⁱ	1.00	2.39	3.337 (4)	157
O8—H81…O17 ⁱⁱⁱ	0.83	1.95	2.756 (4)	162
O22—H221…O1 ^{iv}	0.83	2.22	2.917 (4)	141
O19—H191…O11 ^v	0.82	2.12	2.793 (4)	139
O11—H111…O13 ^{vi}	0.83	1.86	2.685 (4)	173
O17—H171···O8 ^v	0.80	1.87	2.633 (4)	157
O6—H61…O19 ^{vii}	0.83	1.97	2.680 (4)	143

Symmetry codes: (i) -x+2, y-1/2, -z+1/2; (ii) x-1, y, z; (iii) x+1, y, z; (iv) x, y-1, z; (v) x-1/2, -y+3/2, -z+1; (vi) x, y+1, z; (vii) x+1/2, -y+1/2, -z+1.