Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Diazidobis(propane-1,3-diamine)copper(II)

Islam Ullah Khan, ${ }^{\text {a* }}$ Ejaz, ${ }^{\text {a }}$ Onur Sahin ${ }^{\text {b* }}$ and Orhan Büyükgüngör ${ }^{\text {b }}$

${ }^{\text {a }}$ Materials Chemistry Laboratry, Department of Chemistry, GC University, Lahore 54000, Pakistan, and ${ }^{\text {b }}$ Department of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey
Correspondence e-mail: iuklodhi@yahoo.com, onurs@omu.edu.tr
Received 4 March 2010; accepted 18 March 2010
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.018 ; w R$ factor $=0.077$; data-to-parameter ratio $=15.8$.

In the title complex, $\left[\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{2}\right]$, the $\mathrm{Cu}^{\mathrm{II}}$ ion resides on a centre of symmetry and is in a Jahn-Teller distorted octahedral coordination environment comprising two N atoms from azide anions in axial positions and four N atoms from propane-1,3-diamine (tn) ligands in equatorial positions. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds produce $R_{2}^{1}(6)$, $R_{2}^{2}(8), R_{2}^{2}(12)$ and $R_{4}^{2}(8)$ rings, generating a two-dimensional layer.

Related literature

For related structures, see: Escuer et al. (1997); Gu et al. (2007); Mondal \& Mukherjee (2008); Monfort et al. (2000); Shen et al. (2000); Sundberg \& Sillanpaa (1993); Sundberg \& Uggla (1997); Sundberg et al. (2001); Zhang et al. (2009); Luo et al. (2004); Triki et al. (2005). For graph-set motifs, see: Bernstein et al. (1995).

Experimental

Crystal data
$\left[\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=295.86$
$\gamma=119.453(2)^{\circ}$
Triclinic, $P \overline{1}$
$a=6.6869$ (4) A
$b=6.7743$ (4) \AA
$c=8.2445$ (8) \AA
$\alpha=93.296(3)^{\circ}$
$\beta=98.306(3)^{\circ}$
$V=318.19(4) \AA^{3}$
$Z=1$
Mo $K \alpha$ radiation
$\mu=1.72 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.27 \times 0.25 \times 0.22 \mathrm{~mm}$

Data collection

Bruker Kappa APEXII
1497 independent reflections diffractometer
5360 measured reflections
1467 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.018$
$w R\left(F^{2}\right)=0.077$
H atoms treated by a mixture of independent and constrained
$S=1.01$
1497 reflections
95 parameters
4 restraints
refinement
$\Delta \rho_{\text {max }}=0.42 \mathrm{e}_{\AA_{\circ}^{-3}}$
$\Delta \rho_{\min }=-0.44 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA{ }^{\circ},{ }^{\circ}$).

$\mathrm{N} 1-\mathrm{Cu} 1$	$2.0333(13)$	$\mathrm{N} 4-\mathrm{N} 5$	$1.168(2)$
$\mathrm{N} 2-\mathrm{Cu} 1$	$2.0302(13)$	$\mathrm{N} 4-\mathrm{Cu} 1$	$2.6740(17)$
$\mathrm{N} 3-\mathrm{N} 5$	$1.169(2)$		
$\mathrm{N} 5-\mathrm{N} 4-\mathrm{Cu} 1$	$99.05(12)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 4$	$83.92(5)$
$\mathrm{N} 4-\mathrm{N} 5-\mathrm{N} 3$	$179.8(2)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 4$	$87.19(5)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 1$	$87.19(5)$		

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~N}^{\mathrm{i}}$	$0.84(1)$	$2.12(2)$	$2.962(2)$	$173(2)$
$\mathrm{N} 1-\mathrm{H} 2 \cdots \mathrm{~N}^{\mathrm{ii}}$	$0.85(2)$	$2.66(2)$	$3.511(2)$	$173(2)$
$\mathrm{N} 2-\mathrm{H} 3 \cdots \mathrm{~N}^{\mathrm{ii}}$	$0.83(2)$	$2.44(2)$	$3.220(2)$	$158(2)$
$\mathrm{N} 2-\mathrm{H} 4 \cdots \mathrm{~N} 3^{\mathrm{iii}}$	$0.80(2)$	$2.31(2)$	$3.078(2)$	$162(2)$
Symmetry codes: (i) $-x+3,-y,-z ;($ (ii) $-x+3,-y+1,-z ;$ (iii) $x-1, y, z$				

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

IUK thanks the Higher Education Commission of Pakistan for its financial support under the project Strengthening of the Materials Chemistry Laboratory at GCUL.

[^0]
metal-organic compounds

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Escuer, A., Vicente, R., Mautner, F. A. \& Goher, M. A. S. (1997). Inorg. Chem. 36, 1233-1236.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gu, Z.-G., Song, Y., Zuo, J.-L. \& You, X.-Z. (2007). Inorg. Chem. 46, 95229524.

Luo, J., Zhou, X.-G., Gao, S., Weng, L.-H., Shao, Z.-H., Zhang, C.-M., Li, Y.-R., Zhang, J. \& Cai, R.-F. (2004). Polyhedron, 23, 1243-1248.

Mondal, K.-C. \& Mukherjee, P.-S. (2008). Inorg. Chem. 47, 4215-4225.
Monfort, M., Resino, I., Ribas, J. \& Stoeckli-Evans, H. (2000). Angew. Chem. Int. Ed. 39, 191-193.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shen, Z., Zuo, J.-L., Gao, S., Song, Y., Che, C.-M., Fun, H.-K. \& You, X.-Z. (2000). Angew. Chem. Int. Ed. 39, 3633-3635.

Sundberg, M. R., Kivekas, R., Huovilainen, R. \& Uggla, R. (2001). Inorg. Chim. Acta, 324, 212-217.
Sundberg, M. R. \& Sillanpaa, R. (1993). Acta Chem. Scand. 47, 1173-1178.
Sundberg, M. R. \& Uggla, R. (1997). Inorg. Chim. Acta, 254, 259-265.
Triki, S., Garcia, C. J. G., Ruiz, E. \& Pala, J. S. (2005). Inorg. Chem. 44, 55015508.

Zhang, K.-J., Meng, X.-G. \& Li, X.-L. (2009). Acta Cryst. E65, m1678-m1679.

supporting information

Acta Cryst. (2010). E66, m434-m435 [doi:10.1107/S1600536810010184]

Diazidobis(propane-1,3-diamine)copper(II)

Islam Ullah Khan, Ejaz, Onur Şahin and Orhan Büyükgüngör

S1. Comment

Recently, metal azide complexes have attracted great attention (Mondal \& Mukherjee, 2008; Gu et al., 2007). The azide anion has rich coordination modes (Shen et al., 2000), and many metal-azide complexes have been reported (Monfort et al., 2000). In most of the compounds reported to date, the co-ligands are neutral organic ligands, while charged ligands are very scarce (Escuer et al., 1997). The 1,3-diaminopropane (tn) ligand behaves as a strong chelatator in its metal complexes due to the formation of a stable six-membered ring. At the same time, it is a good H -bond donor due to the existence of amino groups (Sundberg et al., 2001). Previously, the polymorphic dinuclear compound featuring both bridging and terminal azido groups was reported (Luo et al., 2004; Triki et al., 2005). Herein, we report the synthesis and structure of the mononuclear complex with only terminal azido ligands.

The molecular structure and atom-labelling scheme are shown in Fig. 1. The $\mathrm{Cu}^{\mathrm{II}}$ atom is located on a center of symmetry and is coordinated by four N atoms from two th ligands and two N atoms from two azide anions. The geometry around the $\mathrm{Cu}^{\text {II }}$ ion (Table 1) is that of a distorted octahedron, the equatorial plane of which $\left(\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{N} 1^{\mathrm{i}} / \mathrm{N} 2^{i}\right)$ is formed by four amino N atoms [symmetry code: (i) $2-\mathrm{x},-\mathrm{y},-\mathrm{z}$]. The axial positions in the octahedron are occupied by two N atoms (N 4 and $\mathrm{N} 4^{\mathrm{i}}$). The $\mathrm{Cu} 1-\mathrm{N} 4$ distance is longer than the corresponding distances in related structures (Luo et al., 2004; Triki et al., 2005). This elongation can be attributed to the static Jahn-Teller effect. The tn ligand shows chelating coordination behavior and displays a chair conformation in the equatorial direction. This kind of coordination mode was also found in the similar complexes (Sundberg et al., 2001; Sundberg \& Sillanpaa, 1993; Sundberg \& Uggla, 1997). The $\mathrm{Cu} 1-\mathrm{N} 1$ and $\mathrm{Cu} 1-\mathrm{N} 2$ bond lengths are very similar to those in the previously reported $\operatorname{Bis}(4$-aminobenzenesulfonatoκO) $\operatorname{bis}\left(\right.$ propane-1,3-diamine- $\left.\kappa^{2} N, \mathrm{~N}^{\prime}\right)$ copper(II) dihydrate (Zhang et al., 2009).

Amino atom N 2 in the molecule at $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ acts as a hydrogen-bond donor, via H 3 , to atom $\mathrm{N} 3{ }^{\mathrm{ii}}$ so forming a $\mathrm{C}(6)$ (Bernstein et al., 1995) chain running parallel to the [110] direction. Amino atom N 2 in the molecule at ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) acts as a hydrogen-bond donor, via H 4 , to atom $\mathrm{N} 3{ }^{\text {iii }}$ so forming a $\mathrm{C}(6)$ chain running parallel to the [-100] direction. Similarly, amino atom N1 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via $H 1$, to atom $N 3^{i}$ so forming a $C(6)$ chain running parallel to the [100] direction. Amino atom N 1 in the molecule at ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) acts as a hydrogen-bond donor, via H 2 , to atom $\mathrm{N} 44^{\mathrm{ii}}$ so forming a $\mathrm{C}(4)$ chain running parallel to the [110] direction. The combination of $\mathrm{C}(4)$ and $\mathrm{C}(6)$ chains produce $R_{2}{ }^{1}(6), R_{2}{ }^{2}(8), R_{2}{ }^{2}(12)$ and $R_{4}{ }^{2}(8)$ rings (Fig. 2).

S2. Experimental

Copper(II) sulphate ($0.16 \mathrm{~g}, 1.0 \mathrm{mmol}$) was dissolved in methanol (20 ml). Sodium azide ($0.134 \mathrm{~g}, 2.0 \mathrm{mmol}$) and 1,3-diaminopropane $(0.148 \mathrm{~g}, 2.0 \mathrm{mmol})$ were added and the mixture refluxed for 3 hours. A blue solution formed, which was filtered. After a few days, blue blocks were obtained from the methanol filtrate.

S3. Refinement

All H atoms bound to C atoms were refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$ for methylene C atoms. Amino H atoms were located in difference maps and refined subject to a DFIX restraint of $\mathrm{N}-\mathrm{H}=$ 0.87 (2) Å.

Figure 1

A view of one molecule showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (i) $2-\mathrm{x},-\mathrm{y},-\mathrm{z}$.]

Figure 2

Part of the crystal structure showing the formation of $\mathrm{R}_{2}{ }^{1}(6), \mathrm{R}_{2}{ }^{2}(8), \mathrm{R}_{2}{ }^{2}(12)$ and $\mathrm{R}_{4}{ }^{2}(8)$ rings. H atoms not involved in these interactions have been omitted for clarity. (Symmetry codes as in Table 2).

Diazidobis(propane-1,3-diamine)copper(II)

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=295.86$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=6.6869$ (4) \AA
$b=6.7743$ (4) \AA
$c=8.2445$ (8) \AA
$\alpha=93.296(3)^{\circ}$
$\beta=98.306(3)^{\circ}$
$\gamma=119.453$ (2) ${ }^{\circ}$
$V=318.19$ (4) \AA^{3}

Data collection

Bruker Kappa APEXII

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
5360 measured reflections
1497 independent reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.018$
$w R\left(F^{2}\right)=0.077$
$S=1.01$
1497 reflections
95 parameters
4 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& Z=1 \\
& F(000)=155 \\
& D_{\mathrm{x}}=1.544 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 4650 \text { reflections } \\
& \theta=3.5-28.6^{\circ} \\
& \mu=1.72 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& \text { Blocks, blue } \\
& 0.27 \times 0.25 \times 0.22 \mathrm{~mm}
\end{aligned}
$$

1467 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=28.0^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-8 \rightarrow 5$
$k=-8 \rightarrow 8$
$l=-10 \rightarrow 10$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0676 P)^{2}+0.0082 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right)^{2} / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.42 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.44 \mathrm{e} \AA^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
C1	$1.2523(3)$	$0.1281(3)$	$0.3530(2)$	$0.0388(4)$
H1A	1.3929	0.1612	0.4300	0.047^{*}
H1B	1.1251	-0.0175	0.3700	0.047^{*}

C2	$1.1953(3)$	$0.3138(3)$	$0.3892(2)$	$0.0401(4)$
H2A	1.3207	0.4574	0.3679	0.048^{*}
H2B	1.1916	0.3312	0.5062	0.048^{*}
C3	$0.9655(3)$	$0.2714(3)$	$0.2899(2)$	$0.0400(4)$
H3A	0.8381	0.1311	0.3136	0.048^{*}
H3B	0.9412	0.3964	0.3233	0.048^{*}
N1	$1.2889(2)$	$0.1090(2)$	$0.18062(17)$	$0.0313(3)$
H1	$1.338(3)$	$0.017(3)$	$0.173(2)$	$0.029(5)^{*}$
H2	$1.398(3)$	$0.241(3)$	$0.169(3)$	$0.034(5)^{*}$
N2	$0.9619(2)$	$0.2524(2)$	$0.10959(17)$	$0.0317(3)$
H3	$1.078(3)$	$0.368(3)$	$0.093(3)$	$0.037(5)^{*}$
H4	$0.855(3)$	$0.261(4)$	$0.060(3)$	$0.040(6)^{*}$
N3	$1.5787(3)$	$0.2474(3)$	$-0.1503(2)$	$0.0483(4)$
N4	$1.2752(3)$	$0.3278(3)$	$-0.1626(2)$	$0.0446(3)$
N5	$1.4271(2)$	$0.2879(2)$	$-0.15632(16)$	$0.0310(3)$
Cu1	1.0000	0.0000	0.0000	$0.02769(12)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0421(9)$	$0.0354(8)$	$0.0248(8)$	$0.0114(7)$	$-0.0028(6)$	$0.0058(6)$
C2	$0.0409(9)$	$0.0375(8)$	$0.0246(7)$	$0.0085(7)$	$0.0031(6)$	$-0.0030(6)$
C3	$0.0374(8)$	$0.0407(9)$	$0.0331(8)$	$0.0141(7)$	$0.0078(7)$	$-0.0065(7)$
N1	$0.0284(6)$	$0.0309(6)$	$0.0293(6)$	$0.0132(5)$	$-0.0013(5)$	$0.0012(5)$
N2	$0.0278(6)$	$0.0320(7)$	$0.0304(7)$	$0.0136(5)$	$-0.0001(5)$	$-0.0004(5)$
N3	$0.0379(8)$	$0.0398(8)$	$0.0659(11)$	$0.0211(7)$	$0.0029(7)$	$0.0040(7)$
N4	$0.0365(7)$	$0.0575(9)$	$0.0397(8)$	$0.0255(7)$	$0.0029(6)$	$0.0027(7)$
N5	$0.0288(6)$	$0.0254(6)$	$0.0294(6)$	$0.0069(5)$	$0.0043(5)$	$0.0056(5)$
Cu1	$0.02519(16)$	$0.03367(17)$	$0.02129(17)$	$0.01466(12)$	$-0.00046(10)$	$-0.00212(10)$

Geometric parameters $\left({ }^{(},^{\circ}{ }^{\circ}\right)$

C1-N1	1.486 (2)	N1-H1	0.843 (14)
C1-C2	1.509 (3)	N1-H2	0.852 (15)
C1-H1A	0.9700	N2-Cu1	2.0302 (13)
C1-H1B	0.9700	N2-H3	0.826 (16)
C2-C3	1.513 (2)	N2-H4	0.801 (15)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700	N3-N5	1.169 (2)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9700	N4-N5	1.168 (2)
$\mathrm{C} 3-\mathrm{N} 2$	1.480 (2)	$\mathrm{N} 4-\mathrm{Cu} 1$	2.6740 (17)
C3-H3A	0.9700	Cu1-N2 ${ }^{\text {i }}$	2.0302 (13)
C3-H3B	0.9700	$\mathrm{Cul}-\mathrm{Nl}^{1}$	2.0333 (13)
N1-Cu1	2.0333 (13)		
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	111.99 (13)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 2$	106.5 (15)
N1-C1-H1A	109.2	$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{H} 2$	110.7 (14)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.2	$\mathrm{H} 1-\mathrm{N} 1-\mathrm{H} 2$	108.1 (19)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.2	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{Cu} 1$	118.90 (11)

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.2	C3-N2-H3	108.0 (15)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	107.9	Cu1-N2-H3	101.3 (15)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	114.90 (15)	C3-N2-H4	110.7 (17)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.5	Cu1-N2-H4	113.0 (17)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.5	H3-N2-H4	103 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.5	N5-N4-Cu1	99.05 (12)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.5	N4-N5-N3	179.8 (2)
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.5	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 2^{\text {i }}$	180.00 (7)
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2$	111.68 (13)	N2-Cu1-N1	87.19 (5)
N2-C3-H3A	109.3	N2 ${ }^{\text {i }}$ - $\mathrm{Cu} 1-\mathrm{N} 1$	92.81 (5)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.3	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 1^{\text {i }}$	92.81 (5)
N2-C3-H3B	109.3	$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1^{\text {i }}$	87.19 (5)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.3	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\text {i }}$	180.00 (6)
H3A-C3-H3B	107.9	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 4$	83.92 (5)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 1$	115.28 (10)	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 4$	96.08 (5)
C1-N1-H1	107.0 (13)	N1-Cu1-N4	87.19 (5)
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{H} 1$	109.1 (14)	$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 4$	92.81 (5)
N1-C1-C2-C3	64.96 (19)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	52.35 (11)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	-60.6 (2)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2^{\text {i }}$	-127.65 (11)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 1$	-66.39 (15)	C1-N1-Cu1-N4	136.40 (11)
C2-C3-N2-Cu1	60.49 (17)	N5-N4-Cu1-N2	137.75 (12)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 1$	-50.92 (12)	N5-N4-Cu1-N2 ${ }^{\text {i }}$	-42.25 (12)
C3-N2-Cu1-N1 ${ }^{\text {i }}$	129.08 (12)	N5-N4-Cu1-N1	50.28 (12)
C3-N2-Cu1-N4	-138.39 (12)	N5-N4-Cu1-N1 ${ }^{\text {i }}$	-129.72 (12)

Symmetry code: (i) $-x+2,-y,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{~N} 3^{\text {ii }}$	$0.84(1)$	$2.12(2)$	$2.962(2)$	$173(2)$
$\mathrm{N} 1 — \mathrm{H} 2 \cdots \mathrm{~N} 4^{\text {iii }}$	$0.85(2)$	$2.66(2)$	$3.511(2)$	$173(2)$
$\mathrm{N} 2 — \mathrm{H} 3 \cdots \mathrm{~N} 3^{\text {iii }}$	$0.83(2)$	$2.44(2)$	$3.220(2)$	$158(2)$
$\mathrm{N} 2 — \mathrm{H} 4 \cdots \mathrm{~N} 3{ }^{\text {iv }}$	$0.80(2)$	$2.31(2)$	$3.078(2)$	$162(2)$

Symmetry codes: (ii) $-x+3,-y,-z$; (iii) $-x+3,-y+1,-z$; (iv) $x-1, y, z$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2325).

