organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

n-Dodecylammonium bromide monohydrate

Wenyan Dan, Youying Di,* Donghua He, Weiwei Yang and Yuxia Kong

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: diyouying@126.com

Received 14 March 2010; accepted 18 March 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.043; wR factor = 0.081; data-to-parameter ratio = 18.2.

In the title compound, $C_{12}H_{28}N^+ \cdot Br^- \cdot H_2O$, the ionic pairs formed by *n*-dodecylammonium cations and bromide anions are arranged into thick layers; these layers are linked in a nearly perpendicular fashion [the angle between the layers is 85.84 (5)°] by hydrogen-bonding interactions involving the water molecules. The methylene part of the alkyl chain in the cation adopts an all-*trans* conformation. In the crystal structure, molecules are linked by intermolecular N-H···Br, O-H···Br and N-H···O hydrogen bonds.

Related literature

Long-chain *n*-alkylammonium halides are widely used as surfactants (Aratono *et al.*, 1998; Tornblom *et al.*, 2000) and as models for biological membranes (Ringsdorf *et al.*, 1988). They exhibit polymorphism at room temperature: for solid-solid phase transitions in *n*-alkylammonium chlorides, see: Terreros *et al.* (2000). For a related structure, see: Lundén (1974).

Experimental

Crystal data

 $\begin{array}{l} C_{12}H_{28}N^+\cdot \mathrm{Br}^-\cdot \mathrm{H}_2\mathrm{O}\\ M_r = 284.28\\ \mathrm{Monoclinic},\ Cc\\ a = 4.7921\ (5)\ \mathrm{\mathring{A}}\\ b = 42.810\ (4)\ \mathrm{\mathring{A}}\\ c = 7.8573\ (8)\ \mathrm{\mathring{A}}\\ \beta = 105.798\ (2)^\circ \end{array}$

 $V = 1551.0 (3) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 2.63 \text{ mm}^{-1}$ T = 293 K $0.42 \times 0.14 \times 0.06 \text{ mm}$

Data collection

```
Siemens SMART CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T_{min} = 0.404, T_{max} = 0.858
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	
$wR(F^2) = 0.081$	
S = 0.92	
2644 reflections	
145 parameters	
5 restraints	

4760 measured reflections 2644 independent reflections 1665 reflections with $I > 2\sigma(I)$ $R_{int} = 0.047$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.40 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack (1983),
945 Friedel pairs
Flack parameter: 0.048 (19)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1A \cdots Br1^{i}$ $N1 - H1B \cdots Br1$ $N1 - H1C \cdots O1$ $D1 - H1 \cdots Br1^{ii}$ $D1 - H2 \cdots Br1^{iii}$	0.89 0.89 0.89 0.83 (4) 0.97 (4)	2.53 2.47 1.97 2.76 (6) 2.49 (5)	3.380 (4) 3.340 (4) 2.834 (7) 3.329 (5) 3.361 (5)	159 166 165 128 (6) 149 (5)
Symmetry codes: $z + 1, -y + 1, z - \frac{1}{2}$.	(i) $x + 1, -$	$-y+1, z+\frac{1}{2};$	(ii) $x, -y + 1$	$1, z - \frac{1}{2};$ (iii)

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *SHELXTL*.

We acknowledge financial support by the National Natural Science Foundations of China (20673050 and 20973089).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2141).

References

Aratono, M., Villeneuve, M., Takiue, T., Ikeda, N. & Iyota, H. (1998). J. Colloid Interface Sci. 200, 161–171.

Brandenburg, K. (1998). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Flack, H. D. (1983). *Acta Cryst.* A**39**, 876–881.

- Lundén, B.-M. (1974). Acta Cryst. B30, 1756-1760.
- Ringsdorf, H., Schlarb, B. & Venzmer, J. (1988). Angew. Chem. Int. Ed. Engl. 27, 113–158.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Terreros, A., Galera–Gomez, P. J. & Lopez–Cabarcos, E. (2000). J. Therm. Anal. Calorim. 61, 341–350.
- Tornblom, M., Sitnikov, R. & Henriksson, U. (2000). J. Phys. Chem. B, 104, 1529–1538.

supporting information

Acta Cryst. (2010). E66, o910 [doi:10.1107/S1600536810010123]

n-Dodecylammonium bromide monohydrate

Wenyan Dan, Youying Di, Donghua He, Weiwei Yang and Yuxia Kong

S1. Comment

Long-chain *n*-alkylammonium halides are widely used as surfactants (Aratono *et al.*, 1998; Tornblom *et al.*, 2000) and as models for biological membranes (Ringsdorf *et al.*, 1988). They exhibit polymorphism at room temperature; solid-solid phase transitions occurred in *n*-alkylammonium chlorides (Terreros *et al.*, 2000). As a part of the studies on novel potential phase transfer materials with the thermochemical properties such as *n*-alkylammonium chlorides, we report the crystal structure of the title compound (Fig. 1).

Atoms C3–C12 are coplanar in the title compound; however, atoms C2–C12 are coplanar in *n*–dodecylammonium bromide (Ludén, 1974). Although the methylene chain had the extended all–*trans* conformation, it is slightly curved in the vicinity of the ammonium group, to accommodate the hydrogen–bonding interactions. The hydrogen bonds of *n*–do-decylammonium bromide monohydrate are more stronger than that of *n*–dodecylammonium bromide because of N–H···O and O–H···Br hydrogen bonds. Only torsion angle C1–C2–C3–C4 deviates significantly from 180 °, with a value of 170.6 (5)°. The crystal packing (Fig. 2) is stabilized by intermolecular N–H···O and O–H···Br hydrogen bonds.

S2. Experimental

n–Dodecylammonium bromide monohydrate was prepared by the addition of hydrobromic acid to an ethanol solution of *n*–dodecylamine. The resulting precipitate was filtered off and recrystallized several times from chloroform. Single crystals suitable for X–ray diffraction were prepared by evaporation of a solution of the title compound in chloroform at room temperature. Analysis, calculated for $C_{12}H_{30}BrNO$ (Mr = 284.28): C 50.69, H 10.64, N 4.93, O 5.63, Br 28.11%; found: C 50.67, H 10.65, N 4.91, O 5.64, Br 28.13%.

S3. Refinement

The reported Flack parameter was obtained by TWIN/BASF procedure in SHELXL (Sheldrick, 2008). Water molecule bound H atoms were located in difference Fourier maps and their positional parameters refined with a distance restraint [O1-H1 = 0.85 (5) & O1-H2 = 0.80 (5) Å] and a angle restraint. The H atoms of C and N atoms were positioned geometrically, with methylene C--H distances of 0.97 Å, methyl C--H distances of 0.96 Å, N-H 0.89 Å and refined as riding on their parent atoms. The $U_{iso}(H)$ values were set at $1.2U_{eq}$ for the methylene H atoms and at $1.5U_{eq}$ for other H atoms.

Figure 1

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Figure 2

N—H···Br, N—H···O and O—H···Br interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) x + 1, -y + 1, z + 1/2; (ii) x, -y + 1, z - 1/2; (iii) x + 1, -y + 1, z - 1/2]

n-Dodecylammonium bromide monohydrate

Crystal data	
$C_{12}H_{28}N^+ \cdot Br^- \cdot H_2O$ $M_r = 284.28$ Monoclinic, <i>Cc</i> Hall symbol: C -2yc a = 4.7921 (5) Å b = 42.810 (4) Å c = 7.8573 (8) Å	F(000) = 608 $D_x = 1.217 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1266 reflections $\theta = 2.9-25.0^{\circ}$ $\mu = 2.63 \text{ mm}^{-1}$ T = 293 K
$\beta = 105.798 (2)^{\circ}$ $V = 1551.0 (3) Å^{3}$ Z = 4 Data collection	Acicular, colourless $0.42 \times 0.14 \times 0.06 \text{ mm}$
Siemens SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 10 pixels mm ⁻¹ φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.404, T_{\max} = 0.858$	4760 measured reflections 2644 independent reflections 1665 reflections with $I > 2\sigma(I)$ $R_{int} = 0.047$ $\theta_{max} = 27.0^{\circ}, \theta_{min} = 1.9^{\circ}$ $h = -6 \rightarrow 5$ $k = -54 \rightarrow 50$ $l = -6 \rightarrow 10$

Refinement

Refinement on F^2	Hydrogen site location: difference Fourier map
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.043$	and constrained refinement
$wR(F^2) = 0.081$	$w = 1/[\sigma^2(F_o^2) + (0.0277P)^2]$
S = 0.92	where $P = (F_o^2 + 2F_c^2)/3$
2644 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
145 parameters	$\Delta \rho_{\rm max} = 0.40 \text{ e } \text{\AA}^{-3}$
5 restraints	$\Delta \rho_{\rm min} = -0.24$ e Å ⁻³
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 945 Friedel pairs
Secondary atom site location: difference Fourier map	Absolute structure parameter: 0.048 (19)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.2086 (2)	0.524590 (10)	0.38293 (16)	0.05643 (18)
O1	0.8268 (12)	0.45062 (13)	0.1580 (6)	0.0760 (15)
H1	0.734 (13)	0.4485 (18)	0.053 (6)	0.114*
H2	0.993 (11)	0.4589 (15)	0.124 (9)	0.114*
N1	0.7249 (9)	0.46990 (8)	0.4809 (6)	0.0502 (12)
H1A	0.8831	0.4731	0.5697	0.075*
H1B	0.6083	0.4864	0.4696	0.075*
H1C	0.7755	0.4671	0.3810	0.075*
C1	0.5729 (12)	0.44200 (13)	0.5176 (8)	0.0496 (17)
H1D	0.3952	0.4392	0.4238	0.059*
H1E	0.5212	0.4449	0.6276	0.059*
C2	0.7567 (11)	0.41323 (10)	0.5313 (7)	0.0480 (14)
H2A	0.9345	0.4161	0.6249	0.058*
H2B	0.8084	0.4104	0.4213	0.058*
C3	0.6028 (11)	0.38403 (11)	0.5696 (7)	0.0496 (14)
H3A	0.5795	0.3855	0.6881	0.059*
H3B	0.4108	0.3831	0.4875	0.059*
C4	0.7635 (11)	0.35416 (10)	0.5545 (7)	0.0466 (14)
H4A	0.7908	0.3531	0.4367	0.056*
H4B	0.9540	0.3550	0.6382	0.056*
C5	0.6137 (11)	0.32477 (11)	0.5877 (7)	0.0484 (14)
H5A	0.5955	0.3254	0.7076	0.058*
H5B	0.4194	0.3245	0.5082	0.058*

C6	0.7625 (11)	0.29500 (11)	0.5641 (7)	0.0488 (14)
H6A	0.9550	0.2951	0.6458	0.059*
H6B	0.7859	0.2947	0.4453	0.059*
C7	0.6105 (11)	0.26515 (11)	0.5920 (7)	0.0454 (13)
H7A	0.5909	0.2651	0.7117	0.055*
H7B	0.4168	0.2651	0.5117	0.055*
C8	0.7621 (11)	0.23602 (11)	0.5640 (7)	0.0484 (14)
H8A	0.9555	0.2361	0.6447	0.058*
H8B	0.7827	0.2362	0.4446	0.058*
C9	0.6128 (11)	0.20610 (11)	0.5905 (7)	0.0495 (14)
H9A	0.4180	0.2062	0.5116	0.059*
H9B	0.5957	0.2058	0.7107	0.059*
C10	0.7642 (12)	0.17604 (11)	0.5585 (7)	0.0508 (14)
H10A	0.7842	0.1766	0.4389	0.061*
H10B	0.9579	0.1757	0.6387	0.061*
C11	0.6143 (13)	0.14651 (12)	0.5818 (8)	0.0592 (16)
H11A	0.5946	0.1459	0.7014	0.071*
H11B	0.4205	0.1468	0.5016	0.071*
C12	0.7623 (15)	0.11758 (13)	0.5502 (9)	0.080 (2)
H12A	0.7850	0.1179	0.4325	0.121*
H12B	0.6483	0.0998	0.5634	0.121*
H12C	0.9496	0.1163	0.6342	0.121*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0519 (3)	0.0577 (3)	0.0587 (3)	0.0057 (6)	0.0134 (2)	0.0063 (5)
01	0.078 (3)	0.085 (4)	0.069 (3)	0.006 (3)	0.025 (3)	0.006 (3)
N1	0.051 (3)	0.038 (3)	0.056 (3)	0.006 (2)	0.005 (2)	0.0026 (19)
C1	0.050 (4)	0.032 (3)	0.067 (5)	0.001 (3)	0.017 (3)	0.004 (3)
C2	0.052 (3)	0.036 (3)	0.057 (4)	-0.001 (3)	0.016 (3)	0.000(2)
C3	0.053 (4)	0.043 (3)	0.059 (4)	0.001 (3)	0.027 (3)	0.007 (3)
C4	0.047 (3)	0.039 (3)	0.056 (4)	0.000 (3)	0.017 (3)	0.001 (3)
C5	0.057 (4)	0.041 (3)	0.052 (3)	0.001 (3)	0.024 (3)	-0.005 (3)
C6	0.053 (3)	0.044 (3)	0.049 (3)	-0.003 (3)	0.013 (3)	0.000 (3)
C7	0.048 (3)	0.036 (3)	0.056 (3)	-0.001 (3)	0.020 (3)	0.001 (3)
C8	0.050 (3)	0.042 (3)	0.055 (3)	-0.003 (3)	0.017 (3)	-0.001 (3)
С9	0.051 (4)	0.046 (3)	0.056 (4)	-0.007(3)	0.021 (3)	-0.001 (3)
C10	0.058 (4)	0.048 (3)	0.047 (3)	0.000 (3)	0.015 (3)	0.001 (3)
C11	0.073 (4)	0.041 (3)	0.067 (4)	-0.011 (3)	0.026 (3)	-0.001 (3)
C12	0.104 (5)	0.041 (4)	0.097 (5)	0.003 (4)	0.028 (4)	-0.007(3)

Geometric parameters (Å, °)

01—H1	0.83 (4)	C6—C7	1.516 (6)
O1—H2	0.97 (4)	C6—H6A	0.9700
N1—C1	1.468 (7)	C6—H6B	0.9700
N1—H1A	0.8900	C7—C8	1.490 (6)

N1—H1B	0.8900	C7—H7A	0.9700
N1—H1C	0.8900	C7—H7B	0.9700
C1—C2	1.501 (7)	C8—C9	1.509(7)
C1—H1D	0.9700	C8—H8A	0.9700
C1—H1E	0.9700	C8—H8B	0.9700
С2—С3	1.522 (6)	C9—C10	1.532 (7)
C2—H2A	0.9700	C9—H9A	0.9700
C2—H2B	0.9700	C9—H9B	0 9700
C3—C4	1 514 (7)	C10—C11	1490(7)
C3—H3A	0.9700	C10—H10A	0.9700
C3—H3B	0.9700	C10—H10B	0.9700
C4—C5	1 506 (6)	C11-C12	1 481 (8)
$C4 - H4\Delta$	0.9700	C11_H11A	0.9700
C4—H4R	0.9700	C11_H11B	0.9700
C5 C6	1.496 (6)	C12 $H12A$	0.9700
C5_U5A	0.0700	C12 = H12R	0.9000
C5 U5P	0.9700	C12 H12D	0.9000
Сэ—нэв	0.9700	CI2—HI2C	0.9600
H1—O1—H2	91 (5)	С5—С6—Н6В	108.3
C1—N1—H1A	109.5	C7—C6—H6B	108.3
C1—N1—H1B	109.5	H6A—C6—H6B	107.4
H1A—N1—H1B	109.5	C8—C7—C6	114.3 (4)
C1—N1—H1C	109.5	C8—C7—H7A	108.7
H1A—N1—H1C	109.5	C6—C7—H7A	108.7
H1B—N1—H1C	109.5	C8—C7—H7B	108.7
N1-C1-C2	111.6 (5)	C6—C7—H7B	108.7
NI-CI-HID	109.3	H7A - C7 - H7B	107.6
C^2 — $C1$ — $H1D$	109.3	C7 - C8 - C9	114 9 (4)
N1—C1—H1E	109.3	C7-C8-H8A	108 5
C^2 — C^1 — H^1E	109.3	C9-C8-H8A	108.5
HID_C1_HIF	108.0	C7_C8_H8B	108.5
C1 - C2 - C3	112 4 (4)	C9-C8-H8B	108.5
C1 = C2 = C3	109.1	H84 - C8 - H8B	107.5
$C_1 - C_2 - H_2 A$	109.1	$C_8 C_9 C_{10}$	115 3 (4)
C_{1} C_{2} H_{2} H_{2}	109.1	$C_8 = C_9 = C_{10}$	108.5
C1 - C2 - H2B	109.1	C_{0} C_{0} H_{0}	108.5
	107.0	$C_{10} = C_{20} = H_{0}R$	108.5
$\frac{112}{C4} = \frac{C2}{C2} = \frac{112}{C2}$	107.9 112.2 (4)	C_{3} C_{3} C_{10} C_{0} H_{0} H_{0}	108.5
C4 - C3 - C2	113.2 (4)	C10 - C9 - H9B	108.5
$C_4 - C_5 - H_3 A$	108.9	H_{A} C_{A} H_{B} H_{B} C_{A} H_{B} C_{A} H_{B} C_{A} H_{B} H_{B	107.3 115.2 (4)
$C_2 = C_3 = H_2 R$	108.9	$C_{11} = C_{10} = C_{9}$	115.5 (4)
С4—С5—п5Б	108.9	C11 - C10 - H10A	108.5
$U_2 - U_3 - \Pi_3 B$	108.9	C_{2} C_{10} H_{10A}	108.5
$\Pi JA - UJ - \Pi JB$	10/.8	C_{11} C_{10} H_{10} H_{10}	108.5
$C_{5} = C_{4} = U_{5}$	114.0 (4)	$U_{10} = U_{10} = U_{10}$	108.5
C_{2} C_{4} H_{4}	108.0	HIUA - CIU - HIUB	107.5
$C_5 = C_4 = H_4A$	108.0	C12 - C11 - C10	114.8 (5)
$C_2 = C_4 = H_4 B$	108.6	CI2—CII—HIIA	108.6
U3-U4-H4B	108.6	UIU-UII-HIIA	108.6

H4A—C4—H4B	107.6	C12—C11—H11B	108.6
C6—C5—C4	115.1 (4)	C10-C11-H11B	108.6
С6—С5—Н5А	108.5	H11A—C11—H11B	107.5
C4—C5—H5A	108.5	C11—C12—H12A	109.5
С6—С5—Н5В	108.5	C11—C12—H12B	109.5
C4—C5—H5B	108.5	H12A—C12—H12B	109.5
H5A—C5—H5B	107.5	C11—C12—H12C	109.5
C5—C6—C7	115.9 (4)	H12A—C12—H12C	109.5
С5—С6—Н6А	108.3	H12B—C12—H12C	109.5
С7—С6—Н6А	108.3		
N1—C1—C2—C3	179.9 (4)	C5—C6—C7—C8	178.9 (4)
C1—C2—C3—C4	170.6 (5)	C6—C7—C8—C9	-179.7 (5)
C2—C3—C4—C5	-178.7 (4)	C7—C8—C9—C10	178.9 (4)
C3—C4—C5—C6	177.0 (5)	C8—C9—C10—C11	-179.1 (5)
C4—C5—C6—C7	-178.4 (4)	C9—C10—C11—C12	179.9 (5)

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
0.89	2.53	3.380 (4)	159
0.89	2.47	3.340 (4)	166
0.89	1.97	2.834 (7)	165
0.83 (4)	2.76 (6)	3.329 (5)	128 (6)
0.97 (4)	2.49 (5)	3.361 (5)	149 (5)
	D—H 0.89 0.89 0.89 0.83 (4) 0.97 (4)	D—H H…A 0.89 2.53 0.89 2.47 0.89 1.97 0.83 (4) 2.76 (6) 0.97 (4) 2.49 (5)	D—HH···A D ···A0.892.533.380 (4)0.892.473.340 (4)0.891.972.834 (7)0.83 (4)2.76 (6)3.329 (5)0.97 (4)2.49 (5)3.361 (5)

Symmetry codes: (i) x+1, -y+1, z+1/2; (ii) x, -y+1, z-1/2; (iii) x+1, -y+1, z-1/2.