Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

3,3'-Bithiophene

José C. S. Costa, ${ }^{\text {a }}$ Ligia R. Gomes, ${ }^{\text {b }}$ Luís M. N. B. F. Santos ${ }^{\text {a }}$ and John Nicolson Low ${ }^{\text {c* }}$
${ }^{\text {a }}$ Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, P-4169 007 Porto, Portugal, ${ }^{\text {b }}$ REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, P-4169 007 Porto, Portugal, and ${ }^{\text {c }}$ Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland
Correspondence e-mail: jnlow111@googlemail.com
Received 10 March 2010; accepted 19 March 2010
Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; disorder in main residue; R factor $=0.039 ; \omega R$ factor $=0.101$; data-to-parameter ratio $=19.5$.

The title compound, $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~S}_{2}$, is disordered [occupancy ratio $=$ 0.839 (2):0.161 (2)] and sits across a centre of symmetry. In the crystal, the molecules are linked by a weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction.

Related literature

For a discussion of the disorder in this compound, see: Visser et al. (1968). For thiophene C-S bond distances, see: Allen et al. (1987).

Experimental

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~S}_{2}$
$M_{r}=166.25$
Orthorhombic, Pccn
$a=7.5187$ (7) \AA
$b=18.2181$ (17) \AA
$c=5.5029$ (5) A
$V=753.77(12) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.62 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
$0.60 \times 0.40 \times 0.04 \mathrm{~mm}$

Data collection
Bruker SMART APEXII diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2004)
$T_{\text {min }}=0.709, T_{\text {max }}=0.976$
11635 measured reflections 1151 independent reflections 987 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.039$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039 \quad 6$ restraints
$w R\left(F^{2}\right)=0.101 \quad \mathrm{H}$-atom parameters constrained
$S=1.10$
$\Delta \rho_{\max }=0.48 \mathrm{e} \AA^{-3}$
1151 reflections
59 parameters
$\Delta \rho_{\text {min }}=-0.33 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g$ and $C g^{\prime}$ are the centroids of the thiophene ring in the major and minor occupancy disorder components, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots C g^{\mathrm{i}}$	0.95	2.86	$3.6039(17)$	136
$\mathrm{C} 2-\mathrm{H} 2 \cdots C g^{\prime \mathrm{i}}$	0.95	2.86	$3.607(5)$	136

Symmetry code: (i) $-x+\frac{1}{2}, y, z-\frac{1}{2}$.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

LRG thanks the Fundação para o Ensino e Cultura Fernando Pessoa for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2327).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2004). APEXII, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Visser, G. J., Heeres, G. J., Wolters, J. \& Vos, A. (1968). Acta Cryst. B24, 467473.

supporting information

Acta Cryst. (2010). E66, o916 [doi:10.1107/S1600536810010342]

3,3'-Bithiophene

José C. S. Costa, Ligia R. Gomes, Luís M. N. B. F. Santos and John Nicolson Low

S1. Comment

The disorder in the title compound was discussed briefly by Visser et al. (1968). However, this paper gives no coordinates and the structure determination was at room temperature. This is a low temerature determination. A view of the major, 0.839 (2), site occupancy, and minor, 0.161 (2), site occupancy, components are shown in Fig. 1. There is a weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction, $\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Cg}$ (thiophene) $(0.5-\mathrm{x}, \mathrm{y}, \mathrm{z}-0.5)$ in which $\mathrm{H} 2 \cdots \mathrm{Cg}$ is $2.86 \AA$ and $\mathrm{C} 2 \cdots \mathrm{Cg}$ is 3.6039 (17) \AA. The angle at H 2 ia 136° for the major component. The $\mathrm{C} 2 \cdots \mathrm{Cg} 2$ distance for the minor component is 3.607 (5) \AA. The $\mathrm{H} 2 \cdots \mathrm{Cg}$ distance and angle at H 2 are the same.

S2. Experimental

The compound was obtained commercially and re-crystallised from dichloromethane.

S3. Refinement

H atoms were treated as riding atoms with $\mathrm{C}-\mathrm{H}$ (aromatic), $0.95 \AA$. The S atom was disordered by rotation of 180° around the bond connecting the 2 thiophene rings. The $\mathrm{C}-\mathrm{S}$ distances were restrained the average value quoted in Allen, et al., 1987 using tight restraints. Specifically, the C2-C5a and C4-C5 bonds were restrained in SHELXL97 refinements using DFIX 1.3800 .001 and the C5-S1, C2-S1, C4-S1A and C5A-S1A bonds were restrained using DFIX 1.72 0.001. The anisotropic thermal parameters for atom C 5 A (minor component) were constrained to be the same as those those of atom C5 (major component) using the EADP instruction.

Figure 1

A view of the title compound with our numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The molecule sits across the centre-of-symmetry at $(0.5,0.5,0.5)$. The bonds in the minor component are marked as dotted lines.

3,3'-bithiophene

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~S}_{2}$
$M_{r}=166.25$
Orthorhombic, Pccn
$a=7.5187$ (7) \AA
$b=18.2181(17) \AA$
$c=5.5029(5) \AA$
$V=753.77(12) \AA^{3}$
$Z=4$
$F(000)=344$

Data collection

Bruker SMART APEXII
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\text {min }}=0.709, T_{\text {max }}=0.976$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.101$
$S=1.10$
1151 reflections
59 parameters
$D_{\mathrm{x}}=1.465 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 406 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 124 reflections
$\theta=2.8-30.5^{\circ}$
$\mu=0.62 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Plate, yellow
$0.60 \times 0.40 \times 0.04 \mathrm{~mm}$

11635 measured reflections
1151 independent reflections
987 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.039$
$\theta_{\text {max }}=30.6^{\circ}, \theta_{\text {min }}=4.3^{\circ}$
$h=-10 \rightarrow 10$
$k=-23 \rightarrow 26$
$l=-7 \rightarrow 7$

6 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0478 P)^{2}+0.3736 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.48 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.33 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
S1	$0.44974(10)$	$0.67774(2)$	$0.55925(11)$	$0.03155(18)$	$0.839(2)$
C5A	$0.446(2)$	$0.6612(2)$	$0.5331(18)$	$0.0246(5)$	$0.161(2)$
H5A	0.4003	0.7061	0.4718	0.030^{*}	$0.161(2)$
C2	$0.4207(2)$	$0.59508(6)$	$0.4154(2)$	$0.0255(3)$	
H2	0.3574	0.5891	0.2673	0.031^{*}	
C3	$0.50025(17)$	$0.53842(7)$	$0.5407(2)$	$0.0199(3)$	
C4	$0.58337(19)$	$0.56308(7)$	$0.7572(3)$	$0.0262(3)$	
H4	0.6439	0.5314	0.8666	0.031^{*}	
C5	$0.5674(8)$	$0.63775(10)$	$0.7926(7)$	$0.0246(5)$	$0.839(2)$
H5	0.6150	0.6636	0.9277	0.030^{*}	$0.839(2)$
S1A	$0.5658(13)$	$0.65626(13)$	$0.7988(13)$	$0.0391(12)$	$0.161(2)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
S1	$0.0353(3)$	$0.0217(2)$	$0.0377(3)$	$0.0028(2)$	$0.0068(2)$	$0.00256(18)$
C5A	$0.0243(10)$	$0.0215(10)$	$0.0279(10)$	$-0.0028(13)$	$0.0000(8)$	$-0.0033(10)$
C2	$0.0264(7)$	$0.0274(6)$	$0.0227(6)$	$0.0032(5)$	$0.0010(5)$	$0.0039(5)$
C3	$0.0152(6)$	$0.0247(6)$	$0.0198(6)$	$0.0022(5)$	$0.0025(5)$	$0.0022(5)$
C4	$0.0234(7)$	$0.0303(7)$	$0.0249(6)$	$0.0026(5)$	$-0.0034(5)$	$-0.0015(5)$
C5	$0.0243(10)$	$0.0215(10)$	$0.0279(10)$	$-0.0028(13)$	$0.0000(8)$	$-0.0033(10)$
S1A	$0.040(2)$	$0.0276(17)$	$0.049(2)$	$-0.001(2)$	$0.0038(15)$	$-0.0074(17)$

Geometric parameters $\left(\hat{A},{ }^{\circ}\right)$

$\mathrm{S} 1-\mathrm{C} 2$	$1.7152(9)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.4181(19)$
$\mathrm{S} 1-\mathrm{C} 5$	$1.7215(10)$	$\mathrm{C} 3-\mathrm{C} 3$	$1.470(3)$
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 2$	$1.3802(10)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.3794(10)$
$\mathrm{C} 5 \mathrm{~A}-\mathrm{S} 1 \mathrm{~A}$	$1.7203(10)$	$\mathrm{C} 4-\mathrm{S} 1 \mathrm{~A}$	$1.7180(10)$
$\mathrm{C} 5 \mathrm{~A}-\mathrm{H} 5 \mathrm{~A}$	0.9500	$\mathrm{C} 4-\mathrm{H} 4$	0.9500
$\mathrm{C} 2-\mathrm{C} 3$	$1.3778(19)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9500
$\mathrm{C} 2-\mathrm{H} 2$	0.9500		

C2-S1-C5	92.19 (8)	C4-C3-C3 ${ }^{\text {i }}$	123.98 (15)
$\mathrm{C} 2-\mathrm{C} 5 \mathrm{~A}-\mathrm{S} 1 \mathrm{~A}$	115.2 (3)	C5-C4-C3	113.15 (13)
C2-C5A-H5A	122.4	C3-C4-S1A	113.04 (17)
S1A-C5A-H5A	122.4	C5-C4-H4	123.4
C3-C2-C5A	111.1 (2)	C3-C4-H4	123.4
C3-C2-S1	111.81 (10)	S1A-C4-H4	123.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	124.1	C4-C5-S1	110.87 (12)
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2$	124.9	C4-C5-H5	124.6
$\mathrm{S} 1-\mathrm{C} 2-\mathrm{H} 2$	124.1	S1-C5-H5	124.6
C2-C3-C4	111.98 (11)	C4-S1A-C5A	88.8 (2)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 3^{\mathrm{i}}$	124.05 (15)		
$\mathrm{S} 1 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 2-\mathrm{C} 3$	-0.2 (15)	C3 ${ }^{\text {i }}$ - $3-\mathrm{C} 4-\mathrm{C} 5$	179.3 (3)
C5-S1-C2-C3	-0.6 (3)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{S} 1 \mathrm{~A}$	-1.3 (5)
C5A-C2-C3-C4	1.0 (8)	$\mathrm{C} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{S} 1 \mathrm{~A}$	178.5 (4)
S1-C2-C3-C4	0.73 (16)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{S} 1$	0.1 (5)
C5A-C2-C3-C3 ${ }^{\text {i }}$	-178.8 (8)	C2-S1-C5-C4	0.3 (4)
$\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 3^{\text {i }}$	-179.03 (14)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{S} 1 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	1.0 (10)
C2-C3-C4-C5	-0.5 (3)	$\mathrm{C} 2-\mathrm{C} 5 \mathrm{~A}-\mathrm{S} 1 \mathrm{~A}-\mathrm{C} 4$	-0.4 (14)

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)
Cg and Cg^{\prime} are the centroids of the thiophene ring in the major and minor occupancy disorder components, respectively.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2 — \mathrm{H} 2 \cdots C g^{\mathrm{ii}}$	0.95	2.86	$3.6039(17)$	136
$\mathrm{C} 2 — \mathrm{H} 2 \cdots C g^{\prime \mathrm{ii}}$	0.95	2.86	$3.607(5)$	136

Symmetry code: (ii) $-x+1 / 2, y, z-1 / 2$.

