Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N'-(2,4-Dichlorobenzylidene)-3methoxybenzohydrazide

Chong-Gui Ren

Department of Chemistry and Chemical Engineering, Zaozhuang University, Zaozhuang Shandong 277160, People's Republic of China Correspondence e-mail: renchonggui@163.com

Received 14 March 2010; accepted 15 March 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.047; wR factor = 0.121; data-to-parameter ratio = 10.8.

There are two independent molecules in the asymmetric unit of the title compound, $C_{15}H_{12}Cl_2N_2O_2$. The dihedral angle between the two benzene rings is $27.6 (4)^{\circ}$ in one molecule and 16.4 (4)° in the other. Both molecules adopt an E configuration about the C=N bonds. In the crystal structure, molecules are linked through intermolecular N-H···O hydrogen bonds, forming chains in the *a*-axis direction.

Related literature

For the biological properties of Schiff base compounds, see: Jeewoth et al. (1999); Ren et al. (2002); Eltayeb et al. (2008); Sinha et al. (2008). For the structures of related Schiff bases previously reported by the author, see: Ren (2009a,b). For related structures, see: Cui et al. (2007); Jing et al. (2007); Ma et al. (2008); Salhin et al. (2007); Lin et al. (2007); Alhadi et al. (2008); Xue et al. (2008); Wang et al. (2008); Lu (2008); Diao et al. (2008); Qiu (2009); Mohd Lair et al. (2009a,b). For reference structural data, see: Allen et al. (1987).

Experimental

Crystal data

 $C_{15}H_{12}Cl_2N_2O_2$ $M_r = 323.17$ Triclinic $P\overline{1}$ a = 8.298 (1) Å b = 12.988 (2) Å c = 14.138 (2) Å $\alpha = 88.746 \ (3)^{\circ}$ $\beta = 87.711 \ (2)^{\circ}$

 $\gamma = 84.020 \ (3)^{\circ}$ V = 1514.0 (4) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.43 \text{ mm}^{-1}$ T = 298 K $0.10 \times 0.08 \times 0.08 \ \mathrm{mm}$ Data collection

6065 measured reflections
4120 independent reflections
2565 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.024$
$\theta_{\rm max} = 22.9^{\circ}$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	381 parameters
$wR(F^2) = 0.121$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$
4120 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N4 - H4A \cdots O1^{i}$	0.86	2.02	2.844 (4)	161
$N1 - H1 \cdots O4^{ii}$	0.86	2.06	2.880 (3)	159

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y + 1, -z + 1.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The author acknowledges Zaozhuang University for funding this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2748).

References

- Alhadi, A. A., Ali, H. M., Puvaneswary, S., Robinson, W. T. & Ng, S. W. (2008). Acta Cryst. E64, 01584.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Cui, J.-C., Pan, Q.-X., Yin, H.-D. & Qiao, Y.-L. (2007). Acta Cryst. E63, o2633. Diao, Y.-P., Huang, S.-S., Zhang, H.-L. & Kang, T.-G. (2008). Z. Kristallogr. New Cryst. Struct. 223, 165-166.

- Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Crvst. E64. 0576-0577.
- Jeewoth, T., Bhowon, M. G. & Wah, H. L. K. (1999). Transition Met. Chem. 24, 445-448.
- Jing, Z.-L., Yu, M. & Chen, X. (2007). Acta Cryst. E63, 04902.
- Lin, X.-C., Yin, H. & Lin, Y. (2007). Acta Cryst. E63, o2864.
- Lu, J.-F. (2008). Acta Cryst. E64, o2032.
- Ma, H.-B., Huang, S.-S. & Diao, Y.-P. (2008). Acta Cryst. E64, o210.
- Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009a). Acta Cryst. E65, 0189.
- Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009b). Acta Cryst. E65, o190.
- Qiu, X.-Y. (2009). Z. Kristallogr. New Cryst. Struct. 224, 109-110.
- Ren, C.-G. (2009a). Acta Cryst. E65, 01503-01504.
- Ren, C.-G. (2009b). Acta Cryst. E65, 01505-01506.
- Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419. Salhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63 o2880

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Sinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem. 43, 160–165.

Wang, X.-Y., Cao, G.-B. & Yang, T. (2008). *Acta Cryst.* E64, o2022. Xue, L.-W., Han, Y.-J., Hao, C.-J., Zhao, G.-Q. & Liu, Q.-R. (2008). *Acta Cryst.* E64, o1938.

supporting information

Acta Cryst. (2010). E66, 0875-0876 [doi:10.1107/S1600536810009645]

N'-(2,4-Dichlorobenzylidene)-3-methoxybenzohydrazide

Chong-Gui Ren

S1. Comment

The Schiff base compounds show excellent biological properties (Jeewoth *et al.*, 1999; Ren *et al.*, 2002; Eltayeb *et al.*, 2008; Sinha *et al.*, 2008). Recently, the author has reported a few Schiff bases (Ren, 2009a,b). In this paper, the title new Schiff base compound is reported.

In the title compound, Fig. 1, the dihedral angle between the two benzene rings is 27.6 (4)° in one molecule and 16.4 (4)° in another molecule. All the bond lengths are within normal values (Allen *et al.*, 1987) and comparable to those in other similar compounds (Cui *et al.*, 2007; Jing *et al.*, 2007; Ma *et al.*, 2008; Salhin *et al.*, 2007; Lin *et al.*, 2007; Alhadi *et al.*, 2008; Xue *et al.*, 2008; Wang *et al.*, 2008; Lu, 2008; Diao *et al.*, 2008; Qiu, 2009; Mohd Lair *et al.*, 2009a,b).

In the crystal structure, molecules are linked through intermolecular N–H···O and O–H···O hydrogen bonds (Table 1), forming chains toward the *a* direction (Fig. 2).

S2. Experimental

All the starting materials were obtained with AR grade from Lancaster. 2,4-Dichlorobenzaldehyde (1.0 mmol, 174.0 mg) and 3-methoxybenzohydrazide (1.0 mmol, 166.2 mg) were refluxed in a 30 ml me thanol solution for 30 min to give a clear colorless solution. Colorless needle-shaped single crystals of the compound were obtained by slow evaporation of the solution for a week at room temperature.

S3. Refinement

H atoms were constrained to ideal geometries, with d(C-H) = 0.93 Å, d(N-H) = 0.86 Å, and with $U_{iso}(H) = 1.2U_{eq}(C,N)$ and $1.5U_{eq}(C_{methyl})$. The resolution is 22.92°, and the sin(theta)/Lambda < 0.6, which is caused by the weak diffraction of the crystal.

Figure 1

The molecular structure of the compound with 30% probability ellipsoids.

Figure 2

Molecular packing of the compound with hydrogen bonds drawn as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted.

N'-(2,4-Dichlorobenzylidene)-3-methoxybenzohydrazide

Crystal data	
$C_{15}H_{12}Cl_2N_2O_2$	$\gamma = 84.020 \ (3)^{\circ}$
$M_r = 323.17$	$V = 1514.0 (4) \text{ Å}^3$
Triclinic, P1	Z = 4
a = 8.298 (1) Å	F(000) = 664
b = 12.988 (2) Å	$D_{\rm x} = 1.418 { m Mg} { m m}^{-3}$
c = 14.138 (2) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
$\alpha = 88.746 \ (3)^{\circ}$	Cell parameters from 1156 reflections
$\beta = 87.711 \ (2)^{\circ}$	$\theta = 2.8 - 23.5^{\circ}$

 $\mu = 0.43 \text{ mm}^{-1}$ T = 298 K

Data collection

Bruker SMART CCD area-detector diffractometer	6065 measured reflections 4120 independent reflections
Radiation source: fine-focus sealed tube	2565 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.024$
ω scans	$\theta_{\rm max} = 22.9^\circ, \ \theta_{\rm min} = 2.1^\circ$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
(SADABS; Sheldrick, 1996)	$k = -10 \rightarrow 14$
$T_{\min} = 0.958, T_{\max} = 0.966$	$l = -15 \rightarrow 15$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from
$wR(F^2) = 0.121$	neighbouring sites
S = 1.02	H-atom parameters constrained

Block, colorless

 $0.10 \times 0.08 \times 0.08$ mm

$$\begin{split} S &= 1.02 & \text{H-atom parameters constrained} \\ 4120 \text{ reflections} & w &= 1/[\sigma^2(F_o^2) + (0.0469P)^2 + 0.2383P] \\ 381 \text{ parameters} & where $P &= (F_o^2 + 2F_c^2)/3$ \\ 0 \text{ restraints} & (\Delta/\sigma)_{\text{max}} = 0.001 \\ \text{Primary atom site location: structure-invariant} & \Delta\rho_{\text{max}} = 0.18 \text{ e}^{\text{A}^{-3}} \\ \text{direct methods} & \Delta\rho_{\text{min}} = -0.21 \text{ e}^{\text{A}^{-3}} \end{split}$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.30439 (13)	0.32267 (9)	1.09237 (7)	0.0867 (4)	
C12	0.83230 (16)	0.50607 (10)	1.16976 (8)	0.1062 (5)	
C13	0.1167 (2)	0.70669 (11)	0.60769 (9)	0.1330 (6)	
Cl4	-0.35105 (15)	0.45751 (9)	0.67302 (8)	0.1007 (4)	
N1	0.4406 (3)	0.2114 (2)	0.75587 (19)	0.0555 (8)	
H1	0.3412	0.2033	0.7709	0.067*	
N2	0.5340 (3)	0.2588 (2)	0.8166 (2)	0.0531 (7)	
N3	-0.0370 (3)	0.7340 (2)	0.3205 (2)	0.0556 (8)	
N4	0.0573 (3)	0.7900 (2)	0.2608 (2)	0.0574 (8)	
H4A	0.1500	0.8056	0.2777	0.069*	
01	0.6495 (3)	0.18861 (18)	0.64745 (16)	0.0631 (7)	
O2	0.3350 (4)	0.1097 (3)	0.3553 (2)	0.1031 (10)	
03	0.2072 (4)	0.9215 (3)	-0.1371 (2)	0.1031 (10)	
O4	-0.1296 (3)	0.79782 (19)	0.14806 (16)	0.0669 (7)	

C1	0.3271 (5)	0.0976 (3)	0.4518 (3)	0.0720 (12)
C2	0.2182 (5)	0.0314 (3)	0.4875 (4)	0.0827 (14)
H2	0.1565	-0.0014	0.4462	0.099*
C3	0.2003 (5)	0.0137 (3)	0.5828 (3)	0.0762 (12)
H3	0.1272	-0.0313	0.6057	0.091*
C4	0.2901 (4)	0.0622 (3)	0.6454 (3)	0.0595 (10)
H4	0.2764	0.0513	0.7103	0.071*
C5	0.4007(4)	0.1271 (2)	0.6100 (2)	0.0472 (8)
C6	0.4199 (4)	0.1441(3)	0.5135 (2)	0.0593(10)
H6	0.4959	0.1870	0.4903	0.071*
C7	0.4439(7)	0 1770 (4)	0.3170 (3)	0.121(2)
H7A	0.4126	0.2458	0 3391	0.181*
H7B	0.4420	0.1769	0.2492	0.181*
H7C	0.5514	0.1541	0.3366	0.181*
C8	0.5014 0.5085 (4)	0.1778(3)	0.5300 0.6720(2)	0.0502 (9)
	0.3003(4)	0.1778(3) 0.2843(3)	0.0720(2) 0.8961(2)	0.0502(9)
U9	0.40/1 (4)	0.2645 (5)	0.0901(2)	0.0542 (9)
П9 С10	0.5017	0.2093	0.9109	0.003°
C10 C11	0.3339(4)	0.3308(2)	0.9039(2)	0.0490(9)
	0.7003 (4)	0.3690 (3)	0.9398 (2)	0.0373 (10)
	0.7503	0.3300	0.8790	0.069^{+}
U12	0.7937 (4)	0.4184 (3)	1.0020 (3)	0.0647 (10)
H12	0.8955	0.4376	0.9840	0.078°
C13	0.7290 (5)	0.4392 (3)	1.0910 (3)	0.0660 (11)
C14	0.5802 (5)	0.4090 (3)	1.1195 (3)	0.06//(11)
H14	0.5376	0.4222	1.1803	0.081*
C15	0.4949 (4)	0.3583 (3)	1.0553 (3)	0.0568 (9)
C16	0.1987 (5)	0.9281 (3)	-0.0409 (3)	0.0718 (11)
C17	0.1040 (4)	0.8705 (3)	0.0187 (3)	0.0618 (10)
H17	0.0383	0.8248	-0.0062	0.074*
C18	0.1085 (4)	0.8818 (3)	0.1148 (3)	0.0525 (9)
C19	0.2046 (4)	0.9498 (3)	0.1527 (3)	0.0704 (11)
H19	0.2085	0.9561	0.2179	0.084*
C20	0.2954 (5)	1.0084 (3)	0.0920 (4)	0.0891 (14)
H20	0.3589	1.0556	0.1165	0.107*
C21	0.2917 (5)	0.9971 (4)	-0.0028 (4)	0.0869 (14)
H21	0.3532	1.0368	-0.0428	0.104*
C22	0.1221 (7)	0.8470 (4)	-0.1775 (3)	0.1154 (19)
H22A	0.1567	0.7799	-0.1511	0.173*
H22B	0.1432	0.8467	-0.2447	0.173*
H22C	0.0080	0.8632	-0.1642	0.173*
C23	0.0139 (4)	0.7167 (3)	0.4036 (3)	0.0564 (9)
H23	0.1082	0.7429	0.4212	0.068*
C24	-0.0752 (4)	0.6559 (3)	0.4711 (2)	0.0527 (9)
C25	-0.0405 (5)	0.6459 (3)	0.5646 (3)	0.0659 (10)
C26	-0.1259 (5)	0.5868 (3)	0.6285 (3)	0.0726 (12)
H26	-0.1005	0.5820	0.6920	0.087*
C27	-0.2481 (5)	0.5360 (3)	0.5956 (3)	0.0683 (11)
C28	-0.2864 (5)	0.5438 (3)	0.5027 (3)	0.0778 (12)

supporting information

H28	-0.3698	0.5090	0.4810	0.093*	
C29	-0.2012 (4)	0.6033 (3)	0.4413 (3)	0.0674 (11)	
H29	-0.2285	0.6087	0.3781	0.081*	
C30	0.0012 (4)	0.8200 (3)	0.1750 (3)	0.0531 (9)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0859 (8)	0.1052 (9)	0.0706 (7)	-0.0250 (7)	0.0176 (6)	-0.0033 (6)
Cl2	0.1145 (10)	0.1176 (10)	0.0918 (9)	-0.0174 (8)	-0.0375 (7)	-0.0345 (7)
C13	0.1856 (15)	0.1449 (12)	0.0878 (9)	-0.0930 (11)	-0.0557 (9)	0.0140 (8)
Cl4	0.1080 (10)	0.1002 (9)	0.0905 (9)	-0.0132 (7)	0.0349 (7)	0.0183 (7)
N1	0.0392 (17)	0.075 (2)	0.0551 (19)	-0.0155 (16)	-0.0011 (15)	-0.0138 (16)
N2	0.0478 (18)	0.0611 (19)	0.0521 (19)	-0.0122 (15)	-0.0036 (15)	-0.0047 (15)
N3	0.0415 (18)	0.067 (2)	0.058 (2)	-0.0088 (15)	0.0041 (16)	0.0035 (16)
N4	0.0361 (17)	0.077 (2)	0.061 (2)	-0.0155 (16)	-0.0023 (15)	0.0086 (16)
01	0.0404 (15)	0.0914 (19)	0.0610 (16)	-0.0221 (14)	0.0026 (12)	-0.0127 (13)
O2	0.113 (3)	0.130 (3)	0.065 (2)	0.007 (2)	-0.0319 (18)	-0.015 (2)
O3	0.123 (3)	0.104 (3)	0.075 (2)	0.006 (2)	0.031 (2)	0.0132 (19)
O4	0.0465 (16)	0.095 (2)	0.0618 (16)	-0.0221 (14)	-0.0070 (13)	0.0059 (14)
C1	0.069 (3)	0.088 (3)	0.055 (3)	0.018 (3)	-0.019 (2)	-0.019 (2)
C2	0.053 (3)	0.095 (3)	0.102 (4)	-0.002(3)	-0.029 (3)	-0.035 (3)
C3	0.053 (3)	0.076 (3)	0.102 (4)	-0.014 (2)	-0.005 (2)	-0.017 (3)
C4	0.042 (2)	0.068 (2)	0.069 (3)	-0.007 (2)	-0.0035 (19)	-0.011 (2)
C5	0.038 (2)	0.054 (2)	0.049 (2)	-0.0020 (18)	-0.0058 (16)	-0.0042 (17)
C6	0.052 (2)	0.068 (3)	0.057 (2)	-0.001(2)	-0.0038 (19)	-0.005 (2)
C7	0.180 (6)	0.118 (4)	0.058 (3)	0.020 (4)	-0.016 (3)	0.007 (3)
C8	0.045 (2)	0.056 (2)	0.050(2)	-0.0073 (19)	-0.0034 (18)	-0.0003 (18)
С9	0.045 (2)	0.062 (2)	0.056 (2)	-0.0084 (19)	-0.0048 (18)	-0.0019 (19)
C10	0.051 (2)	0.049 (2)	0.048 (2)	-0.0026 (18)	-0.0083 (18)	-0.0001 (17)
C11	0.048 (2)	0.065 (2)	0.059 (2)	-0.004 (2)	-0.0059 (19)	-0.0113 (19)
C12	0.057 (2)	0.070 (3)	0.069 (3)	-0.011 (2)	-0.009 (2)	-0.006 (2)
C13	0.071 (3)	0.058 (2)	0.070 (3)	-0.001 (2)	-0.023 (2)	-0.010 (2)
C14	0.086 (3)	0.066 (3)	0.050(2)	0.004 (2)	-0.011 (2)	-0.006(2)
C15	0.060 (2)	0.053 (2)	0.056 (2)	-0.0006 (19)	-0.0043 (19)	0.0035 (19)
C16	0.065 (3)	0.079 (3)	0.066 (3)	0.012 (2)	0.011 (2)	0.012 (2)
C17	0.052 (2)	0.066 (3)	0.066 (3)	-0.003 (2)	0.008 (2)	0.004 (2)
C18	0.038 (2)	0.055 (2)	0.062 (3)	0.0000 (18)	0.0044 (18)	0.0057 (19)
C19	0.057 (3)	0.075 (3)	0.082 (3)	-0.018 (2)	-0.010 (2)	0.012 (2)
C20	0.069 (3)	0.085 (3)	0.117 (4)	-0.027 (3)	-0.017 (3)	0.019 (3)
C21	0.052 (3)	0.094 (4)	0.113 (4)	-0.014 (3)	0.002 (3)	0.031 (3)
C22	0.180 (6)	0.099 (4)	0.059 (3)	0.010 (4)	0.023 (3)	-0.003 (3)
C23	0.050(2)	0.063 (2)	0.058 (2)	-0.0098 (19)	-0.004 (2)	0.0012 (19)
C24	0.049 (2)	0.054 (2)	0.055 (2)	-0.0016 (19)	0.0003 (18)	-0.0036 (18)
C25	0.082 (3)	0.060 (2)	0.057 (3)	-0.012 (2)	-0.010 (2)	-0.002 (2)
C26	0.103 (4)	0.066 (3)	0.047 (2)	-0.002 (3)	-0.001 (2)	0.001 (2)
C27	0.067 (3)	0.063 (3)	0.072 (3)	-0.002 (2)	0.024 (2)	-0.001 (2)
C28	0.055 (3)	0.108 (3)	0.071 (3)	-0.020(2)	0.007 (2)	0.004 (3)

supporting information

C29	0.054 (2)	0.098 (3)	0.051 (2)	-0.016 (2)	0.002 (2)	0.003 (2)
C30	0.040 (2)	0.061 (2)	0.057 (2)	-0.0032 (19)	0.0033 (19)	-0.0022 (19)

Geometric parameters (Å, °)

Cl1—C15	1.750 (4)	C10—C11	1.387 (4)
Cl2—C13	1.733 (4)	C10—C15	1.392 (4)
Cl3—C25	1.730 (4)	C11—C12	1.371 (4)
Cl4—C27	1.739 (4)	C11—H11	0.9300
N1—C8	1.353 (4)	C12—C13	1.369 (5)
N1—N2	1.376 (3)	C12—H12	0.9300
N1—H1	0.8600	C13—C14	1.377 (5)
N2—C9	1.268 (4)	C14—C15	1.390 (5)
N3—C23	1.272 (4)	C14—H14	0.9300
N3—N4	1.376 (3)	C16—C21	1.374 (5)
N4—C30	1.351 (4)	C16—C17	1.389 (5)
N4—H4A	0.8600	C17—C18	1.372 (5)
O1—C8	1.229 (3)	C17—H17	0.9300
O2—C1	1.369 (4)	C18—C19	1.380 (5)
O2—C7	1.406 (5)	C18—C30	1.490 (4)
O3—C16	1.363 (4)	C19—C20	1.387 (5)
O3—C22	1.400 (5)	C19—H19	0.9300
O4—C30	1.229 (4)	C20—C21	1.354 (6)
C1—C6	1.376 (5)	C20—H20	0.9300
C1—C2	1.385 (6)	C21—H21	0.9300
C2—C3	1.366 (5)	C22—H22A	0.9600
C2—H2	0.9300	C22—H22B	0.9600
C3—C4	1.382 (5)	C22—H22C	0.9600
С3—Н3	0.9300	C23—C24	1.454 (4)
C4—C5	1.382 (4)	C23—H23	0.9300
C4—H4	0.9300	C24—C25	1.366 (5)
C5—C6	1.382 (4)	C24—C29	1.390 (5)
C5—C8	1.488 (4)	C25—C26	1.392 (5)
С6—Н6	0.9300	C26—C27	1.367 (5)
C7—H7A	0.9600	C26—H26	0.9300
С7—Н7В	0.9600	C27—C28	1.363 (5)
С7—Н7С	0.9600	C28—C29	1.374 (5)
C9—C10	1.455 (4)	C28—H28	0.9300
С9—Н9	0.9300	С29—Н29	0.9300
C8—N1—N2	118.6 (3)	C13—C14—H14	120.7
C8—N1—H1	120.7	C15—C14—H14	120.7
N2—N1—H1	120.7	C14—C15—C10	122.0 (3)
C9—N2—N1	116.1 (3)	C14—C15—Cl1	117.8 (3)
C23—N3—N4	116.0 (3)	C10—C15—Cl1	120.2 (3)
C30—N4—N3	118.6 (3)	O3—C16—C21	116.1 (4)
C30—N4—H4A	120.7	O3—C16—C17	124.4 (4)
N3—N4—H4A	120.7	C21—C16—C17	119.4 (4)

C1—O2—C7	117.1 (4)	C18—C17—C16	119.3 (4)
C16—O3—C22	117.3 (4)	C18—C17—H17	120.4
O2—C1—C6	125.1 (4)	С16—С17—Н17	120.4
O2—C1—C2	115.8 (4)	C17—C18—C19	121.0 (3)
C6—C1—C2	119.1 (4)	C17—C18—C30	116.8 (3)
C3—C2—C1	120.7 (4)	C19—C18—C30	122.2 (3)
С3—С2—Н2	119.6	C18—C19—C20	119.0 (4)
C1—C2—H2	119.6	C18—C19—H19	120.5
C2—C3—C4	120.5 (4)	С20—С19—Н19	120.5
С2—С3—Н3	119.7	C21—C20—C19	120.1 (4)
С4—С3—Н3	119.7	C21—C20—H20	119.9
C3—C4—C5	118.9 (4)	С19—С20—Н20	119.9
C3—C4—H4	120.5	C20—C21—C16	121.2 (4)
C5—C4—H4	120.5	C20—C21—H21	119.4
C6—C5—C4	120.5 (3)	C16—C21—H21	119.4
C6—C5—C8	117.1 (3)	O3—C22—H22A	109.5
C4—C5—C8	122.4 (3)	O3—C22—H22B	109.5
C1—C6—C5	120.2 (4)	H22A—C22—H22B	109.5
С1—С6—Н6	119.9	O3—C22—H22C	109.5
С5—С6—Н6	119.9	H22A—C22—H22C	109.5
O2—C7—H7A	109.5	H22B—C22—H22C	109.5
O2—C7—H7B	109.5	N3—C23—C24	120.0 (3)
H7A—C7—H7B	109.5	N3—C23—H23	120.0
O2—C7—H7C	109.5	С24—С23—Н23	120.0
H7A—C7—H7C	109.5	C25—C24—C29	116.8 (3)
H7B—C7—H7C	109.5	C25—C24—C23	123.1 (3)
O1—C8—N1	122.8 (3)	C29—C24—C23	120.1 (3)
O1—C8—C5	121.5 (3)	C24—C25—C26	122.5 (4)
N1—C8—C5	115.7 (3)	C24—C25—C13	120.0 (3)
N2—C9—C10	119.8 (3)	C26—C25—C13	117.4 (3)
N2—C9—H9	120.1	C27—C26—C25	118.5 (4)
С10—С9—Н9	120.1	С27—С26—Н26	120.8
C11—C10—C15	116.5 (3)	C25—C26—H26	120.8
C11—C10—C9	121.1 (3)	C28—C27—C26	120.8 (4)
C15—C10—C9	122.4 (3)	C28—C27—C14	119.9 (4)
C12—C11—C10	122.6 (3)	C26—C27—C14	119.3 (3)
C12—C11—H11	118.7	C27—C28—C29	119.6 (4)
C10-C11-H11	118.7	C27—C28—H28	120.2
C13—C12—C11	119.2 (4)	C29—C28—H28	120.2
C13—C12—H12	120.4	C28—C29—C24	121.8 (4)
C11—C12—H12	120.4	С28—С29—Н29	119.1
C12—C13—C14	121.0 (3)	С24—С29—Н29	119.1
C12—C13—Cl2	120.4 (3)	O4—C30—N4	122.4 (3)
C14—C13—Cl2	118.6 (3)	O4—C30—C18	122.0 (3)
C13—C14—C15	118.6 (3)	N4—C30—C18	115.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N4—H4A···O1 ⁱ	0.86	2.02	2.844 (4)	161
N1—H1····O4 ⁱⁱ	0.86	2.06	2.880 (3)	159

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1.