organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Propane-1,3-diyl bis(pyridine-3carboxylate)

Iván Brito,^a* Javier Vallejos,^a Michael Bolte^b and Matías López-Rodríguez^c

^aDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, ^bInstitut für Anorganische Chemie der Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany, and ^cInstituto de Bio-Orgánica 'Antonio González', Universidad de La Laguna, Astrofísico Francisco Sánchez N°2, La Laguna, Tenerife, Spain Correspondence e-mail: ivanbritob@yahoo.com

Received 2 March 2010; accepted 8 March 2010

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.010 Å; R factor = 0.109; wR factor = 0.276; data-to-parameter ratio = 13.4.

The title compound, $C_{15}H_{14}N_2O_4$, has a *trans–gauche* [O/C/C/ C–O/C/C/C] (TG) conformation. The angle between the planes of aromatic rings is 76.4 (3)°. The crystal structure is stabilized by van der Waals interactions and C–H···O hydrogen bonds. The crystal used was a non-merohedral twin with a fractional contribution of the minor component of 0.443 (5).

Related literature

For conformation definitions, see: Carlucci *et al.* (2002). For applications of crystalline nanoporous coordination polymers, see Matsuda *et al.* (2005); Wu *et al.* (2005); Xiang *et al.* (2005).

Experimental

Crystal data $C_{15}H_{14}N_2O_4$ $M_r = 286.28$

Triclinic, $P\overline{1}$ a = 4.4797 (11) Å

$b = 10.911 (3) \text{ Å} c = 14.842 (4) \text{ Å} \alpha = 104.41 (2)^{\circ} \beta = 95.90 (2)^{\circ} \gamma = 100.90 (2)^{\circ} V = 681.3 (3) \text{ Å}^{3}$	$Z = 2$ Mo K α radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 173 K $0.22 \times 0.14 \times 0.07 \text{ mm}$		
Data collection			
Stoe IPDS II two-circle	2558 independent reflections		
diffractometer	1382 reflections with $I > 2\sigma(I)$		
8029 measured renections	$\kappa_{\rm int} = 0.119$		
Refinement			
$R[F^2 > 2\sigma(F^2)] = 0.109$	191 parameters		
$wR(F^2) = 0.276$	H-atom parameters constrained		
S = 1.49	$\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$		
2558 reflections	$\Delta \rho_{\rm min} = -0.46 \ {\rm e} \ {\rm \AA}^{-3}$		

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C3 - H3A \cdots O4^{i}$ $C16 - H16 \cdots O2^{ii}$ $C24 - H24 \cdots O2^{iii}$	0.99 0.95 0.95	2.49 2.45 2.45	3.341 (8) 3.198 (10) 3.218 (10)	144 136 138
Symmetry codes: -x + 1, -y, -z + 1.	(i) $-x + 3$,	-y + 1, -z + 1;	(ii) $-x + 1$,	-y, -z; (iii)

Data collection: *X-AREA* (Stoe & Cie, 2001); cell refinement: *X-AREA*; data reduction: *X-AREA*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

We thank the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the CSD system. JV thanks the Universidad de Antofagasta for PhD fellowships.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2324).

References

- Carlucci, L., Ciani, G., Proserpio, D. M. & Rizzato, S. (2002). *CrystEngComm*, 22, 121-129.
- Matsuda, R., Kitaura, R., Kitagawa, S., Kubota, Y., Belosludov, R. V., Kobayashi, T. C., Sakamoto, H., Chiba, T., Takata, M., Kawazoe, Y. & Mita, Y. (2005). *Nature (London)*, **436**, 238–241.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2001). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.Wu, C. D., Hu, A., Zhang, L. & Lin, W. (2005). J. Am. Chem. Soc. 127, 8940– 8941
- Xiang, S., Wu, X., Zhang, J., Fu, R., Hu, S. & Zhang, X. (2005). J. Am. Chem. Soc. 127, 16352–16353.

supporting information

Acta Cryst. (2010). E66, o792 [doi:10.1107/S1600536810008810]

Propane-1,3-diyl bis(pyridine-3-carboxylate)

Iván Brito, Javier Vallejos, Michael Bolte and Matías López-Rodríguez

S1. Comment

In the past decade, crystalline nanoporous coordination polymers have been extensively studied for their potential applications in magnetism (Xiang *et al.*, 2005), catalysis (Wu *et al.*, 2005) and gas adsorption or separation (Matsuda *et al.*, 2005). The propanediyl group in the crystal structure can adopt four possible conformations: trans-trans (TT), trans-gauche (TG), gauche-gauche (GG), gauche-gauche' (GG') (Carlucci *et al.*, 2002). The propanediyl group in the title compound has a *trans-gauche* (TG) [O1/C2/C3/C4 - O3/C4/C3/C2] conformation (Fig. 1). The angle between the planes of aromatics rings is 76.4 (3)°. The crystal structure is stabilized by van der Waals interactions and C—H…O hydrogen bonds (Table 1). To the best of our knowledge coordination polymer with this ligand still remain unknown.

S2. Experimental

Nicotinic acid (15 g, 0.122 mol) was stirred in $SOCl_2(40 \text{ ml})$ in the presence of DMF (0.6 ml) at 60 °C for 12 h. Excess thionyl chloride was removed in vacuo. Dried propanediol (4.3 ml, 0.061 mol) was added. After the evolution of hydrogen chloride ended, the mixture was heated at 150 °C for 2 h. The mixture was dissolved in water, and NH₄OH solution was added. After filtration, recrystallization in ethyl acetate gave colorless crystal. Yield 11.53 g (80 %). Analysis calculated for $C_{15}H_{14}N_2O_4$: C:62.9 , H:4.89 , N:9.68 ; found: C: 62.25, H: 4.68, N:9.52 . IR (KBr, cm⁻¹): (C=O) 1715 s, (C=C) 1591 m, (Ar C-C, C=N) 1429 s,(C-O) 1277 m.

S3. Refinement

The crystal turned out to be a non-merohedral twin (twin law: -1 0 0/0 -0.476 -0.740/ 0 -1 0.478) with a fractional contribution of the minor component of 0.443 (5). H atoms were placed in idealized positions and treated as riding atoms with C—H distances in the range 0.95-0.99 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The material was difficult to obtain in a suitable crystalline form.

Figure 1

A view of the molecular structure with the atom-numbering scheme. Displacemenent ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Z = 2

F(000) = 300

 $\theta = 3.9 - 25.8^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

Plate, colourless

 $0.22 \times 0.14 \times 0.07 \text{ mm}$

T = 173 K

 $D_{\rm x} = 1.395 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3924 reflections

Propane-1,3-diyl bis(pyridine-3-carboxylate)

Crystal data

C₁₅H₁₄N₂O₄ $M_r = 286.28$ Triclinic, *P*1 Hall symbol: -P 1 a = 4.4797 (11) Å b = 10.911 (3) Å c = 14.842 (4) Å a = 104.41 (2)° $\beta = 95.90$ (2)° $\gamma = 100.90$ (2)° V = 681.3 (3) Å³

Data collection

Stoe IPDS II two-circle	1382 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.119$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 3.8^\circ$
Graphite monochromator	$h = -5 \rightarrow 5$
ω scans	$k = -13 \rightarrow 12$
8629 measured reflections	$l = -12 \rightarrow 17$
2558 independent reflections	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.109$ $wR(F^2) = 0.276$ S = 1.492558 reflections 191 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.090P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.43$ e Å⁻³ $\Delta\rho_{min} = -0.46$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso}$ */ $U_{\rm eq}$ x v \overline{Z} 01 0.8187 (10) 0.2723 (4) 0.2445(4)0.0458 (12) O2 0.6697 (13) 0.0749(5)0.1430(4)0.0637 (16) O3 1.1653 (9) 0.2272(4)0.5109(3)0.0405(11)04 0.6081 (4) 0.0540 (14) 1.2061 (11) 0.4252(4)C1 0.6560(14)0.1865 (6) 0.1644(5)0.0434(17)C2 1.0002(15)0.2161 (6) 0.3054(5)0.0434 (16) H2A 1.1296 0.1648 0.2688 0.052* H₂B 0.8629 0.1587 0.3334 0.052* C3 1.2023 (14) 0.3317 (6) 0.3827(5)0.0448 (17) H3A 0.3543 0.054* 1.3515 0.3838 H3B 1.0718 0.3881 0.4135 0.054* C4 1.3748 (14) 0.2826(7)0.4557(5)0.0445(17)H4A 1.4795 0.2160 0.4234 0.053* H4B 0.3554 0.4981 0.053* 1.5339 C5 0.5848 (5) 1.0994 (13) 0.3111 (6) 0.0439 (17) C11 0.4701 (14) 0.2473 (6) 0.1081 (5) 0.0420 (16) C12 0.4516(15) 0.3777 (6) 0.1359(5)0.0451 (17) H12 0.5646 0.4308 0.1948 0.054* N13 0.0838 (5) 0.2835 (15) 0.4308 (6) 0.0568 (17) C14 0.1172 (16) 0.3544(7)0.0009 (6) 0.0538 (19) H14 -0.00700.3904 -0.03670.065* 0.2229 (7) C15 0.1253 (17) -0.0306(6)0.055(2) H15 0.1712 -0.08990.066* 0.0121 C16 0.2940 (17) 0.1699(7)0.0235 (6) 0.0516(19) H16 0.2923 0.0800 0.0037 0.062* C21 0.8829(13) 0.2446(6)0.6378(5)0.0386(15) C22 0.7613 (14) 0.6107 (6) 0.1126(6)0.0472 (18) H22 0.8192 0.0626 0.5560 0.057* N23 0.0501 (6) 0.5693 (13) 0.6553(4)0.0505 (16) C24 0.4879(17)0.7329(6) 0.0526 (19) 0.1254(7)H24 0.063* 0.3486 0.0843 0.7661 C25 0.2594 (6) 0.0470 (17) 0.5981 (16) 0.7660 (5) H25 0.5369 0.3086 0.8205 0.056* C26 0.7973(14)0.3177 (6) 0.7173 (5) 0.0446 (17) H26 0.8772 0.4089 0.7381 0.054*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.045 (2)	0.027 (2)	0.054 (3)	0.0010 (19)	-0.005 (2)	0.001 (2)
O2	0.095 (4)	0.041 (3)	0.047 (3)	0.020 (3)	-0.005 (3)	-0.001 (2)
O3	0.036 (2)	0.035 (2)	0.043 (3)	-0.0023 (18)	0.005 (2)	0.004 (2)
O4	0.051 (3)	0.032 (3)	0.066 (4)	-0.004 (2)	0.006 (2)	0.003 (2)
C1	0.043 (3)	0.033 (4)	0.048 (5)	0.002 (3)	0.003 (3)	0.008 (3)
C2	0.044 (3)	0.033 (3)	0.053 (4)	0.006 (3)	0.006 (3)	0.014 (3)
C3	0.037 (3)	0.031 (3)	0.056 (4)	-0.008(3)	-0.001(3)	0.009 (3)
C4	0.041 (3)	0.040 (4)	0.054 (5)	0.002 (3)	0.015 (3)	0.020 (3)
C5	0.034 (3)	0.027 (3)	0.062 (5)	0.002 (3)	-0.001 (3)	0.002 (3)
C11	0.046 (3)	0.025 (3)	0.046 (4)	0.004 (3)	0.005 (3)	-0.002 (3)
C12	0.053 (4)	0.027 (3)	0.048 (5)	0.007 (3)	0.003 (3)	0.001 (3)
N13	0.072 (4)	0.039 (3)	0.051 (4)	0.013 (3)	-0.006(3)	0.003 (3)
C14	0.057 (4)	0.041 (4)	0.057 (5)	0.012 (3)	-0.009(4)	0.008 (4)
C15	0.059 (4)	0.043 (4)	0.049 (5)	0.008 (3)	0.007 (4)	-0.010 (3)
C16	0.066 (4)	0.030 (3)	0.051 (5)	0.006 (3)	0.009 (4)	0.001 (3)
C21	0.031 (3)	0.029 (3)	0.044 (4)	0.001 (2)	-0.007(3)	-0.002 (3)
C22	0.045 (3)	0.024 (3)	0.063 (5)	0.001 (3)	0.003 (3)	0.003 (3)
N23	0.054 (3)	0.041 (3)	0.048 (4)	-0.002 (3)	0.004 (3)	0.008 (3)
C24	0.058 (4)	0.040 (4)	0.055 (5)	0.004 (3)	0.011 (4)	0.010 (4)
C25	0.050 (4)	0.034 (3)	0.047 (4)	0.006 (3)	-0.002(3)	-0.002 (3)
C26	0.042 (3)	0.028 (3)	0.051 (5)	0.004 (3)	0.000 (3)	-0.008(3)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

01—C1	1.353 (8)	C12—N13	1.329 (10)
O1—C2	1.472 (8)	C12—H12	0.9500
O2—C1	1.194 (8)	N13—C14	1.353 (10)
O3—C5	1.340 (8)	C14—C15	1.402 (10)
O3—C4	1.452 (7)	C14—H14	0.9500
O4—C5	1.193 (8)	C15—C16	1.349 (12)
C1—C11	1.475 (10)	C15—H15	0.9500
C2—C3	1.537 (9)	C16—H16	0.9500
C2—H2A	0.9900	C21—C22	1.379 (8)
C2—H2B	0.9900	C21—C26	1.384 (9)
C3—C4	1.528 (10)	C22—N23	1.328 (9)
С3—НЗА	0.9900	С22—Н22	0.9500
С3—Н3В	0.9900	N23—C24	1.364 (10)
C4—H4A	0.9900	C24—C25	1.393 (9)
C4—H4B	0.9900	C24—H24	0.9500
C5—C21	1.504 (10)	C25—C26	1.368 (10)
C11—C16	1.389 (10)	С25—Н25	0.9500
C11—C12	1.400 (8)	C26—H26	0.9500
C1—O1—C2	114.8 (5)	N13—C12—C11	123.2 (7)
C5—O3—C4	116.2 (5)	N13—C12—H12	118.4

O2—C1—O1	122.4 (6)	C11—C12—H12	118.4
O2—C1—C11	125.2 (6)	C12—N13—C14	118.4 (7)
O1-C1-C11	112.4 (6)	N13—C14—C15	121.1 (7)
O1—C2—C3	105.9 (5)	N13—C14—H14	119.5
O1—C2—H2A	110.6	C15—C14—H14	119.5
C3—C2—H2A	110.6	C16—C15—C14	119.9 (7)
O1—C2—H2B	110.6	C16—C15—H15	120.0
C3—C2—H2B	110.6	C14—C15—H15	120.0
H2A—C2—H2B	108.7	C15—C16—C11	119.8 (7)
C4—C3—C2	109.8 (6)	C15—C16—H16	120.1
С4—С3—НЗА	109.7	C11—C16—H16	120.1
С2—С3—НЗА	109.7	C22—C21—C26	117.6 (7)
C4—C3—H3B	109.7	C22—C21—C5	123.1 (6)
С2—С3—Н3В	109.7	C26—C21—C5	119.3 (6)
H3A—C3—H3B	108.2	N23—C22—C21	125.0 (7)
O3—C4—C3	111.0 (5)	N23—C22—H22	117.5
O3—C4—H4A	109.4	C21—C22—H22	117.5
C3—C4—H4A	109.4	C22—N23—C24	115.8 (6)
O3—C4—H4B	109.4	N23—C24—C25	123.6 (7)
C3—C4—H4B	109.4	N23—C24—H24	118.2
H4A—C4—H4B	108.0	C25—C24—H24	118.2
O4—C5—O3	124.4 (6)	C26—C25—C24	117.7 (7)
O4—C5—C21	123.4 (7)	C26—C25—H25	121.2
O3—C5—C21	112.2 (5)	С24—С25—Н25	121.2
C16—C11—C12	117.6 (7)	C25—C26—C21	120.3 (6)
C16—C11—C1	118.2 (6)	С25—С26—Н26	119.8
C12—C11—C1	124.1 (6)	C21—C26—H26	119.8
C2-01-C1-02	-3.1 (9)	N13—C14—C15—C16	1.9 (12)
C2	177.9 (5)	C14—C15—C16—C11	-2.9 (11)
C1—O1—C2—C3	171.4 (5)	C12-C11-C16-C15	3.2 (10)
O1—C2—C3—C4	173.9 (5)	C1-C11-C16-C15	-178.9 (7)
C5—O3—C4—C3	-84.3 (7)	O4—C5—C21—C22	-179.8 (7)
C2—C3—C4—O3	-70.1 (7)	O3—C5—C21—C22	-1.8 (9)
C4—O3—C5—O4	-1.7 (10)	O4—C5—C21—C26	0.8 (10)
C4—O3—C5—C21	-179.6 (6)	O3—C5—C21—C26	178.7 (6)
O2—C1—C11—C16	0.4 (11)	C26-C21-C22-N23	-0.4 (11)
O1—C1—C11—C16	179.4 (6)	C5-C21-C22-N23	-179.9 (7)
O2-C1-C11-C12	178.2 (7)	C21—C22—N23—C24	0.9 (11)
O1—C1—C11—C12	-2.8 (9)	C22—N23—C24—C25	-0.9 (11)
C16—C11—C12—N13	-2.5 (10)	N23—C24—C25—C26	0.3 (12)
C1-C11-C12-N13	179.7 (7)	C24—C25—C26—C21	0.2 (10)
C11—C12—N13—C14	1.4 (11)	C22—C21—C26—C25	-0.2 (10)
C12—N13—C14—C15	-1.1 (11)	C5-C21-C26-C25	179.3 (7)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C3—H3A····O4 ⁱ	0.99	2.49	3.341 (8)	144
C16—H16···O2 ⁱⁱ	0.95	2.45	3.198 (10)	136
C24—H24···O2 ⁱⁱⁱ	0.95	2.45	3.218 (10)	138

Symmetry codes: (i) -*x*+3, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*, -*z*; (iii) -*x*+1, -*y*, -*z*+1.