

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,3-Dithian-2-one azine

Yan-Bo Wang,^a Yan Shi,^a Xiao-Lan Liu^b and Yong-Hong Liu^b*

^aCollege of Life Science and Chemistry, Tianshui Normal University, Tianshui 741000, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China Correspondence e-mail: yhliuyzu@yahoo.com.cn

Received 24 February 2010; accepted 21 March 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.046; wR factor = 0.127; data-to-parameter ratio = 19.9.

In an asymmetric unit of the title compound, $C_8H_{12}N_2S_4$, there are two crystallographically independent half molecules lying on inversion centers. One of the molecules is disordered over two positions with relative occupancies of 82.0 (2) and 18.0 (2) for the major and minor components. In the crystal structure, molecules are linked into a three-dimensional framework *via* intermolecular $C-H\cdots N$ hydrogen-bonding interactions.

Related literature

For the synthesis, see: Mayer & Schaefer (1964); Xu *et al.* (2005). For the use of 2-hydrazono-1,3-dithiolane derivatives in coordination chemistry and their biological activity, see: Beghidja *et al.* (2006); Gou *et al.* (2004). For 1,3-dithian-2-ylidene derivatives as antimycotic agents and an important synthesis medium, see: Dong *et al.* (2005); Ram *et al.* (1997). For related structures, see: Liu, Liu & Liu (2008); Liu, Liu, Dai *et al.* (2008); Yang *et al.* (2007). For graph-set notation, see: Bernstein *et al.* (1995). For dithian ring conformations, see: Boeyens (1978).

Experimental

Crystal data $C_8H_{12}N_2S_4$ $M_r = 264.44$

Monoclinic, $P2_1/c$ *a* = 9.3999 (11) Å

b = 11.9251 (14) A
c = 10.7397 (13) Å
$\beta = 91.555 \ (2)^{\circ}$
V = 1203.4 (2) Å ³
Z = 4

Data collection

Bruker SMART 1000 CCD	10905 measured reflections
diffractometer	2998 independent reflections
Absorption correction: multi-scan	2478 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2002)	$R_{\rm int} = 0.055$
$T_{\min} = 0.852, T_{\max} = 0.870$	

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.046 & 14 \text{ restraints} \\ wR(F^2) &= 0.127 & H\text{-atom parameters constrained} \\ S &= 1.01 & \Delta\rho_{\max} = 0.65 \text{ e } \text{ Å}^{-3} \\ 2998 \text{ reflections} & \Delta\rho_{\min} = -0.41 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C4-H4B\cdots N2^{i}$	0.97	2.71	3.620 (7)	157
$C4' - H4C \cdot \cdot \cdot N2^{i}$	0.97	2.70	3.503 (7)	141
$C6-H6B\cdots N1^{i}$	0.97	2.62	3.397 (6)	137
$C6-H6B\cdots N1'^{ii}$	0.97	2.68	3.428 (6)	134
$C2' - H2D \cdot \cdot \cdot N2^{iii}$	0.97	2.64	3.529 (7)	152
$C2-H2B\cdots N2^{iii}$	0.97	2.78	3.523 (7)	134
$C8 - H8B \cdot \cdot \cdot N1^{iv}$	0.97	2.73	3.654 (3)	159
$C8-H8B\cdots N1'$	0.97	2.70	3.591 (3)	154

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$, (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$, (iii) -x + 2, -y + 1, -z; (iv) -x + 1, -y + 1, -z.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

The authors thank the Natural Science Foundation of Tianshui Normal College (No. TSA 0602) and Yangzhou University (No. 2006XJJ03) for financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2263).

References

- Beghidja, C., Rogez, G., Kortus, J., Wesolek, M. & Welter, R. (2006). J. Am. Chem. Soc. 128, 3140–3141.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew Chem. Int. Ed. Engl. 34, 1555–1573.
- Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.
- Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dong, D., Ouyang, Y., Yu, H., Liu, Q., Liu, J., Wang, M. & Zhu, J. (2005). J. Org. Chem. 70, 4535–4537.
- Gou, S.-H., Chen, H.-C., Fang, Z.-P., Luo, J. & Wang, Y.-L. (2004). Chin. J. Org. Chem. 24, 234–238.
- Liu, Y.-H., Liu, X.-L., Dai, X.-Q., Xu, W. & Guo, R. (2008). J. Chem. Crystallogr. 38, 109–113.
- Liu, J.-F., Liu, X.-L. & Liu, Y.-H. (2008). Acta Cryst. E64, o1340.
- Mayer, R. & Schaefer, K. (1964). J. Prakt. Chem. 26, 279-295.

Mo $K\alpha$ radiation $\mu = 0.75 \text{ mm}^{-1}$

 $0.22 \times 0.21 \times 0.19 \text{ mm}$

T = 293 K

Ram, V. J., Nath, M. & ShuklaP, K. (1997). Bioorg. Med. Chem. Lett. 7, 2137–2140.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Spek, A. L. (2009). Acta Cryst. D65, 148–155. Xu, L. Z., Xu, H. Z., Yang, S. H., Li, C. L. & Zhou, K. (2005). Acta Cryst. E61, 031–032.
 Yang, L.-J., Li, Z.-G., Liu, X.-L. & Liu, Y.-H. (2007). Acta Cryst. E63, 04501.

supporting information

Acta Cryst. (2010). E66, o955-o956 [doi:10.1107/S1600536810010524]

1,3-Dithian-2-one azine

Yan-Bo Wang, Yan Shi, Xiao-Lan Liu and Yong-Hong Liu

S1. Comment

The derivatives of 2-hydrazono-1,3-dithiolane have been abstracted for their coordination chemistry and biological activities (Beghidja *et al.*, 2006; Gou *et al.*, 2004). The derivatives of 1,3-dithian-2-ylidene and thiazolidin-2-ylidene are a novel class of antimycotic agents and important synthesis mediam (Ram *et al.*, 1997; Dong *et al.*, 2005). But very few derivatives of 2-hydrazono-1,3-dithiane have been reported. As on going research in this field in our laboratory (Liu *et al.*, 2008; Yang *et al.*, 2007), we report herein the structure of the title compound.

In the title compound, there are two crystallographically independent half molecules in the asymmetric unit, which lie on centres of symmetry; referred as molecules A and B. The atoms of the molecule B are disordered over two positions with relative occupancies of 82.0 (2) and 18.0 (2) for the major and minor components, respectively. All the dithian rings adopt twist-boat conformations (Boeyens, 1978). The atoms S1/S2/C1/C3/N1 in molecule A lie in a plane and the atoms C2 and C4 lie above and below this plane. Similarly, atoms S3/S4/C5/C7/N2 in molecule B also lie in a plane and the atoms C6 and C8 lie above and below the plane. The molecular dimensions in the two molecules are similar with the corresponding molecular dimensions reported in similar structures from our previous work (Yang *et al.*, 2007; Liu, Liu & Liu, (2008); Liu, Liu, Dai *et al.*, (2008).

In the crystal structure the molecules are joined into a zig-zag chain by C8–H8B···N1 inter-molecular hydrogen-bond (Fig. 2, Tab. 1). At the same time C2–H2B···N2 inter-molecular hydrogen-bonds form another zig-zag chain along the molecular long axis and vertically the first chain. Both of them generate a sheet with edge-fused $R_4^4(22)$ rings in graph set notation (Bernstein *et al.*, 1995) in the *ab*-plane. Besides these chains, there are two more zig-zag chains, formed by C6–H6B···N1 and C4–H4B···N2 inter-molecular hydrogen-bonds which make up the adjacent sheet into a three dimensional frame work along the *c* axis (Fig. 3).

S2. Experimental

The title compound was prepared according to the reference method (Mayer & Schaefer, 1964; Xu *et al.*, 2005) and crystallized from a mixture of ethanol and petroleum ether (1:8).

S3. Refinement

The atoms of the molecule B are disordered over two positions with relative occupancies of 82.0 (2) and 18.0 (2) for the major and minor components, respectively; their anisotropic dispalcement parameters were constrained to be equal. Restraints were applied to bond distances in the disordered molecule B in reference to the molecule A. All H atoms were placed at ideal positions and allowed to ride on the parent C atoms, with C–H = 0.97 and U_{iso} (H) values of $1.2U_{eq}$ (C).

Figure 1

The two independent molecules of the title compound, showing 30% probability ellipsoids; minor fraction of molecule B has been plotted with dashed lines. The symmetry codes are: (i) x+1, y+1, z; (ii) x+2, y, z].

Figure 2

Unit cell packing of the title compound, showing the formation of a sheet in the *ab* plane. The H atoms not involved in hydrogen bonding have been omitted for clarity.

Figure 3

Unit cell packing of the title compound, showing three dimensional frame work as a result of C–H \cdots N inter-molecular hydrogen-bonds (as dashed lines) viewed along the *a* axis. The H atoms not involved in hydrogen bonding have been omitted for clarity.

1,3-Dithian-2-one azine

Crystal data	
$C_8H_{12}N_2S_4$	F(000) = 552
$M_r = 264.44$	$D_{\rm x} = 1.460 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 5734 reflections
a = 9.3999 (11) Å	$\theta = 2.8 - 28.2^{\circ}$
b = 11.9251 (14) Å	$\mu = 0.75 \text{ mm}^{-1}$
c = 10.7397 (13) Å	T = 293 K
$\beta = 91.555 \ (2)^{\circ}$	Block, colorless
V = 1203.4 (2) Å ³	$0.22 \times 0.21 \times 0.19 \text{ mm}$
Z = 4	
Data collection	
Bruker SMART 1000 CCD	Absorption correction: multi-scan
diffractometer	(SADABS; Bruker, 2002)
Radiation source: fine-focus sealed tube	$T_{\min} = 0.852, \ T_{\max} = 0.870$
Graphite monochromator	10905 measured reflections
$\varphi \& \omega$ scans	2998 independent reflections
	2478 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.055$	$k = -15 \rightarrow 15$
$\theta_{\rm max} = 28.4^{\circ}, \theta_{\rm min} = 2.2^{\circ}$	$l = -14 \rightarrow 14$
$h = -12 \rightarrow 12$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from
$wR(F^2) = 0.127$	neighbouring sites
<i>S</i> = 1.01	H-atom parameters constrained
2998 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0561P)^2 + 0.7487P]$
151 parameters	where $P = (F_o^2 + 2F_c^2)/3$
14 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.65 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.41 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1	0.71338 (9)	0.70901 (9)	-0.02533 (9)	0.0596 (3)	0.820 (2)
S2	0.74955 (10)	0.49843 (7)	0.12799 (9)	0.0510(2)	0.820 (2)
N1	0.5250 (2)	0.5510(2)	-0.0239 (2)	0.0424 (5)	0.820 (2)
C1	0.6487 (3)	0.5788 (2)	0.0219 (2)	0.0373 (5)	0.820 (2)
C2	0.9037 (4)	0.6810 (11)	-0.0147 (11)	0.0581 (12)	0.820 (2)
H2A	0.9235	0.6125	-0.0598	0.070*	0.820 (2)
H2B	0.9540	0.7416	-0.0545	0.070*	0.820 (2)
C3	0.9597 (16)	0.6690 (9)	0.1184 (11)	0.0525 (15)	0.820 (2)
H3A	1.0489	0.6282	0.1185	0.063*	0.820 (2)
H3B	0.9787	0.7430	0.1525	0.063*	0.820(2)
C4	0.8569 (18)	0.6085 (10)	0.2011 (13)	0.0554 (15)	0.820 (2)
H4A	0.7930	0.6637	0.2355	0.053 (9)*	0.820(2)
H4B	0.9109	0.5758	0.2702	0.072 (12)*	0.820(2)
S1′	0.6929 (5)	0.6622 (4)	-0.0158 (5)	0.0596 (3)	0.180 (2)
S2′	0.7925 (5)	0.4809 (4)	0.1612 (5)	0.0510(2)	0.180 (2)
N1′	0.5477 (10)	0.4742 (9)	0.0420 (10)	0.0424 (5)	0.180 (2)
C1′	0.6632 (10)	0.5345 (8)	0.0577 (10)	0.0373 (5)	0.180 (2)
C2′	0.8826 (16)	0.687 (5)	-0.007 (6)	0.0581 (12)	0.180 (2)
H2C	0.9253	0.6486	-0.0756	0.070*	0.180 (2)
H2D	0.8981	0.7670	-0.0190	0.070*	0.180 (2)
C3′	0.962 (8)	0.653 (5)	0.112 (5)	0.0525 (15)	0.180 (2)
H3D	1.0285	0.5940	0.0920	0.063*	0.180 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H3C	1.0171	0.7168	0.1423	0.063*	0.180 (2)
C4′	0.868 (9)	0.613 (4)	0.215 (7)	0.0554 (15)	0.180 (2)
H4D	0.7935	0.6667	0.2298	0.066*	0.180 (2)
H4C	0.9236	0.6018	0.2911	0.066*	0.180 (2)
S3	0.72455 (7)	0.16120 (6)	-0.00561 (6)	0.0599 (2)	
S4	0.79852 (6)	-0.03342 (5)	0.16643 (6)	0.04884 (18)	
N2	0.9581 (2)	0.04587 (17)	-0.02005 (18)	0.0489 (5)	
C5	0.8418 (2)	0.05424 (19)	0.0413 (2)	0.0428 (5)	
C6	0.6094 (2)	-0.0073 (2)	0.1744 (2)	0.0541 (6)	
H6A	0.5649	-0.0259	0.0945	0.065*	
H6B	0.5702	-0.0570	0.2362	0.065*	
C7	0.5708 (4)	0.1115 (3)	0.2068 (4)	0.0831 (11)	
H7A	0.5798	0.1205	0.2965	0.100*	
H7B	0.4717	0.1239	0.1831	0.100*	
C8	0.6605 (3)	0.2012 (2)	0.1454 (3)	0.0649 (7)	
H8A	0.7415	0.2185	0.1999	0.078*	
H8B	0.6041	0.2690	0.1361	0.078*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0474 (4)	0.0466 (6)	0.0836 (5)	-0.0132 (4)	-0.0182 (4)	0.0194 (4)
S2	0.0423 (5)	0.0480 (4)	0.0625 (5)	-0.0055 (3)	-0.0045 (3)	0.0150 (3)
N1	0.0389 (12)	0.0444 (12)	0.0440 (11)	-0.0099 (10)	0.0005 (9)	0.0025 (9)
C1	0.0360 (11)	0.0375 (14)	0.0385 (13)	-0.0038 (11)	0.0038 (9)	-0.0002 (9)
C2	0.0420 (16)	0.069 (2)	0.063 (2)	-0.015 (3)	0.002 (2)	0.0097 (18)
C3	0.0398 (14)	0.048 (4)	0.069 (2)	-0.008 (3)	-0.0076 (15)	0.002 (2)
C4	0.044 (3)	0.0705 (19)	0.051 (4)	-0.0066 (13)	-0.006 (3)	-0.0005 (16)
S1′	0.0474 (4)	0.0466 (6)	0.0836 (5)	-0.0132 (4)	-0.0182 (4)	0.0194 (4)
S2′	0.0423 (5)	0.0480 (4)	0.0625 (5)	-0.0055 (3)	-0.0045 (3)	0.0150 (3)
N1′	0.0389 (12)	0.0444 (12)	0.0440 (11)	-0.0099 (10)	0.0005 (9)	0.0025 (9)
C1′	0.0360 (11)	0.0375 (14)	0.0385 (13)	-0.0038 (11)	0.0038 (9)	-0.0002 (9)
C2′	0.0420 (16)	0.069 (2)	0.063 (2)	-0.015 (3)	0.002 (2)	0.0097 (18)
C3′	0.0398 (14)	0.048 (4)	0.069 (2)	-0.008(3)	-0.0076 (15)	0.002 (2)
C4′	0.044 (3)	0.0705 (19)	0.051 (4)	-0.0066 (13)	-0.006 (3)	-0.0005 (16)
S3	0.0493 (4)	0.0688 (5)	0.0621 (4)	0.0031 (3)	0.0130 (3)	0.0238 (3)
S4	0.0423 (3)	0.0489 (3)	0.0557 (3)	-0.0007 (2)	0.0075 (2)	0.0089 (2)
N2	0.0451 (10)	0.0511 (11)	0.0511 (10)	-0.0027 (8)	0.0109 (8)	0.0014 (8)
C5	0.0382 (10)	0.0455 (11)	0.0449 (11)	-0.0057 (9)	0.0069 (8)	-0.0018 (9)
C6	0.0391 (11)	0.0677 (16)	0.0560 (13)	-0.0061 (11)	0.0097 (10)	0.0143 (11)
C7	0.0716 (19)	0.080 (2)	0.100 (2)	0.0246 (17)	0.0506 (18)	0.0327 (18)
C8	0.0587 (15)	0.0575 (15)	0.0798 (18)	0.0140 (13)	0.0237 (13)	0.0095 (13)
	. ,	. ,		. ,	. ,	

Geometric parameters (Å, °)

<u>S1—C1</u>	1.748 (3)	C2'—H2C	0.9700
S1—C2	1.821 (5)	C2'—H2D	0.9700
S2—C1	1.749 (3)	C3'—C4'	1.512 (10)

S2 C4	1 821 (4)	C2/ H2D	0.0700
S2	1.021(4) 1.202(2)		0.9700
	1.295 (5)		0.9700
$N_1 = N_1$	1.400 (4)	C4 - H4D	0.9700
	1.516 (5)	C4—H4C	0.9700
C2—H2A	0.9700	S3—C5	1.751 (2)
C2—H2B	0.9700	\$3-68	1.810 (3)
C3—C4	1.514 (5)	S4—C5	1.759 (2)
С3—НЗА	0.9700	S4—C6	1.809 (2)
С3—Н3В	0.9700	N2—C5	1.296 (3)
C4—H4A	0.9700	N2—N2 ⁱⁱ	1.409 (4)
C4—H4B	0.9700	C6—C7	1.505 (4)
S1'—C1'	1.741 (8)	С6—Н6А	0.9700
S1'—C2'	1.809 (10)	С6—Н6В	0.9700
S2'—C1'	1.746 (8)	C7—C8	1.523 (4)
S2'—C4'	1.811 (10)	C7—H7A	0.9700
N1′—C1′	1.309 (9)	С7—Н7В	0.9700
N1′—N1′ ⁱ	1.40 (2)	C8—H8A	0.9700
C2'—C3'	1.513 (10)	C8—H8B	0.9700
C1—S1—C2	99.6 (4)	C4'—C3'—C2'	115 (6)
C1—S2—C4	99.8 (6)	C4′—C3′—H3D	108.6
C1-N1-N1 ⁱ	112.9 (3)	C2′—C3′—H3D	108.6
N1-C1-S1	115.7 (2)	C4′—C3′—H3C	108.6
N1-C1-S2	125.0 (2)	C2'—C3'—H3C	108.6
<u>\$1-C1-\$2</u>	119.30 (14)	H3D—C3'—H3C	107.6
$C_{3}-C_{2}-S_{1}$	113 1 (9)	C3'-C4'-82'	106 (4)
$C_3 - C_2 - H_2 A$	109.0	C3' - C4' - H4D	110 5
S1_C2_H2A	109.0	S2'-C4'-H4D	110.5
$C_3 - C_2 - H_2B$	109.0	C3' - C4' - H4C	110.5
S1 C2 H2B	109.0	$S_2' C_4' H_4C$	110.5
$H_{2A} = C_2 = H_{2B}$	107.8	$H_{4}D C_{4}$ $H_{4}C$	108.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.0 112.8(12)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.7
$C_4 = C_2 = U_2 \Lambda$	112.0 (12)	C_{3}	33.00(12)
$C_4 = C_5 = H_2 A$	109.0	C_{5} N_{2} N_{2}	100.47(11)
$C_2 = C_3 = H_3 A$	109.0	C_{3} N2 C_{5} S2	112.1(2)
C_{4} C_{2} C_{3} $H_{3}B$	109.0	N2-C5-S4	116.29 (17)
$C_2 - C_3 - H_3 B$	109.0	N2-C3-S4	123.96 (19)
H3A—C3—H3B	107.8	S3—C5—S4	119.75 (12)
C3—C4—S2	116.5 (8)	C/C6S4	114.6 (2)
C3—C4—H4A	108.2	С7—С6—Н6А	108.6
S2—C4—H4A	108.2	S4—C6—H6A	108.6
C3—C4—H4B	108.2	С7—С6—Н6В	108.6
S2—C4—H4B	108.2	S4—C6—H6B	108.6
H4A—C4—H4B	107.3	H6A—C6—H6B	107.6
C1'—S1'—C2'	107 (2)	C6—C7—C8	114.9 (2)
C1'—S2'—C4'	98 (3)	С6—С7—Н7А	108.5
C1'—N1'—N1'i	111.0 (11)	С8—С7—Н7А	108.5
N1'—C1'—S1'	124.3 (7)	С6—С7—Н7В	108.5
N1'—C1'—S2'	116.2 (7)	С8—С7—Н7В	108.5

supporting information

S1'—C1'—S2'	119.4 (5)	H7A—C7—H7B	107.5
C3'—C2'—S1'	118 (4)	C7—C8—S3	113.8 (2)
C3'—C2'—H2C	107.9	С7—С8—Н8А	108.8
S1'—C2'—H2C	107.9	S3—C8—H8A	108.8
C3'—C2'—H2D	107.9	С7—С8—Н8В	108.8
S1′—C2′—H2D	107.9	S3—C8—H8B	108.8
H2C—C2′—H2D	107.2	H8A—C8—H8B	107.7

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*+2, -*y*, -*z*.

Hvdrogen-bond	geometrv	(Å.	°)
ily alogen oona	Scomeny	(11)	

<i>D</i> —H··· <i>A</i>	D—H	Н…А	D···A	D—H···A
C4—H4 <i>B</i> ····N2 ⁱⁱⁱ	0.97	2.71	3.620 (7)	157
C4′—H4 <i>C</i> ···N2 ⁱⁱⁱ	0.97	2.70	3.503 (7)	141
C6—H6B···N1 ⁱⁱⁱ	0.97	2.62	3.397 (6)	137
C6—H6 B ···N1' ^{iv}	0.97	2.68	3.428 (6)	134
C2'— $H2D$ ···N2 ^v	0.97	2.64	3.529 (7)	152
C2— $H2B$ ···N2 ^v	0.97	2.78	3.523 (7)	134
C8—H8 <i>B</i> ···N1 ⁱ	0.97	2.73	3.654 (3)	159
C8—H8 <i>B</i> …N1′	0.97	2.70	3.591 (3)	154

Symmetry codes: (i) -x+1, -y+1, -z; (iii) x, -y+1/2, z+1/2; (iv) -x+1, y-1/2, -z+1/2; (v) -x+2, -y+1, -z.