Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Benzyl-6-bromo-2-phenyl-4H-imidazo-[4,5-b]pyridine

Y. Ouzidan,^a S. Obbade,^b F. Capet,^c El Mokhtar Essassi^d and Seik Weng Ng^e*

^aLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fés, Morocco, ^bLaboratoire d'Electrochimie et de Physicochimie des Matériaux et des Interfaces, Domaine Universitaire, 38402 St Martin d'Hères Cedex, Grenoble, France, ^cUnité de Catalyse et de Chimie du Solide, Ecole Nationale Supérieure de Chimie de Lille, Lille, France, ^dLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, and ^eDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 11 March 2010; accepted 19 March 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.032; wR factor = 0.098; data-to-parameter ratio = 22.2.

The imidazopyridine fused ring in the title compound, $C_{19}H_{14}BrN_3$, is almost coplanar with the phenyl ring at the 2-position of the five-membered ring [dihedral angle = 2.4 (1). The crystal structure features short Br...Br contacts [3.562 (1) Å].

Related literature

For the synthesis of imidazo[4,5-b]pyridines, see: Aridoss et al. (2006); Benham et al. (1995); Cundy et al. (1997); Kale et al. (2009); Walsh et al. (1994); Zaki & Proença (2007).

Experimental

Crystal data

C19H14BrN3 V = 1580.93 (18) Å³ $M_r = 364.24$ Z = 4Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation a = 8.6613 (6) Å $\mu = 2.60 \text{ mm}^$ b = 19.7631 (13) Å T = 293 Kc = 9.3683 (6) Å $0.28 \times 0.24 \times 0.20 \text{ mm}$ $\beta = 99.647 \ (3)^{\circ}$

Data collection

Bruker X8 APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.529, T_{\max} = 0.624$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ 208 parameters $wR(F^2) = 0.098$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.63 \ {\rm e} \ {\rm \AA}^-$ S = 1.00 $\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$ 4613 reflections

57936 measured reflections

 $R_{\rm int} = 0.035$

4613 independent reflections

3492 reflections with $I > 2\sigma(I)$

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank Université Sidi Mohammed Ben Abdallah, Université Mohammed V-Agdal and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2232).

References

- Aridoss, G., Balasubramanian, S., Parthiban, P. & Kabilan, S. (2006). Eur. J. Med. Chem. 41, 268-275.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Benham, C. D., Blackburn, T. P., Johns, A., Kotecha, N. R., Martin, R. T., Thomas, D. R., Thompson, M. & Ward, R. W. (1995). Bioorg. Med. Chem. Lett. 5, 2455-2460.
- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cundy, D. J., Holan, G., Otaegui, M. & Simpson, G. W. (1997). Bioorg. Med. Chem Lett 7 669-674
- Kale, R. P., Shaikh, M. U., Jadhav, G. R. & Gill, C. H. (2009). Tetrahedron Lett. 50, 1780-1782.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122
- Walsh, T. F., Fitch, K. J., MacCoss, M., Chang, R. S. L., Kivlighn, S. D., Lotti, V. J., Siegl, P. K. S., Patchett, A. & Greenlee, W. J. (1994). Bioorg. Med. Chem. Lett. 4, 219-222
- Westrip, S. P. (2010). publCIF. In preparation.
- Zaki, M. E. A. & Proença, M. F. (2007). Tetrahedron, 63, 3745-3753.

supporting information

Acta Cryst. (2010). E66, o946 [doi:10.1107/S160053681001038X]

4-Benzyl-6-bromo-2-phenyl-4*H*-imidazo[4,5-b]pyridine

Y. Ouzidan, S. Obbade, F. Capet, El Mokhtar Essassi and Seik Weng Ng

S1. Comment

Imidazo[4,5-*b*]pyridines are a class of sedative drugs exemplified by *Zolpidem*, *Alpidem*, *Saripidem* and *Necopidem*. There is intense interest in designing new synthetic routes; for example, an eco-friendly synthesis by oxidation in aqueous medium has been claimed (Kale *et al.*, 2009). Other methods require more than one step (Aridoss *et al.*, 2006; Benham *et al.*, 1995; Cundy *et al.*, 1997; Walsh *et al.*, 1994; Zaki & Proença, 2007).

We have been able to react 6-bromo-2-phenyl-1*H*-imidazo[4,5-*b*]pyridine with benzyl chloride in the presence of a catalytic quantity of tetra-*n*-butylammonium bromide under mild conditions to furnish the title compound (Scheme I, Fig. 1). The imidazopyridine fused-ring in $C_{19}H_{14}BrN_3$ is co-planar with the phenyl ring at the 2-position [dihedral angle 2.4 (1) °]. In the five-membered imidazo portion, the carbon–nitrogen bond whose carbon atom is also connected to the pyridine nitrogen atom is predominantly a double bond [1.329 (2) Å], whereas the carbon–nitrogen bond whose atom is connected to the pyridine carbon atom is predominantly a single bond [1.372 (2) Å].

S2. Experimental

To a solution of the 6-bromo-2-phenyl-1*H*-imidazo[4,5-*b*]pyridine (0.30 g, 1.09 mmol), potassium carbonate (0.20 g, 1.42 mmol) and tetra-*n*-butylammonium bromide (0.04 g (0,1 mmol) in DMF (15 ml) was added benzyl chloride (0.15 ml, 1.31 mmol). Stirring was continued at room temperature for 12 hours. The salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/1) as eluent. Brown crystals were isolated when the solvent was allowed to evaporate.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93-0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of C₁₉H₁₄BrN₃ at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

4-Benzyl-6-bromo-2-phenyl-4H-imidazo[4,5-b]pyridine

Crystal data

 $C_{19}H_{14}BrN_3$ $M_r = 364.24$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.6613 (6) Å *b* = 19.7631 (13) Å c = 9.3683 (6) Å $\beta = 99.647 (3)^{\circ}$ $V = 1580.93 (18) \text{ Å}^3$ Z = 4

Data collection

Bruker X8 APEXII	57936 measured reflections
diffractometer	4613 independent reflections
Radiation source: fine-focus sealed tube	3492 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.035$
φ and ω scans	$\theta_{\text{max}} = 30.1^{\circ}, \theta_{\text{min}} = 2.4^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 11$
(SADABS; Sheldrick, 1996)	$k = -27 \rightarrow 27$
$T_{\min} = 0.529, \ T_{\max} = 0.624$	$l = -13 \rightarrow 13$

F(000) = 736 $D_{\rm x} = 1.530 {\rm ~Mg} {\rm ~m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 9876 reflections $\theta = 2.4 - 27.2^{\circ}$ $\mu = 2.60 \text{ mm}^{-1}$ T = 293 KPrism, brown $0.28 \times 0.24 \times 0.20 \text{ mm}$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from
$wR(F^2) = 0.098$	neighbouring sites
S = 1.00	H-atom parameters constrained
4613 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0518P)^2 + 0.5269P]$
208 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.63 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Brl	0.10158 (3)	0.475089 (12)	0.85824 (2)	0.06483 (10)
N1	0.29485 (16)	0.43405 (7)	0.49901 (15)	0.0385 (3)
N2	0.26154 (17)	0.60722 (7)	0.40338 (16)	0.0424 (3)
N3	0.35446 (17)	0.50867 (7)	0.31224 (15)	0.0387 (3)
C1	0.1792 (2)	0.48667 (9)	0.68312 (19)	0.0454 (4)
C2	0.1807 (2)	0.55060 (9)	0.62007 (19)	0.0458 (4)
H2	0.1429	0.5886	0.6616	0.055*
C3	0.2408 (2)	0.55460 (8)	0.49376 (18)	0.0392 (3)
C4	0.29944 (19)	0.49489 (8)	0.43321 (17)	0.0367 (3)
C5	0.2352 (2)	0.43003 (9)	0.62362 (18)	0.0437 (4)
H5	0.2322	0.3884	0.6694	0.052*
C6	0.32810 (19)	0.57716 (8)	0.30027 (17)	0.0379 (3)
C7	0.37246 (19)	0.61435 (8)	0.17772 (18)	0.0390 (3)
C8	0.3423 (2)	0.68335 (9)	0.1595 (2)	0.0459 (4)
H8	0.2938	0.7067	0.2261	0.055*
C9	0.3845 (2)	0.71728 (10)	0.0425 (2)	0.0547 (5)
H9	0.3644	0.7634	0.0310	0.066*
C10	0.4557 (3)	0.68322 (11)	-0.0569 (2)	0.0574 (5)
H10	0.4829	0.7062	-0.1357	0.069*
C11	0.4869 (3)	0.61517 (11)	-0.0399 (2)	0.0624 (5)
H11	0.5353	0.5922	-0.1069	0.075*
C12	0.4459 (3)	0.58097 (10)	0.0773 (2)	0.0538 (5)
H12	0.4679	0.5350	0.0888	0.065*
C13	0.3544 (2)	0.37271 (8)	0.43491 (19)	0.0427 (3)
H13A	0.4041	0.3433	0.5121	0.051*
H13B	0.4331	0.3859	0.3778	0.051*
C14	0.22599 (19)	0.33413 (8)	0.34017 (17)	0.0380 (3)
C15	0.1392 (2)	0.36407 (9)	0.21824 (19)	0.0481 (4)
H15	0.1605	0.4084	0.1945	0.058*
C16	0.0214 (3)	0.32854 (11)	0.1321 (2)	0.0574 (5)
H16	-0.0379	0.3494	0.0522	0.069*
C17	-0.0082 (3)	0.26217 (11)	0.1643 (2)	0.0585 (5)
H17	-0.0859	0.2380	0.1050	0.070*
C18	0.0769 (3)	0.23206 (10)	0.2833 (3)	0.0598 (5)

supporting information

H18	0.0570	0.1873	0.3047	0.072*
C19	0.1930 (2)	0.26789 (9)	0.3728 (2)	0.0517 (4)
H19	0.2487	0.2473	0.4548	0.062*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.08695 (19)	0.06436 (15)	0.05128 (13)	0.00593 (10)	0.03507 (11)	0.00630 (9)
N1	0.0419 (7)	0.0355 (6)	0.0382 (7)	0.0001 (5)	0.0074 (5)	0.0003 (5)
N2	0.0515 (8)	0.0338 (6)	0.0437 (7)	-0.0007 (6)	0.0131 (6)	-0.0028 (5)
N3	0.0443 (7)	0.0337 (6)	0.0394 (7)	-0.0009 (5)	0.0104 (5)	-0.0012 (5)
C1	0.0501 (10)	0.0498 (10)	0.0386 (8)	-0.0024 (7)	0.0140 (7)	0.0004 (7)
C2	0.0535 (10)	0.0417 (9)	0.0444 (9)	-0.0007 (7)	0.0147 (7)	-0.0056 (7)
C3	0.0431 (8)	0.0349 (7)	0.0402 (8)	-0.0015 (6)	0.0088 (6)	-0.0046 (6)
C4	0.0390 (8)	0.0345 (7)	0.0366 (7)	-0.0020 (6)	0.0061 (6)	-0.0035 (6)
C5	0.0485 (9)	0.0430 (8)	0.0403 (8)	-0.0019 (7)	0.0094 (7)	0.0036 (7)
C6	0.0407 (8)	0.0345 (7)	0.0385 (7)	-0.0028 (6)	0.0068 (6)	-0.0023 (6)
C7	0.0420 (8)	0.0353 (7)	0.0395 (7)	-0.0036 (6)	0.0064 (6)	-0.0004 (6)
C8	0.0471 (9)	0.0360 (8)	0.0553 (10)	-0.0020 (7)	0.0105 (8)	-0.0007 (7)
C9	0.0567 (11)	0.0391 (9)	0.0678 (12)	-0.0031 (8)	0.0092 (9)	0.0118 (8)
C10	0.0647 (12)	0.0560 (11)	0.0530 (10)	-0.0070 (9)	0.0141 (9)	0.0153 (9)
C11	0.0851 (15)	0.0567 (12)	0.0516 (10)	0.0037 (11)	0.0298 (10)	0.0062 (9)
C12	0.0782 (13)	0.0393 (9)	0.0486 (10)	0.0062 (9)	0.0240 (9)	0.0040 (7)
C13	0.0430 (9)	0.0371 (8)	0.0483 (9)	0.0064 (7)	0.0091 (7)	0.0015 (7)
C14	0.0419 (8)	0.0331 (7)	0.0416 (8)	0.0029 (6)	0.0147 (6)	-0.0002 (6)
C15	0.0608 (11)	0.0390 (8)	0.0446 (9)	-0.0013 (8)	0.0092 (8)	0.0021 (7)
C16	0.0660 (12)	0.0574 (11)	0.0462 (10)	-0.0037 (9)	0.0015 (9)	-0.0030 (8)
C17	0.0603 (12)	0.0584 (12)	0.0587 (11)	-0.0140 (9)	0.0152 (9)	-0.0156 (9)
C18	0.0683 (13)	0.0396 (9)	0.0754 (14)	-0.0103 (9)	0.0233 (11)	-0.0022 (9)
C19	0.0583 (11)	0.0388 (9)	0.0593 (11)	0.0013 (8)	0.0139 (9)	0.0088 (8)

Geometric parameters (Å, °)

Br1—C1	1.8882 (18)	С9—Н9	0.9300	
N1-C4	1.355 (2)	C10—C11	1.376 (3)	
N1-C5	1.356 (2)	C10—H10	0.9300	
N1-C13	1.483 (2)	C11—C12	1.385 (3)	
N2C6	1.344 (2)	C11—H11	0.9300	
N2—C3	1.372 (2)	C12—H12	0.9300	
N3—C4	1.329 (2)	C13—C14	1.508 (2)	
N3—C6	1.374 (2)	C13—H13A	0.9700	
C1—C5	1.375 (3)	C13—H13B	0.9700	
C1—C2	1.396 (3)	C14—C19	1.385 (2)	
C2—C3	1.373 (2)	C14—C15	1.390 (2)	
С2—Н2	0.9300	C15—C16	1.382 (3)	
C3—C4	1.438 (2)	C15—H15	0.9300	
С5—Н5	0.9300	C16—C17	1.379 (3)	
C6—C7	1.468 (2)	C16—H16	0.9300	

C7—C12	1.388 (3)	C17—C18	1.366 (3)
С7—С8	1.394 (2)	С17—Н17	0.9300
C8—C9	1.385 (3)	C18—C19	1.390 (3)
C8—H8	0.9300	C18—H18	0.9300
C9—C10	1.376 (3)	С19—Н19	0.9300
C4—N1—C5	119.22 (14)	C11—C10—H10	120.0
C4—N1—C13	120.17 (14)	C9—C10—H10	120.0
C5—N1—C13	120.61 (14)	C10-C11-C12	119.8 (2)
C6—N2—C3	102.99 (13)	C10-C11-H11	120.1
C4—N3—C6	101.13 (13)	C12—C11—H11	120.1
C5—C1—C2	122.44 (16)	C11—C12—C7	120.86 (18)
C5—C1—Br1	117.06 (13)	C11—C12—H12	119.6
C2—C1—Br1	120.49 (14)	C7—C12—H12	119.6
C3—C2—C1	116.66 (16)	N1—C13—C14	112.30 (13)
С3—С2—Н2	121.7	N1—C13—H13A	109.1
C1—C2—H2	121.7	C14—C13—H13A	109.1
N2—C3—C2	133.11 (16)	N1—C13—H13B	109.1
N2—C3—C4	106.70 (14)	C14—C13—H13B	109.1
C2—C3—C4	120.18 (16)	H13A—C13—H13B	107.9
N3—C4—N1	127.72 (15)	C19—C14—C15	118.70 (17)
N3—C4—C3	111.64 (14)	C19—C14—C13	120.47 (16)
N1—C4—C3	120.64 (15)	C15—C14—C13	120.82 (15)
N1—C5—C1	120.85 (16)	C16—C15—C14	120.56 (17)
N1—C5—H5	119.6	C16—C15—H15	119.7
C1—C5—H5	119.6	C14—C15—H15	119.7
N2—C6—N3	117.54 (14)	C17—C16—C15	120.1 (2)
N2—C6—C7	122.76 (14)	C17—C16—H16	119.9
N3—C6—C7	119.70 (14)	C15—C16—H16	119.9
С12—С7—С8	118.69 (17)	C18—C17—C16	119.88 (19)
С12—С7—С6	120.15 (15)	C18—C17—H17	120.1
C8—C7—C6	121.17 (16)	C16—C17—H17	120.1
C9—C8—C7	120.11 (18)	C17—C18—C19	120.47 (18)
С9—С8—Н8	119.9	C17—C18—H18	119.8
С7—С8—Н8	119.9	С19—С18—Н18	119.8
С10—С9—С8	120.42 (18)	C14—C19—C18	120.25 (18)
С10—С9—Н9	119.8	С14—С19—Н19	119.9
С8—С9—Н9	119.8	С18—С19—Н19	119.9
C11—C10—C9	120.08 (18)		
C5—C1—C2—C3	0.3 (3)	N2—C6—C7—C12	177.72 (18)
Br1—C1—C2—C3	179.25 (13)	N3—C6—C7—C12	-2.4 (2)
C6—N2—C3—C2	179.20 (19)	N2—C6—C7—C8	-2.2 (3)
C6—N2—C3—C4	-0.16 (17)	N3—C6—C7—C8	177.69 (16)
C1—C2—C3—N2	-179.77 (18)	C12—C7—C8—C9	0.4 (3)
C1—C2—C3—C4	-0.5 (3)	C6—C7—C8—C9	-179.61 (16)
C6—N3—C4—N1	-179.97 (16)	C7—C8—C9—C10	0.2 (3)
C6—N3—C4—C3	-0.15 (18)	C8—C9—C10—C11	-0.6 (3)

C5—N1—C4—N3	179.35 (16)	C9—C10—C11—C12	0.2 (4)
C13—N1—C4—N3	-0.7 (3)	C10-C11-C12-C7	0.5 (4)
C5—N1—C4—C3	-0.5 (2)	C8—C7—C12—C11	-0.8 (3)
C13—N1—C4—C3	179.47 (15)	C6—C7—C12—C11	179.25 (19)
N2-C3-C4-N3	0.21 (19)	C4—N1—C13—C14	-94.67 (18)
C2—C3—C4—N3	-179.25 (16)	C5—N1—C13—C14	85.26 (19)
N2-C3-C4-N1	-179.95 (15)	N1-C13-C14-C19	-119.47 (17)
C2-C3-C4-N1	0.6 (2)	N1-C13-C14-C15	60.9 (2)
C4—N1—C5—C1	0.3 (2)	C19—C14—C15—C16	0.5 (3)
C13—N1—C5—C1	-179.68 (16)	C13—C14—C15—C16	-179.83 (17)
C2-C1-C5-N1	-0.2 (3)	C14—C15—C16—C17	-1.8 (3)
Br1-C1-C5-N1	-179.17 (13)	C15—C16—C17—C18	1.4 (3)
C3—N2—C6—N3	0.1 (2)	C16—C17—C18—C19	0.2 (3)
C3—N2—C6—C7	180.00 (15)	C15—C14—C19—C18	1.1 (3)
C4—N3—C6—N2	0.05 (19)	C13—C14—C19—C18	-178.56 (17)
C4—N3—C6—C7	-179.88 (14)	C17—C18—C19—C14	-1.5 (3)